CMS 3D CMS Logo

List of all members | Public Member Functions | Static Public Member Functions
EcalCrystalMatrixProbality< T > Class Template Reference

#include <EcalCrystalMatrixProbality.h>

Public Member Functions

template<>
double Central (double x)
 
template<>
double Central (double x)
 
template<>
double Diagonal (double x)
 
template<>
double Diagonal (double x)
 
template<>
double ReftRight (double x)
 
template<>
double ReftRight (double x)
 
template<>
double UpDown (double x)
 
template<>
double UpDown (double x)
 

Static Public Member Functions

static double Central (double x)
 
static double Diagonal (double x)
 
static double ReftRight (double x)
 
static double UpDown (double x)
 

Detailed Description

template<typename T>
class EcalCrystalMatrixProbality< T >

Definition at line 12 of file EcalCrystalMatrixProbality.h.

Member Function Documentation

template<>
double EcalCrystalMatrixProbality< EBDetId >::Central ( double  x)

Definition at line 7 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

7  {
8  double vEBCentral = 0.0 ;
9 
10  if ( x <= 0.180 ) { vEBCentral = 0.0 ; }
11  else if ( 0.180 < x && x <= 0.300 ) { vEBCentral = ( -3267.97+53882*x-298536*x*x+555872*x*x*x)/2.19773067484200601e+03 ; }
12  else if ( 0.300 < x && x <= 0.450 ) { vEBCentral = ( -35768.3+ 307852*x -892325*x*x +914708*x*x*x)/2.19773067484200601e+03 ; }
13  else if ( 0.450 < x && x <= 0.780 ) { vEBCentral = ( 28483 -113912*x +184167*x*x -99781.8*x*x*x)/2.19773067484200601e+03 ; }
14  else if ( 0.780 < x && x <= 0.845 ) { vEBCentral = ( -2.49877e+07 + 9.18933e+07*x -1.12504e+08*x*x + 4.58581e+07*x*x*x)/2.19773067484200601e+03 ; }
15  else if ( 0.845 < x ) { vEBCentral = 0.0 ; }
16  else { vEBCentral = 0.0 ; }
17 
18  return vEBCentral ;
19 }
template<typename T >
static double EcalCrystalMatrixProbality< T >::Central ( double  x)
static
template<>
double EcalCrystalMatrixProbality< EEDetId >::Central ( double  x)

Definition at line 67 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

67  {
68  double vEECentral = 0.0 ;
69 
70  if ( x <= 0.195 ) { vEECentral = 0.0 ; }
71  else if ( 0.195 < x && x <= 0.440 ) { vEECentral = (-30295.4+562760*x-4.04967e+06*x*x+1.40276e+07*x*x*x-2.33108e+07*x*x*x*x+1.50243e+07*x*x*x*x*x)/9.44506089594767786e+02 ; }
72  else if ( 0.440 < x && x <= 0.840 ) { vEECentral = (-34683.3+274011*x-749408*x*x+895482*x*x*x-396108*x*x*x*x)/9.44506089594767786e+02 ; }
73  else if ( 0.840 < x && x <= 0.875 ) { vEECentral = (4.7355575e+06-1.6268056e+07*x+1.8629316e+07*x*x-7.1113915e+06*x*x*x)/9.44506089594767786e+02 ; }
74  else if ( 0.875 < x ) { vEECentral = 0.0 ; }
75  else { vEECentral = 0.0 ; }
76 
77  return vEECentral ;
78 }
template<typename T >
static double EcalCrystalMatrixProbality< T >::Diagonal ( double  x)
static
template<>
double EcalCrystalMatrixProbality< EBDetId >::Diagonal ( double  x)

