CMS 3D CMS Logo

CSCTFPtMethods.cc
Go to the documentation of this file.
3 
4 #include <cmath>
5 
6 //-----------------
7 // Static variables
8 //-----------------
9 
10 //L1MuTriggerPtScale CSCTFPtMethods::trigger_scale;
11 
12 // Global scale factor to multiply all parameterizations by
13 //const float CSCTFPtMethods::kGlobalScaleFactor = 1.055;
14 // Now scale to 90% effic definition like in old ORCA
15 const float CSCTFPtMethods::kGlobalScaleFactor = 1.36;
16 
17 // First ME1andME2, then ME1andME3, then MB1andME2
18 // units are radians*GeV
19 
20 
21 // These arrays contain the values for the best fit parameters for three station measurements
22 
24  {
25  // {-4.026, 8.139, -5.350, 1.176}, //hit detectors 1 and 2
26  //??? {0.5170, -11.13, 8.255, -1.980}, //hit detectors 1 and 2
27  {3.900, -8.391, 6.062, -1.436}, //hit detectors 1 and 2
28  // {-2.241, 4.405, -2.756, 0.5878}, //13
29  {8.03602, -17.5355, 12.7725, -3.0616 }, //13
30  {0.8372, -2.220, 1.908, -0.5233}, //23
31  {-0.04389, 0.05174, 0.0, 0.0}, //24
32  {-0.5519E-02, 0.8496E-02, 0.0, 0.0}, //34
33  {-4.228, 8.546, -5.617, 1.235}, //12
34  {0.80, -0.54, 0.0, 0.0}, //25
35  {0.80, -0.54, 0.0, 0.0}, //26
36  };
37 
39  {
40  // {0.6644, -0.2312, 0.0, 0.0}, //12
41  {0.6275, -0.2133, 0.0, 0.0}, //12
42  {-1.124, 2.492, -1.347, 0.2204}, //13
43  {0.5214, -0.7536, 0.3913, -.06739}, //23
44  {1.394, -1.886, 0.8809, -0.1369}, //24
45  {-0.5519E-02, 0.8496E-02, 0.0, 0.0}, //34
46  {0.6644, -0.2312, 0.0, 0.0}, //12
47  {0.80, -0.54, 0.0, 0.0}, //25
48  {0.80, -0.54, 0.0, 0.0}, //26
49  };
50 
51 // These arrays contain the values for the best fit parameters found imperically to determine Pt for a two station measurement
52 // The realtionship is dphi = A/Pt + B/Pt^2
54  {
55  // {-3.198, 6.703, -4.539, 1.028}, //12
56  {-0.6131, 0.6870, 0.0285, -0.1147}, //12
57  // {-6.705, 14.52, -10.32, 2.449}, //13
58  {8.03602, -17.5355, 12.7725, -3.0616 }, //13
59  {5.765, -12.85, 9.543, -2.345}, //23
60  {-4.068, 8.254, -5.491, 1.214}, //24
61  {-.02974, .04816, -.02105, .003640}, //34
62  {-3.358, 7.038, -4.766, 1.079}, //12
63  {0.80, -0.54, 0.0, 0.0}, //25
64  {0.80, -0.54, 0.0, 0.0}, //26
65  };
67  {
68  {0.6425, -0.2308, 0.0, 0.0}, //12
69  {0.6923, -0.2336, 0.0, 0.0}, //13
70  {-0.7147, .01117, -0.5255E-04, 0.7991E-07}, //23
71  {-1.377, 2.150, -1.046, 0.1667}, //24
72  {-.02974, .04816, -.02105, .003640}, //34
73  {0.6425, -0.2308, 0.0, 0.0}, //12
74  {0.80, -0.54, 0.0, 0.0}, //25
75  {0.80, -0.54, 0.0, 0.0}, //26
76  };
77 
79  {
80  // {-0.5873, 0.0802, 0.2337, 0.0}, //12
81  {7.0509, -7.3282, -0.1465, 1.308}, //12
82  // {-0.5677, 1.907, -1.365, 0.2899}, //13
83  {0.0, 0.0, 0.0, 0.0}, //13
84  {-38.55, 82.95, -59.66, 14.29}, //23
85  {20.71, -45.34, 32.05, -7.415}, //24
86  {0.0, 0.0, 0.0, 0.0}, //34
87  {-0.6167, 0.08421, 0.2454, 0.0}, //12
88  {0.0, 0.0, 0.0, 0.0}, //25
89  {0.0, 0.0, 0.0, 0.0} //26
90  };
92  {
93  {14.79, -21.10, 10.16, -1.623}, //12
94  {70.67, -105.7, 52.49, -8.631}, //13
95  {15.70, -23.94, 11.89, -1.939}, //23
96  {17.18, -26.38, 13.13, -2.139}, //24
97  {0.0, 0.0, 0.0, 0.0}, //34
98  {14.79, -21.10, 10.16, -1.623}, //12
