CMS 3D CMS Logo

Classes | Typedefs | Functions
MuScleFitUtils.h File Reference
#include <CLHEP/Vector/LorentzVector.h>
#include "DataFormats/MuonReco/interface/Muon.h"
#include "DataFormats/MuonReco/interface/MuonFwd.h"
#include "SimDataFormats/GeneratorProducts/interface/HepMCProduct.h"
#include "DataFormats/HepMCCandidate/interface/GenParticleFwd.h"
#include "SimDataFormats/Track/interface/SimTrackContainer.h"
#include "FWCore/MessageLogger/interface/MessageLogger.h"
#include "TGraphErrors.h"
#include "TH2F.h"
#include "TMinuit.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/CrossSectionHandler.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/BackgroundHandler.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/ResolutionFunction.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/MuonPair.h"
#include "MuonAnalysis/MomentumScaleCalibration/interface/GenMuonPair.h"
#include <vector>

Go to the source code of this file.

Classes

class  biasFunctionBase< T >
 
struct  MuScleFitUtils::byPt
 
struct  MuScleFitUtils::massResolComponentsStruct
 
class  MuScleFitUtils
 
class  resolutionFunctionBase< T >
 
class  scaleFunctionBase< T >
 

Typedefs

typedef reco::Particle::LorentzVector lorentzVector
 

Functions

void likelihood (int &npar, double *grad, double &fval, double *xval, int flag)
 

Typedef Documentation

Definition at line 44 of file MuScleFitUtils.h.

Function Documentation

void likelihood ( int &  npar,
double *  grad,
double &  fval,
double *  xval,
int  flag 
)

Definition at line 1709 of file MuScleFitUtils.cc.

References MuScleFitUtils::applyScale(), MuScleFitUtils::computeWeight(), gather_cfg::cout, MuScleFitUtils::debug, MuScleFitUtils::doScaleFit, reco::tau::disc::Eta(), MuScleFitUtils::iev_, MuScleFitUtils::invDimuonMass(), MuScleFitUtils::likelihoodInLoop_, cmsBatch::log, MuScleFitUtils::loopCounter, ResonanceBuilder::mass, MuScleFitUtils::massProb(), MuScleFitUtils::massResolution(), MuScleFitUtils::minuitLoop_, MuScleFitUtils::normalizationChanged_, MuScleFitUtils::normalizeLikelihoodByEventNumber_, MuScleFitUtils::oldNormalization_, TtFullHadEvtBuilder_cfi::prob, MuScleFitUtils::ReducedSavedPair, MuScleFitUtils::rminPtr_, MuScleFitUtils::SavedPair, mps_merge::weight, and DOFs::Y.

Referenced by pat::ElectronSelector::filter(), MuScleFitUtils::minimizeLikelihood(), MuScleFitUtils::byPt::operator()(), and PFNuclearProducer::produce().