Definition at line 22 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

22  {
23  double vEBDiagonal = 0.0 ;
24 
25  if ( 0.000 < x && x <= 0.010 ) { vEBDiagonal = TMath::Landau(x,7.02750e-03,2.41060e-03,true)*3.96033283438174431e+03/4.39962923475768821e+03 ; }
26  else if ( 0.010 < x && x <= 0.100 ) { vEBDiagonal = TMath::Landau(x,1.70472e-03,2.47564e-03,true)*8.34898553737588554e+03/4.39962923475768821e+03 ; }
27  else if ( 0.100 < x && x <= 0.350 ) { vEBDiagonal = (18206.7-326578*x+2.44528e+06*x*x-9.27532e+06*x*x*x+ 1.75264e+07*x*x*x*x-1.30949e+07*x*x*x*x*x)/4.39962923475768821e+03 ; }
28  else if ( 0.350 < x ) { vEBDiagonal = 0.0 ; }
29  else { vEBDiagonal = 0.0 ; }
30 
31  return vEBDiagonal ;
32 }
template<>
double EcalCrystalMatrixProbality< EEDetId >::Diagonal ( double  x)

Definition at line 81 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

81  {
82  double vEEDiagonal = 0.0 ;
83 
84  if ( 0.000 < x && x <= 0.015 ) { vEEDiagonal = TMath::Landau(x,8.25505e-03,3.10387e-03,true)*1.68601977536835489e+03/1.86234137068993937e+03 ; }
85  else if ( 0.015 < x && x <= 0.150 ) { vEEDiagonal = TMath::Landau(x,-5.58560e-04,2.44735e-03,true)*4.88463235185936264e+03/1.86234137068993937e+03 ; }
86  else if ( 0.150 < x && x <= 0.400 ) { vEEDiagonal = (7416.66-114653*x+763877*x*x-2.57767e+06*x*x*x+4.28872e+06*x*x*x*x-2.79218e+06*x*x*x*x*x)/1.86234137068993937e+03 ; }
87  else if ( 0.400 < x ) { vEEDiagonal = 0.0 ; }
88  else { vEEDiagonal = 0.0 ; }
89 
90  return vEEDiagonal ;
91 }
template<typename T >
static double EcalCrystalMatrixProbality< T >::ReftRight ( double  x)
static
template<>
double EcalCrystalMatrixProbality< EBDetId >::ReftRight ( double  x)

Definition at line 51 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

51  {
52  double vEBReftRight = 0.0 ;
53 
54  if ( 0.000 < x && x <= 0.003 ) { vEBReftRight = (102.682+457094*x-4.34553e+08*x*x+2.59638e+11*x*x*x)/2.19081589410447168e+03 ; }
55  else if ( 0.003 < x && x <= 0.010 ) { vEBReftRight = TMath::Landau(x, 9.56298e-03, 2.59171e-03,true)*1.27769617491053555e+03/2.19081589410447168e+03 ; }
56  else if ( 0.010 < x && x <= 0.070 ) { vEBReftRight = TMath::Landau(x, -1.11570e-02 , 9.08308e-04 ,true)*3.58026004645168359e+04/2.19081589410447168e+03 ; }
57  else if ( 0.070 < x && x <= 0.400 ) { vEBReftRight = ( 15362.5 -230546*x +1.57249e+06*x*x -5.47903e+06*x*x*x+9.4296e+06*x*x*x*x -6.3775e+06*x*x*x*x*x)/2.19081589410447168e+03 ; }
58  else if ( 0.400 < x && x <= 0.440 ) { vEBReftRight = (2.3163882e+06-2.2437252e+07*x+8.1519104e+07*x*x-1.3162869e+08*x*x*x+7.9682168e+07*x*x*x*x)/2.19081589410447168e+03 ; }
59  else if ( 0.440 < x ) { vEBReftRight = 0.0 ; }
60  else { vEBReftRight = 0.0 ; }
61 
62  return vEBReftRight ;
63 }
template<>
double EcalCrystalMatrixProbality< EEDetId >::ReftRight ( double  x)