99  {0.0, 0.0, 0.0, 0.0}, //25
100  {0.0, 0.0, 0.0, 0.0} //26
101  };
102 
103 const float CSCTFPtMethods::FRCorrLowEta[kME2andMB2][2] =
104  {
105 // {1.13, 0.87}, //12
106 // {1.14, 0.85}, //13
107  {1.30, 1.0}, //12
108  {1.30, 1.0}, //13
109  {1.0, 1.0}, //23
110  {1.0, 1.0}, //24
111  {1.0, 1.0}, //34
112  {1.0, 1.0}, //12
113  {1.0, 1.0}, //25
114  {1.0, 1.0} //26
115  };
116 const float CSCTFPtMethods::FRCorrHighEta[kME2andMB2][2] =
117  {
118 // {0.92, 1.12}, //12
119 // {0.92, 1.12}, //13
120  {0.966, 1.176}, //12
121  {0.966, 1.176}, //13
122  {1.0, 1.0}, //23
123  {1.0, 1.0}, //24
124  {1.0, 1.0}, //34
125  {1.0, 1.0}, //12
126  {1.0, 1.0}, //25
127  {1.0, 1.0} //26
128  };
129 
130 // Anna's 2011 parametrization
131 
132 double CSCTFPtMethods::AB_mu12FnoME11[4][15] =
133  {
134  {0, 0, 0, 0.089491067646809183134, 0.10739646024310070538, 0.12549844133338972085, 0.11746188101535759429, 0.11365654376086815891, 0, 0, 0, 0, 0, 0, 0},
135  {0, 0, 0, -0.16463359422729287318, -0.18522613297525072906, -0.17065296570525056996, -0.11673113772749151018, -0.096673008784020367234, 0, 0, 0, 0, 0, 0, 0},
136  {0, 0, 0, 5.0479701928535670313e-06, -8.5107255627149016024e-05, -0.00031591725812981632723, 2.8829297417277944225e-05, -3.3664459708458401629e-05, 0, 0, 0, 0, 0, 0, 0},
137  {0, 0, 0, 1.6276716966428210753, 1.1244502885068945464, 0.44061802755260442988, 0.82271567628154873564, 0.65764083792276606388, 0, 0, 0, 0, 0, 0, 0}
138  };
139 double CSCTFPtMethods::AB_mu13FnoME11[4][15] =
140  {
141  {0, 0, 0, 0.11479489063486028599, 0.1385846143670735886, 0.16069130395935576905, 0.16229285551120029019, 0.15970793987729367536, 0, 0, 0, 0, 0, 0, 0},
142  {0, 0, 0, -0.31624871209539057171, -0.37204708239816158821, -0.35001738011313637822, -0.28067946142333310977, -0.22587297159275510072, 0, 0, 0, 0, 0, 0, 0},
143  {0, 0, 0, 4.5422334693538224219e-05, -0.0001534874341906974503, -0.00049456554072302828882, -0.00040362112138876319418, -0.00037532294041719521617, 0, 0, 0, 0, 0, 0, 0},
144  {0, 0, 0, 1.3698214790637726068, 0.83827124867878388681, 0.35268421062422455892, 0.30966868638086236798, 0.39552380610102405578, 0, 0, 0, 0, 0, 0, 0}
145  };
146 double CSCTFPtMethods::AB_mu14FnoME11[4][15] =
147  {
148  {0, 0, 0, 0, 0.10167174785035071327, 0.072305163037876873933, 0.12811797755236814522, 0.15630771929281417343, 0, 0, 0, 0, 0, 0, 0},
149  {0, 0, 0, 0, -0.2851531414997146574, -0.12625245577882274195, -0.2693337001449228052, -0.35816854038946227545, 0, 0, 0, 0, 0, 0, 0},
150  {0, 0, 0, 0, 0.0016536940782984094634, 0.0032050914503555030799, 0.0017500898659728782863, 0.0014193550176488352668, 0, 0, 0, 0, 0, 0, 0},
151  {0, 0, 0, 0, 1.8999999999960794916, 1.8999999999875891721, 1.1603749006227730423, 0.36919547110219635977, 0, 0, 0, 0, 0, 0, 0}
152  };
153 double CSCTFPtMethods::AB_mu12RnoME11[4][15] =
154  {
155  {0, 0.1017548888755877845, 0.13020457985822880831, 0.11777472840868662141, 0.1352735458205116259, 0.14797523226644127003, 0.14891234013414389459, 0, 0, 0, 0, 0, 0, 0, 0},
156  {0, -0.40835812179222591434, -0.4909339449226597929, -0.19396964458569518341, -0.18405457126044733052, -0.15348184403810183341, -0.11949446624665205352, 0, 0, 0, 0, 0, 0, 0, 0},