1709  {
1710 
1711  if (MuScleFitUtils::debug>19) std::cout << "[MuScleFitUtils-likelihood]: In likelihood function" << std::endl;
1712 
1713  const lorentzVector * recMu1;
1714  const lorentzVector * recMu2;
1715  lorentzVector corrMu1;
1716  lorentzVector corrMu2;
1717 
1718  // if (MuScleFitUtils::debug>19) {
1719  // int parnumber = (int)(MuScleFitUtils::parResol.size()+MuScleFitUtils::parScale.size()+
1720  // MuScleFitUtils::parCrossSection.size()+MuScleFitUtils::parBgr.size());
1721  // std::cout << "[MuScleFitUtils-likelihood]: Looping on tree with ";
1722  // for (int ipar=0; ipar<parnumber; ipar++) {
1723  // std::cout << "Parameter #" << ipar << " with value " << xval[ipar] << " ";
1724  // }
1725  // std::cout << std::endl;
1726  // }
1727 
1728  // Loop on the tree
1729  // ----------------
1730  double flike = 0;
1731  int evtsinlik = 0;
1732  int evtsoutlik = 0;
1733  // std::cout << "SavedPair.size() = " << MuScleFitUtils::SavedPair.size() << std::endl;
1734  if( MuScleFitUtils::debug>0 ) {
1735  std::cout << "SavedPair.size() = " << MuScleFitUtils::SavedPair.size() << std::endl;
1736  std::cout << "ReducedSavedPair.size() = " << MuScleFitUtils::ReducedSavedPair.size() << std::endl;
1737  }
1738  // for( unsigned int nev=0; nev<MuScleFitUtils::SavedPair.size(); ++nev ) {
1739  for( unsigned int nev=0; nev<MuScleFitUtils::ReducedSavedPair.size(); ++nev ) {
1740 
1741  // recMu1 = &(MuScleFitUtils::SavedPair[nev].first);
1742  // recMu2 = &(MuScleFitUtils::SavedPair[nev].second);
1743  recMu1 = &(MuScleFitUtils::ReducedSavedPair[nev].first);
1744  recMu2 = &(MuScleFitUtils::ReducedSavedPair[nev].second);
1745 
1746  // Compute original mass
1747  // ---------------------
1748  double mass = MuScleFitUtils::invDimuonMass( *recMu1, *recMu2 );
1749 
1750  // Compute weight and reference mass (from original mass)
1751  // ------------------------------------------------------
1753  if( weight!=0. ) {
1754  // Compute corrected mass (from previous biases) only if we are currently fitting the scale
1755  // ----------------------------------------------------------------------------------------
1757 // std::cout << "Original pt1 = " << corrMu1.Pt() << std::endl;
1758 // std::cout << "Original pt2 = " << corrMu2.Pt() << std::endl;
1759  corrMu1 = MuScleFitUtils::applyScale(*recMu1, xval, -1);
1760  corrMu2 = MuScleFitUtils::applyScale(*recMu2, xval, 1);
1761 
1762 // if( (corrMu1.Pt() != corrMu1.Pt()) || (corrMu2.Pt() != corrMu2.Pt()) ) {
1763 // std::cout << "Rescaled pt1 = " << corrMu1.Pt() << std::endl;
1764 // std::cout << "Rescaled pt2 = " << corrMu2.Pt() << std::endl;
1765 // }
1766 // std::cout << "Rescaled pt1 = " << corrMu1.Pt() << std::endl;
1767 // std::cout << "Rescaled pt2 = " << corrMu2.Pt() << std::endl;
1768  }
1769  else {
1770  corrMu1 = *recMu1;
1771  corrMu2 = *recMu2;
1772 
1773 // if( (corrMu1.Pt() != corrMu1.Pt()) || (corrMu2.Pt() != corrMu2.Pt()) ) {
1774 // std::cout << "Not rescaled pt1 = " << corrMu1.Pt() << std::endl;
1775 // std::cout << "Not rescaled pt2 = " << corrMu2.Pt() << std::endl;
1776 // }
1777  }
1778  double corrMass = MuScleFitUtils::invDimuonMass(corrMu1, corrMu2);
1779  double Y = (corrMu1+corrMu2).Rapidity();
1780  double resEta = (corrMu1+corrMu2).Eta();
1781  if( MuScleFitUtils::debug>19 ) {
1782  std::cout << "[MuScleFitUtils-likelihood]: Original/Corrected resonance mass = " << mass
1783  << " / " << corrMass << std::endl;
1784  }
1785 
1786  // Compute mass resolution
1787  // -----------------------
1788  double massResol = MuScleFitUtils::massResolution(corrMu1, corrMu2, xval);
1789  if (MuScleFitUtils::debug>19)
1790  std::cout << "[MuScleFitUtils-likelihood]: Resolution is " << massResol << std::endl;
1791 
1792  // Compute probability of this mass value including background modeling
1793  // --------------------------------------------------------------------
1794  if (MuScleFitUtils::debug>1) std::cout << "calling massProb inside likelihood function" << std::endl;
1795 
1796  // double prob = MuScleFitUtils::massProb( corrMass, resEta, Y, massResol, xval );
1797  double prob = MuScleFitUtils::massProb( corrMass, resEta, Y, massResol, xval, false, corrMu1.eta(), corrMu2.eta() );
1798  if (MuScleFitUtils::debug>1) std::cout << "likelihood:massProb = " << prob << std::endl;
1799 
1800  // Compute likelihood
1801  // ------------------
1802  if( prob>0 ) {
1803  // flike += log(prob*10000)*weight; // NNBB! x10000 to see if we can recover the problem of boundary
1804  flike += log(prob)*weight;
1805  evtsinlik += 1; // NNBB test: see if likelihood per event is smarter (boundary problem)
1806  } else {
1807  if( MuScleFitUtils::debug > 0 ) {
1808  std::cout << "WARNING: corrMass = " << corrMass << " outside window, this will cause a discontinuity in the likelihood. Consider increasing the safety bands which are now set to 90% of the normalization window to avoid this problem" << std::endl;
1809  std::cout << "Original mass was = " << mass << std::endl;
1810  std::cout << "WARNING: massResol = " << massResol << " outside window" << std::endl;
1811  }
1812  evtsoutlik += 1;
1813  }
1814  if (MuScleFitUtils::debug>19)
1815  std::cout << "[MuScleFitUtils-likelihood]: Mass probability = " << prob << std::endl;