Definition at line 107 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

107  {
108  double vEEReftRight = 0.0 ;
109 
110  if ( 0.000 < x && x <= 0.015 ) { vEEReftRight = TMath::Landau(x,1.34809e-02,3.70278e-03,true)*8.62383670884733533e+02/1.88498009908992071e+03 ; }
111  else if ( 0.015 < x && x <= 0.100 ) { vEEReftRight = (75877.4-3.18767e+06*x+5.89073e+07*x*x-5.08829e+08*x*x*x+1.67247e+09*x*x*x*x)/1.88498009908992071e+03 ; }
112  else if ( 0.100 < x && x <= 0.450 ) { vEEReftRight = (12087-123704*x+566586*x*x-1.20111e+06*x*x*x+933789*x*x*x*x)/1.88498009908992071e+03 ; }
113  else if ( 0.450 < x ) { vEEReftRight = 0.0 ; }
114  else { vEEReftRight = 0.0 ; }
115 
116  return vEEReftRight ;
117 }
template<typename T >
static double EcalCrystalMatrixProbality< T >::UpDown ( double  x)
static
template<>
double EcalCrystalMatrixProbality< EBDetId >::UpDown ( double  x)

Definition at line 35 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

35  {
36  double vEBUpDown = 0.0 ;
37 
38  if ( 0.000 < x && x <= 0.005 ) { vEBUpDown = (28.5332-35350*x+4.28566e+07*x*x-2.02038e+10*x*x*x+ 3.56185e+12*x*x*x*x)/2.20315994559946967e+03 ; }
39  else if ( 0.005 < x && x <= 0.015 ) { vEBUpDown = TMath::Landau(x, 1.51342e-02, 3.65756e-03,true)*7.04501225670452641e+02/2.20315994559946967e+03 ; }
40  else if ( 0.015 < x && x <= 0.020 ) { vEBUpDown = TMath::Landau(x, 1.52460e-02, 5.04539e-03 ,true)*9.70980301933632518e+02/2.20315994559946967e+03 ; }
41  else if ( 0.020 < x && x <= 0.100 ) { vEBUpDown = (62436.8-2.52677e+06*x+4.92704e+07*x*x-4.95769e+08*x*x*x+ 2.48261e+09*x*x*x*x-4.89172e+09*x*x*x*x*x)/2.20315994559946967e+03 ; }
42  else if ( 0.100 < x && x <= 0.430 ) { vEBUpDown = ( 19976.7 - 265844*x+ 1.80629e+06*x*x -6.40378e+06*x*x*x+ 1.13017e+07*x*x*x*x -7.91581e+06*x*x*x*x*x)/2.20315994559946967e+03 ; }
43  else if ( 0.430 < x && x <= 0.453 ) { vEBUpDown = ( -3.78481e+06 +2.60128e+07*x -5.9519e+07*x*x +4.53408e+07*x*x*x)/2.20315994559946967e+03 ; }
44  else if ( 0.453 < x ) { vEBUpDown = 0.0 ; }
45  else { vEBUpDown = 0.0 ; }
46 
47  return vEBUpDown ;
48 }
template<>
double EcalCrystalMatrixProbality< EEDetId >::UpDown ( double  x)

Definition at line 94 of file EcalCrystalMatrixProbality.cc.

References MillePedeFileConverter_cfg::e, and vertices_cff::x.

94  {
95  double vEEUpDown = 0.0 ;
96 
97  if ( 0.000 < x && x <= 0.015 ) { vEEUpDown = TMath::Landau(x,1.34809e-02,3.70278e-03,true)*8.62383670884733533e+02/1.88498009908992071e+03 ; }
98  else if ( 0.015 < x && x <= 0.100 ) { vEEUpDown = (75877.4-3.18767e+06*x+5.89073e+07*x*x-5.08829e+08*x*x*x+1.67247e+09*x*x*x*x)/1.88498009908992071e+03 ; }
99  else if ( 0.100 < x && x <= 0.450 ) { vEEUpDown = (12087-123704*x+566586*x*x-1.20111e+06*x*x*x+933789*x*x*x*x)/1.88498009908992071e+03 ; }
100  else if ( 0.450 < x ) { vEEUpDown = 0.0 ; }
101  else { vEEUpDown = 0.0 ; }
102 
103  return vEEUpDown ;
104 }