157  {0, -0.00046324193156588387276, -0.0012328343527384165272, 5.8536010291841255454e-05, 5.3175743777652564014e-05, -0.00027992198289290446886, 0.00017291608058844862988, 0, 0, 0, 0, 0, 0, 0, 0},
158  {0, 0.82326825991227925439, 0.66225151266154569374, 1.6047267765109303195, 1.172660602794620921, 0.91611151466846096891, 0.923434361821059424, 0, 0, 0, 0, 0, 0, 0, 0}
159  };
160 double CSCTFPtMethods::AB_mu13RnoME11[4][15] =
161  {
162  {0, 0, 0, 0.17152643870188713504, 0.18220699353677527466, 0.19718061346676321599, 0.20409261783490945108, 0, 0, 0, 0, 0, 0, 0, 0},
163  {0, 0, 0, -0.51329151983333287657, -0.43421697939765058205, -0.38701854807672181336, -0.29367743292763504037, 0, 0, 0, 0, 0, 0, 0, 0},
164  {0, 0, 0, -0.00028330256767296205581, -0.00011104889576832950495, -0.0003659472931155986178, -0.0004494825869971541348, 0, 0, 0, 0, 0, 0, 0, 0},
165  {0, 0, 0, 1.0806773148892279135, 0.81710737240426545291, 0.49165515886235822141, 0.40288815951359424616, 0, 0, 0, 0, 0, 0, 0, 0}
166  };
167 double CSCTFPtMethods::AB_mu14RnoME11[4][15] =
168  {
169  {0, 0, 0, 0.11411457974213083666, 0.14612498789299999125, 0.15438328053344949065, 0.17021962182813230036, 0, 0, 0, 0, 0, 0, 0, 0},
170  {0, 0, 0, -0.32211539883453449429, -0.3332077022119345755, -0.28947013547326555516, -0.31678412927379157038, 0, 0, 0, 0, 0, 0, 0, 0},
171  {0, 0, 0, 0.0021189308480414714535, 0.0017232488622970817526, 0.0014181868364706309241, 0.0020581588744611055593, 0, 0, 0, 0, 0, 0, 0, 0},
172  {0, 0, 0, 1.8999999998213816799, 1.8999999999320695832, 1.2588510283946776624, 0.91969335359675130626, 0, 0, 0, 0, 0, 0, 0, 0}
173  };
174 double CSCTFPtMethods::AB_mu12FME11[4][15] =
175  {
176  {0, 0, 0, 0, 0, 0, 0, 0.30997988806094234349, 0.2960464576032310613, 0.26865522361643923155, 0.24306471114654951138, 0.21612598016341960649, 0.20916086000526656896, 0.14505390185826338989, 0.19626640578808879356},
177  {0, 0, 0, 0, 0, 0, 0, -0.18938263233962521204, -0.18099881965541908535, -0.15817156292403300455, -0.13527092529520332032, -0.11802970951212833628, -0.13142443653269073045, -0.081045302368033256268, -0.16548691953190999837},
178  {0, 0, 0, 0, 0, 0, 0, 1.9132754352698083493e-05, 0.0001244919158836254626, -0.00036815494148734217474, -0.0003021495594158459864, 0.00032190104529820852321, 5.9699515482881178492e-05, 0.0035011369787794933972, -0.0021251348628855359045},
179  {0, 0, 0, 0, 0, 0, 0, 1.2633991230895826874, 1.2237510610710955472, 1.2446734233372107603, 1.2072459880229720053, 1.2073932498298223237, 0.64342700161682475635, 1.0965614756840385002, 0.41184878672694380519}
180  };
181 double CSCTFPtMethods::AB_mu13FME11[4][15] =
182  {
183  {0, 0, 0, 0, 0, 0, 0.17684262466990949281, 0.34711584948456875033, 0.34173632193931768875, 0.31856060138741582044, 0.29169375726034846297, 0.24666606646956890092, 0.21434901698955760585, 0.22194241387027591195, 0.13650791328679393044},
184  {0, 0, 0, 0, 0, 0, 0.99999999999949551466, 0.99999999999457755973, -0.30995317528055632561, -0.26510423524582477084, -0.22052246537701888918, -0.1597247313884862796, -0.14032250966056744601, -0.14430798488566201621, -0.075894576731296098382},
