125 std::cout <<
"DDHGCalModuleAlgo test: \t\tInside Layers" << std::endl;
129 const double tol(0.01);
130 for (
unsigned int i=0;
i<
layers.size();
i++) {
132 double routF =
rMax(zi);
136 for (
int ly=laymin; ly<laymax; ++ly) {
145 std::cout <<
"DDHGCalModuleAlgo test: Layer " << ly <<
":" << ii
146 <<
" Front " << zi <<
", " << routF <<
" Back " << zo <<
", " 147 << rinB <<
" superlayer thickness " << layerThick[
i]
156 double rmax = routF*
cos(alpha) - tol;
157 std::vector<double> pgonZ, pgonRin, pgonRout;
158 pgonZ.emplace_back(-0.5*
thick[ii]); pgonZ.emplace_back(0.5*
thick[ii]);
159 pgonRin.emplace_back(rinB); pgonRin.emplace_back(rinB);
160 pgonRout.emplace_back(rmax); pgonRout.emplace_back(rmax);
163 pgonZ, pgonRin, pgonRout);
167 <<
" polyhedra of " <<
sectors <<
" sectors covering " 168 << -alpha/CLHEP::deg <<
":" 169 << (-alpha+CLHEP::twopi)/CLHEP::deg
170 <<
" with " << pgonZ.size() <<
" sections" << std::endl;
171 for (
unsigned int k=0;
k<pgonZ.size(); ++
k)
172 std::cout <<
"[" <<
k <<
"] z " << pgonZ[
k] <<
" R " << pgonRin[
k]
173 <<
":" << pgonRout[
k] << std::endl;
177 0.5*
thick[ii], rinB, routF, 0.0,
182 <<
" Tubs made of " << matName <<
" of dimensions " << rinB
183 <<
", " << routF <<
", " << 0.5*
thick[
ii] <<
", 0.0, " 184 << CLHEP::twopi/CLHEP::deg << std::endl;
193 std::cout <<
"DDHGCalModuleAlgo test: " << glog.
name() <<
" number " 194 << copy <<
" positioned in " << module.
name() <<
" at " <<
r1 195 <<
" with " << rot << std::endl;
201 if (fabs(thickTot-layerThick[
i]) < 0.00001) {
202 }
else if (thickTot > layerThick[i]) {
203 edm::LogError(
"HGCalGeom") <<
"Thickness of the partition " << layerThick[
i]
204 <<
" is smaller than thickness " << thickTot
205 <<
" of all its components **** ERROR ****\n";
206 }
else if (thickTot < layerThick[i]) {
208 << layerThick[
i] <<
" does not match with " 209 << thickTot <<
" of the components\n";
std::vector< int > copyNumber
std::vector< double > thick
void positionSensitive(DDLogicalPart &glog, double rin, double rout, DDCompactView &cpv)
DDMaterial is used to define and access material information.
std::vector< std::string > names
DDName is used to identify DDD entities uniquely.
A DDSolid represents the shape of a part.
ROOT::Math::DisplacementVector3D< ROOT::Math::Cartesian3D< double > > DDTranslation
Represents a uniquely identifyable rotation matrix.
std::vector< std::string > materials
U second(std::pair< T, U > const &p)
Cos< T >::type cos(const T &t)
A DDLogicalPart aggregates information concerning material, solid and sensitveness ...
static DDSolid tubs(const DDName &name, double zhalf, double rIn, double rOut, double startPhi, double deltaPhi)
std::vector< double > slopeB
std::vector< int > layerType
std::vector< int > layers
void position(const DDLogicalPart &self, const DDLogicalPart &parent, const std::string ©no, const DDTranslation &trans, const DDRotation &rot, const DDDivision *div=0)
std::pair< std::string, std::string > DDSplit(const std::string &n)
split into (name,namespace), separator = ':'
static DDSolid polyhedra(const DDName &name, int sides, double startPhi, double deltaPhi, const std::vector< double > &z, const std::vector< double > &rmin, const std::vector< double > &rmax)
Creates a polyhedra (refere to Geant3 or Geant4 documentation)
std::vector< double > layerThick
std::vector< int > layerSense