132 std::cout <<
"DDHGCalModule test: \t\tInside Layers" << std::endl;
136 const double tol(0.01);
137 for (
unsigned int i=0;
i<
layers.size();
i++) {
139 double routF =
rMax(zi);
143 for (
int ly=laymin; ly<laymax; ++ly) {
152 std::cout <<
"DDHGCalModule test: Layer " << ly <<
":" << ii
153 <<
" Front " << zi <<
", " << routF <<
" Back " << zo <<
", " 154 << rinB <<
" superlayer thickness " << layerThick[
i]
163 double rmax = routF*
cos(alpha) - tol;
164 std::vector<double> pgonZ, pgonRin, pgonRout;
165 pgonZ.emplace_back(-0.5*
thick[ii]); pgonZ.emplace_back(0.5*
thick[ii]);
166 pgonRin.emplace_back(rinB); pgonRin.emplace_back(rinB);
167 pgonRout.emplace_back(rmax); pgonRout.emplace_back(rmax);
170 pgonZ, pgonRin, pgonRout);
174 <<
" polyhedra of " <<
sectors <<
" sectors covering " 175 << -alpha/CLHEP::deg <<
":" 176 << (-alpha+CLHEP::twopi)/CLHEP::deg
177 <<
" with " << pgonZ.size() <<
" sections" << std::endl;
178 for (
unsigned int k=0;
k<pgonZ.size(); ++
k)
179 std::cout <<
"[" <<
k <<
"] z " << pgonZ[
k] <<
" R " << pgonRin[
k]
180 <<
":" << pgonRout[
k] << std::endl;
184 0.5*
thick[ii], rinB, routF, 0.0,
189 <<
" Tubs made of " << matName <<
" of dimensions " << rinB
190 <<
", " << routF <<
", " << 0.5*
thick[
ii] <<
", 0.0, " 191 << CLHEP::twopi/CLHEP::deg << std::endl;
192 std::cout <<
"DDHGCalModule test position in: " << glog.
name()
193 <<
" number " << copy << std::endl;
202 std::cout <<
"DDHGCalModule test: " << glog.
name() <<
" number " 203 << copy <<
" positioned in " << module.
name() <<
" at " <<
r1 204 <<
" with " << rot << std::endl;
210 if (fabs(thickTot-layerThick[
i]) < 0.00001) {
211 }
else if (thickTot > layerThick[i]) {
212 edm::LogError(
"HGCalGeom") <<
"Thickness of the partition " << layerThick[
i]
213 <<
" is smaller than thickness " << thickTot
214 <<
" of all its components **** ERROR ****\n";
215 }
else if (thickTot < layerThick[i]) {
217 << layerThick[
i] <<
" does not match with " 218 << thickTot <<
" of the components\n";
DDMaterial is used to define and access material information.
std::vector< int > copyNumber
DDName is used to identify DDD entities uniquely.
std::vector< int > layerSense
A DDSolid represents the shape of a part.
std::vector< int > layers
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Represents a uniquely identifyable rotation matrix.
U second(std::pair< T, U > const &p)
std::vector< double > slopeB
std::vector< std::string > names
std::vector< std::string > materials
Cos< T >::type cos(const T &t)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
std::vector< int > layerType
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string ©no, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=0)
std::vector< double > thick
std::vector< double > layerThick
void positionSensitive(DDLogicalPart &glog, double rin, double rout, DDCompactView &cpv)
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = ':'
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)