185  {0, 0, 0, 0, 0, 0, 0.010426580434797315736, 0.00056720513052092998933, -0.00047916406780649806879, -0.00043513801305821104073, -0.00035934925416836774022, 0.00064159373840440422562, 0.0011012063282968072471, 0.00059066112387542329433, 0.0061369729760295480686},
186  {0, 0, 0, 0, 0, 0, -0.46194813956282321232, -2.1380051317667612132, 0.99475655086418368622, 1.0240107231697159751, 1.0710375546859214335, 1.1466745846418702204, 1.0634581787492956018, 0.35737857407704720636, 1.1165504043676175439}
187  };
188 double CSCTFPtMethods::AB_mu14FME11[4][15] =
189  {
190  {0, 0, 0, 0, 0, 0, 0, 0, 0.21118188098880102954, 0.33402008586605308471, 0.29298980221468984286, 0.26806296448653738063, 0.23720733268363508595, 0.2510285652964933667, 0.14583302968662079091},
191  {0, 0, 0, 0, 0, 0, 0, 0, -0.14883704087325219656, -0.39197899608005709604, -0.28520435482868433663, -0.23819454759756183981, -0.2024802801289519727, -0.2369976701205682712, -0.086510146140783658608},
192  {0, 0, 0, 0, 0, 0, 0, 0, 0.010748111373072187155, -0.00054440793841566191644, -6.6117096422286744401e-05, 0.00032426109337843134813, 0.00086123563095007638242, 0.00046858791450944800496, 0.0055934740677286293176},
193  {0, 0, 0, 0, 0, 0, 0, 0, 1.8177576283415954883, 0.90124364385162747393, 1.0058576108118726378, 0.97434013632935245752, 0.75135849774137752899, 0.090012990328703759713, 1.1491738867249043921}
194  };
195 double CSCTFPtMethods::AB_mu12RME11[4][15] =
196  {
197  {0, 0, 0, 0, 0, 0, 0, 0.27354810039733407079, 0.25530642585169710523, 0.2281232078009739761, 0.20002002697391027541, 0.18418628467434680629, 0.1691868825133146792, 0.15081083142497944682, 0.11470950819931940989},
198  {0, 0, 0, 0, 0, 0, 0, -0.16735504499789077837, -0.15229365225374749682, -0.12925824722117412735, -0.10394284592720609561, -0.093240817997744127044, -0.073171468346305876262, -0.088574463929812302654, -0.066404461904397707461},
199  {0, 0, 0, 0, 0, 0, 0, -0.00050299673411093688211, 5.1602356927429220493e-05, -3.0794024894263357945e-05, 0.0004052733857930102164, -7.420268691546845442e-05, 0.00011377542095117624751, 0.002401982811750403863, 0.0024540507098964291222},
200  {0, 0, 0, 0, 0, 0, 0, 1.1883256550892249415, 1.1930557391196678907, 1.1956122499877577248, 1.2507536548522568687, 1.1818664879149434199, 0.74072892184538741134, 0.4975999389532442807, 1.0630008076007997353}
201  };
202 double CSCTFPtMethods::AB_mu13RME11[4][15] =
203  {
204  {0, 0, 0, 0, 0, 0, 0, 0.28630621682529061589, 0.29827733143141249572, 0.27230375589683164517, 0.23990484313749371736, 0.21461969319969206871, 0.20904691221965984727, 0.17455215996464093497, 0.10530528191221873169},
205  {0, 0, 0, 0, 0, 0, 0, -0.21320341298073050562, -0.27792002471345611525, -0.22893879370711203713, -0.17267579393860862935, -0.13655560753368203852, -0.13221415752155918355, -0.092817386598587681146, -0.047633722138851357364},
206  {0, 0, 0, 0, 0, 0, 0, 0.0012300659344863943204, -0.00026218872327451808128, -0.00020411464851349467309, 8.8191777702590311294e-05, 0.00044047024925421437123, -0.00067348979494906663183, 0.0026726730924768165448, 0.0067869186945352134865},