1816  } // weight!=0
1817 
1818  } // End of loop on tree events
1819 
1820 // // Protection for low statistic. If the likelihood manages to throw out all the signal
1821 // // events and stays with ~ 10 events in the resonance window it could have a better likelihood
1822 // // because of ~ uniformly distributed events (a random combination could be good and spoil the fit).
1823 // // We require that the number of events included in the fit does not change more than 5% in each minuit loop.
1824 // bool lowStatPenalty = false;
1825 // if( MuScleFitUtils::minuitLoop_ > 0 ) {
1826 // double newEventsOutInRatio = double(evtsinlik);
1827 // // double newEventsOutInRatio = double(evtsoutlik)/double(evtsinlik);
1828 // double ratio = newEventsOutInRatio/MuScleFitUtils::oldEventsOutInRatio_;
1829 // MuScleFitUtils::oldEventsOutInRatio_ = newEventsOutInRatio;
1830 // if( ratio < 0.8 || ratio > 1.2 ) {
1831 // std::cout << "Warning: too much change from oldEventsInLikelihood to newEventsInLikelihood, ratio is = " << ratio << std::endl;
1832 // std::cout << "oldEventsInLikelihood = " << MuScleFitUtils::oldEventsOutInRatio_ << ", newEventsInLikelihood = " << newEventsOutInRatio << std::endl;
1833 // lowStatPenalty = true;
1834 // }
1835 // }
1836 
1837  // It is a product of probabilities, we compare the sqrt_N of them. Thus N becomes a denominator of the logarithm.
1838  if( evtsinlik != 0 ) {
1839 
1841  // && !(MuScleFitUtils::duringMinos_) ) {
1842  if( MuScleFitUtils::rminPtr_ == nullptr ) {
1843  std::cout << "ERROR: rminPtr_ = " << MuScleFitUtils::rminPtr_ << ", code will crash" << std::endl;
1844  }
1845  double normalizationArg[] = {1/double(evtsinlik)};
1846  // Reset the normalizationArg only if it changed
1847  if( MuScleFitUtils::oldNormalization_ != normalizationArg[0] ) {
1848  int ierror = 0;
1849 // if( MuScleFitUtils::likelihoodInLoop_ != 0 ) {
1850 // // This condition is set only when minimizing. Later calls of hesse and minos will not change the value
1851 // // This is done to avoid minos being confused by changing the UP parameter during its computation.
1852 // MuScleFitUtils::rminPtr_->mnexcm("SET ERR", normalizationArg, 1, ierror);
1853 // }
1854  MuScleFitUtils::rminPtr_->mnexcm("SET ERR", normalizationArg, 1, ierror);
1855  std::cout << "oldNormalization = " << MuScleFitUtils::oldNormalization_ << " new = " << normalizationArg[0] << std::endl;
1856  MuScleFitUtils::oldNormalization_ = normalizationArg[0];
1858  }
1859  fval = -2.*flike/double(evtsinlik);
1860  // fval = -2.*flike;
1861  // if( lowStatPenalty ) {
1862  // fval *= 100;
1863  // }
1864  }
1865  else {
1866  fval = -2.*flike;
1867  }
1868  }
1869  else {
1870  std::cout << "Problem: Events in likelihood = " << evtsinlik << std::endl;
1871  fval = 999999999.;
1872  }
1873  // fval = -2.*flike;
1874  if (MuScleFitUtils::debug>19)
1875  std::cout << "[MuScleFitUtils-likelihood]: End tree loop with likelihood value = " << fval << std::endl;
1876 
1877 // #ifdef DEBUG
1878 
1879 // if( MuScleFitUtils::minuitLoop_ < 10000 ) {
1880  if( MuScleFitUtils::likelihoodInLoop_ != nullptr ) {
1883  }
1884  // }
1885  // else std::cout << "minuitLoop over 10000. Not filling histogram" << std::endl;
1886 
1887  std::cout<<"MINUIT loop number "<<MuScleFitUtils::minuitLoop_<<", likelihood = "<<fval<<std::endl;
1888 
1889  if( MuScleFitUtils::debug > 0 ) {
1890  // if( MuScleFitUtils::duringMinos_ ) {
1891  // int parnumber = (int)(MuScleFitUtils::parResol.size()+MuScleFitUtils::parScale.size()+
1892  // MuScleFitUtils::parCrossSection.size()+MuScleFitUtils::parBgr.size());
1893  // std::cout << "[MuScleFitUtils-likelihood]: Looping on tree with ";
1894  // for (int ipar=0; ipar<parnumber; ipar++) {
1895  // std::cout << "Parameter #" << ipar << " with value " << xval[ipar] << " ";
1896  // }
1897  // std::cout << std::endl;
1898  // std::cout << "[MuScleFitUtils-likelihood]: likelihood value = " << fval << std::endl;
1899  // }
1900  std::cout << "Events in likelihood = " << evtsinlik << std::endl;
1901  std::cout << "Events out likelihood = " << evtsoutlik << std::endl;
1902  }
1903 
1904 // #endif
1905 }
static std::vector< int > doScaleFit
static unsigned int loopCounter
static int debug
static unsigned int normalizationChanged_
Definition: weight.py:1
static double massProb(const double &mass, const double &rapidity, const int ires, const double &massResol)
reco::Particle::LorentzVector lorentzVector
Definition: GenMuonPair.h:9
static std::vector< std::pair< lorentzVector, lorentzVector > > ReducedSavedPair
static double massResolution(const lorentzVector &mu1, const lorentzVector &mu2)
static int minuitLoop_
static double computeWeight(const double &mass, const int iev, const bool doUseBkgrWindow=false)
static std::vector< std::pair< lorentzVector, lorentzVector > > SavedPair
static double invDimuonMass(const lorentzVector &mu1, const lorentzVector &mu2)
static lorentzVector applyScale(const lorentzVector &muon, const std::vector< double > &parval, const int charge)
static TMinuit * rminPtr_
static TH1D * likelihoodInLoop_
static double oldNormalization_
static int iev_
static bool normalizeLikelihoodByEventNumber_