207  {0, 0, 0, 0, 0, 0, 0, 1.2315550372405590362, 0.86296110777082257748, 0.94745955410457627366, 1.0617206089293684812, 1.0876186592684131682, 0.81349751399897141102, 0.51174005862466220851, 1.3970393153313427348}
208  };
209 double CSCTFPtMethods::AB_mu14RME11[4][15] =
210  {
211  {0, 0, 0, 0, 0, 0, 0, 0.2321760802583729133, 0.17425716826944270821, 0.28951128850821888916, 0.26122027532891867185, 0.23988161223010590062, 0.21857963541150710052, 0.15353493229255876784, 0.09952290576921750398},
212  {0, 0, 0, 0, 0, 0, 0, -0.20453745460356828612, -0.15291198577104561651, -0.370982786914061613, -0.27553292468971468665, -0.22166866616439959148, -0.17253577136118664059, -0.10047612457180872536, -0.044726719317877430826},
213  {0, 0, 0, 0, 0, 0, 0, 0.0075216673069431437548, 0.0091493927899154794958, -0.00026846347496581161613, -0.00028436379808289408404, -0.00033797061806371863149, -0.00032290147294330767604, 0.0043983126453711971632, 0.0087398021641503856327},
214  {0, 0, 0, 0, 0, 0, 0, 1.4021232447364970763, 1.6613910381816205941, 0.73820877609189006208, 0.87917756535000690654, 0.86376276633863802168, 0.64791792386852542496, 1.0974109668506901727, 1.475947804634221372}
215  };
216 double CSCTFPtMethods::AB_sig12FnoME11[4][15] =
217  {
218  {0, 0, 0, -0.0076412310580529349199, 0.013106555291144636813, 0.025063779434470568469, 0.0087226608724667777789, -0.0012964802596261630445, 0, 0, 0, 0, 0, 0, 0},
219  {0, 0, 0, 0.11492024270448454593, 0.021102150917381608253, -4.2436183419689021967e-08, 0.072972237191400349254, 0.19729003982512077764, 0, 0, 0, 0, 0, 0, 0},
220  {0, 0, 0, 0.0021104070024291496713, 0.0018253795336503611177, 0.0016311827288382637312, 0.0024898068482018614021, 0.0023171447579502014481, 0, 0, 0, 0, 0, 0, 0},
221  {0, 0, 0, 0.90082232171804188514, 1.4715701060292549762, 0.38179435996930433106, -0.31089206041852102125, -1.8605481532163505864, 0, 0, 0, 0, 0, 0, 0}
222  };
223 double CSCTFPtMethods::AB_sig13FnoME11[4][15] =
224  {
225  {0, 0, 0, -0.013922695503875197331, -0.0018020343253406317062, 0.017121560844724798001, 0.018609272384097541586, -0.0050380425848817458542, 0, 0, 0, 0, 0, 0, 0},
226  {0, 0, 0, 0.36952186524609842433, 0.29771940602043445168, 0.25881377301982183559, 0.21522443888607742379, 0.59520725339836588752, 0, 0, 0, 0, 0, 0, 0},
227  {0, 0, 0, 0.0021171146723497585689, 0.001962910013039776292, 0.0016295699065661407162, 0.0017542445121842159018, 0.0018291018059847885362, 0, 0, 0, 0, 0, 0, 0},
228  {0, 0, 0, -0.24903532893487495548, -0.20762623792196052697, -1.23723285975173658, -0.93877564336741559092, -2.7137466589111389759, 0, 0, 0, 0, 0, 0, 0}
229  };
230 double CSCTFPtMethods::AB_sig14FnoME11[4][15] =
231  {
232  {0, 0, 0, 0, -0.049226069782944893716, -0.05447625811386536121, 0.024782117383430092572, 0.0087723204390127967195, 0, 0, 0, 0, 0, 0, 0},
233  {0, 0, 0, 0, 0.96194395556167033856, 1.9107390804546595664, 0.10243277620694382635, 0.29010825363315317915, 0, 0, 0, 0, 0, 0, 0},
234  {0, 0, 0, 0, 0.0025849149683154332667, 0.0022908589943121454233, 0.0017080431015829389101, 0.0022045212844627971524, 0, 0, 0, 0, 0, 0, 0},
235  {0, 0, 0, 0, -1.2932328975948934602, -4.7562023014669927434, 0.78711144534012145169, -0.57517454556474645333, 0, 0, 0, 0, 0, 0, 0}
236  };
237 double CSCTFPtMethods::AB_sig12RnoME11[4][15] =
238  {
239  {0, -0.024837587047074519142, -0.038443755326854262, 0.010789426545740953695, 0.016714316978066363906, 0.036977680482507623017, 0.023903736191005935108, 0, 0, 0, 0, 0, 0, 0, 0},
240  {0, 0.44916461963533510504, 0.54293566642571933212, 0.018977673263371359902, 0.007932079958008179596, -9.4309201558850225267e-08, 5.2699963039304353885e-09, 0, 0, 0, 0, 0, 0, 0, 0},
241  {0, 0.0022745078222873717048, 0.0026499504248443657255, 0.0019347176520538985831, 0.0018882668324742895791, 0.0015313004238581028917, 0.0027721700163088574924, 0, 0, 0, 0, 0, 0, 0, 0},
242  {0, -0.87241910961768964761, -1.0549928243465211963, 1.8999999999485288615, 1.6191292705343984792, -0.63912490618228612327, 0.6398194632982362462, 0, 0, 0, 0, 0, 0, 0, 0}
243  };
244 double CSCTFPtMethods::AB_sig13RnoME11[4][15] =
245  {
246  {0, 0, 0, 0.0036225404374523491324, 0.020602869778294785608, 0.031371735116656827846, 0.044385023713376312027, 0, 0, 0, 0, 0, 0, 0, 0},
247  {0, 0, 0, 0.40723755341312423139, 0.24719809506286585798, 0.23886286984905105713, 0.092388265632692603835, 0, 0, 0, 0, 0, 0, 0, 0},
248  {0, 0, 0, 0.0018900875181423510037, 0.0016683560130446085414, 0.0015517088923086459762, 0.0014400104759778459274, 0, 0, 0, 0, 0, 0, 0, 0},
249  {0, 0, 0, -0.50487582216370696653, -0.21797446389232158492, -0.76054681766358056549, -0.16793042826918122556, 0, 0, 0, 0, 0, 0, 0, 0}
250  };
251 double CSCTFPtMethods::AB_sig14RnoME11[4][15] =
252  {
253  {0, 0, 0, -0.035861540596622137889, -0.1163451242952821818, -0.3223054960806409075, 0.028427718090213778546, 0, 0, 0, 0, 0, 0, 0, 0},
254  {0, 0, 0, 0.91272061044138930175, 1.0649835191592700312, 3.75045883898615795, 0.20554379357162461117, 0, 0, 0, 0, 0, 0, 0, 0},
255  {0, 0, 0, 0.0023100741888551377598, 0.0065631885708627574205, 0.010122343115052657297, 0.0021541859801294522929, 0, 0, 0, 0, 0, 0, 0, 0},
256  {0, 0, 0, -0.85246870399928331707, -1.26158946908596592, -4.209205295019181392, 0.071706289987386498397, 0, 0, 0, 0, 0, 0, 0, 0}
257  };
258 double CSCTFPtMethods::AB_sig12FME11[4][15] =
259  {
260  {0, 0, 0, 0, 0, 0, 0, 0.05458876370405055245, 0.014223815371885261197, 0.051739718849001303802, 0.0043781295277517066206, -0.073251670679359628946, 0.016350518117378025351, 0.024953176408713924339, 0.018013937106717257258},
261  {0, 0, 0, 0, 0, 0, 0, -0.037781377479947614306, 0.80848693770251023327, 0.1697030494994675176, 0.78252633158781936817, 1.2537997106918414847, 0.10612967759966565606, -9.206320800321521336e-08, 2.2213840653040328732e-07},
262  {0, 0, 0, 0, 0, 0, 0, 0.0013753615162960116606, 0.0017341536986479849473, 0.0013675349666495530479, 0.0017609996279085446749, 0.0046166207484297843919, 0.00495761383888420476, 0.0050988257402144569752, 0.0064203615570604640264},
263  {0, 0, 0, 0, 0, 0, 0, 1.8999999999988979038, -3.2324234827503541823, -0.81829590015205422304, -2.7507108181454631435, -1.7359928981630718958, 0.40689058927975751967, 1.4828812725128097672, 1.5951851243514818535}
264  };
265 double CSCTFPtMethods::AB_sig13FME11[4][15] =
266  {
267  {0, 0, 0, 0, 0, 0, -0.19347059395018284533, 0.072568004970527941189, 0.08577237659734933406, 0.078682638529076837086, 0.077062920521249994588, 0.080098726616512086474, 0.023748955156449799708, 0.015834208336261056116, -0.021587059944354128338},
268  {0, 0, 0, 0, 0, 0, 2.6546929735503304038, -0.040973653768088071081, -0.063777717641833361895, -0.050952537148763105135, -0.044007209248372716748, -0.044262064708301115945, 0.29785332091460725579, 0.71835272096206526093, 0.65633476797761147736},
269  {0, 0, 0, 0, 0, 0, 0.0065104044193550428959, 0.0011700415681633554756, 0.00045437269348538639104, 0.0008801332589677031415, 0.00078367838118213598627, 0.00060453583918787642728, 0.004657287607776092013, 0.0037849066904824596111, 0.0061259831222526071187},
270  {0, 0, 0, 0, 0, 0, -4.9999999979557490093, 1.1707517726253902079, 1.0992454619450249265, 1.2206213897813062985, 1.2578764060460077001, 1.3625276752124573232, -1.0956263938322794438, -2.8508701454429501432, -2.1472735770040620729}
271  };
272 double CSCTFPtMethods::AB_sig14FME11[4][15] =
273  {
274  {0, 0, 0, 0, 0, 0, 0, 0, 0.0011704660991897508117, 0.084739514416067682201, 0.086139578586588813613, 0.093199773864805768309, 0.0068597584931722067197, 0.073137137801632320921, -0.024117519905137906056},
275  {0, 0, 0, 0, 0, 0, 0, 0, 0.7338374554546823747, -0.036989032906862853722, -0.038391760412970953042, -0.046077469375633541004, 0.62423005995004055002, -0.040314539852839455236, 0.63248947781334297069},
276  {0, 0, 0, 0, 0, 0, 0, 0, 0.0031924502818212936207, 0.0010331185400558220815, 0.0010342430652703427443, 0.00092674943585657754141, 0.0050760196464007447531, 0.0032319531506008868788, 0.0067125188107654068514},
277  {0, 0, 0, 0, 0, 0, 0, 0, -1.785448670968939, 1.3255257799041022526, 1.3571670682651415518, 1.3337095100618956423, -2.0375413343465438309, 1.4881244856244408847, -1.5048835864460361478}
278  };
279 double CSCTFPtMethods::AB_sig12RME11[4][15] =
280  {
281  {0, 0, 0, 0, 0, 0, 0, 0.029083895221947490134, 0.02931261189231387787, -0.035917405392017993926, 0.02606608527812858539, -0.032213952425992904705, 0.034901077580037881409, 0.038079609520293045133, -0.087892299038559315583},
282  {0, 0, 0, 0, 0, 0, 0, 0.41762122325588330041, 0.24571503336772770876, 1.382448398827999192, 0.59561568267877507132, 1.3203480961328621923, -2.9132130347376411494e-08, -4.2309101866118761781e-07, 1.3315902017409027014},
283  {0, 0, 0, 0, 0, 0, 0, 0.0019308246518827238379, 0.0018496885043595501577, 0.0027736328929315792052, 0.0017558352623714590553, 0.0025111400562270263202, 0.0029777661938234362138, 0.0043603459843407146868, 0.0076843830249820627848},
284  {0, 0, 0, 0, 0, 0, 0, -2.0511755338229731294, -0.82689722791688569092, -4.4494753588966791114, -2.9771639615408234114, -4.4060610830752349187, 0.96642022916504122243, 0.27488639218488036819, -4.9999999999412514384}
285  };
286 double CSCTFPtMethods::AB_sig13RME11[4][15] =
287  {
288  {0, 0, 0, 0, 0, 0, 0, 0.069382927814675421363, 0.062546773192992718982, 0.066219648548532128451, 0.066114165177748651647, 0.06496853782135392219, 0.051540701102725301752, -0.14520516691085255667, -0.029300158926639723045},
289  {0, 0, 0, 0, 0, 0, 0, -0.03808324381918145457, -0.02868588030414172263, -0.031288010457747920945, -0.030725505585511597717, -0.02843978176922726947, 8.9697287389278734793e-07, 1.7723836220217532578, 0.79014048067174824652},
290  {0, 0, 0, 0, 0, 0, 0, 0.00031828670642815944016, 0.0012881264558822541535, 0.00092903731815034164537, 0.0011795342397226430894, 0.00083538336551440930174, 0.0027329868075334912136, 0.0097615976891543883992, 0.0062076155203765765594},
291  {0, 0, 0, 0, 0, 0, 0, 1.3727842579605455953, 1.5374702505093122973, 1.4476836940454602676, 1.4342564093482235155, 1.3613055874742052698, 0.85184697646817630901, -3.994547310920665506, -2.8070031114324471844}
292  };
293 double CSCTFPtMethods::AB_sig14RME11[4][15] =
294  {
295  {0, 0, 0, 0, 0, 0, 0, 0.082096556211616628085, -0.15497763380540566236, 0.077768957501462190884, 0.079360215708304482352, 0.070390471145737557035, 0.045116756706396796139, -0.064677235510244679428, 0.042981004219577227665},
296  {0, 0, 0, 0, 0, 0, 0, -0.046354224360547445494, 3.4600023508388892957, -0.029070628904851493479, -0.030476400557346697284, -0.023356274628402451388, 0.42581998625965733485, 1.1914459601216282891, 0.11545316275932009098},
297  {0, 0, 0, 0, 0, 0, 0, 0.0018078552644396556418, 0.0040218048707196616537, 0.00086395925657936829302, 0.0010071336547866846251, 0.0010978456712284635072, 0.002842508081006394835, 0.0071491121214516993934, 0.0050018422461340821331},
298  {0, 0, 0, 0, 0, 0, 0, 1.2752968417470296192, -4.9999999984414591481, 1.5920301262211007387, 1.5139579024840714716, 1.5241944165676217793, -2.2799951898153256735, -3.0288054012274616689, -0.35716168503710210569}
299  };
300 double CSCTFPtMethods::AB_mu12F[4][15] =
301  {
302  {0, 0, 0, 0.089491067646809183134, 0.10739646024310070538, 0.12549844133338972085, 0.1194760053165676017, 0.30626893792235526659, 0.30009410052196983099, 0.2690532347360728993, 0.23688757461948814487, 0.21899489554680626191, 0.21285418228245533978, 0.15525112596260939868, 0.1770936851403528689},
303  {0, 0, 0, -0.16463359422729287318, -0.18522613297525072906, -0.17065296570525056996, -0.1155394236109319045, -0.18380971440851143206, -0.1859966131117936905, -0.15845841533583629457, -0.12868208564229521862, -0.11875959710980291129, -0.13461549793851387835, -0.090885866696312114787, -0.14347961143957646546},
304  {0, 0, 0, 5.0479701928535670313e-06, -8.5107255627149016024e-05, -0.00031591725812981632723, -0.00010313307150067754737, 6.1998863886012596167e-05, 3.5535741450015050427e-05, -0.00033034534768735314718, 0.00025570884563717226432, -3.2430491772480606483e-05, -3.928192779951495588e-05, 0.0028259336045576349469, -0.00124297387660909117},
305  {0, 0, 0, 1.6276716966428210753, 1.1244502885068945464, 0.44061802755260442988, 0.68081944372417602107, 1.2892912513078853554, 1.2098030702058406582, 1.2406526312160988113, 1.2588644895814975477, 1.2343544778925670258, 0.59901494992516879368, 0.9845753793507600049, 0.72134724334000244195}
306  };
307 double CSCTFPtMethods::AB_mu13F[4][15] =
308  {
309  {0, 0, 0, 0.11794009048617049018, 0.14086291718874013879, 0.16139997805131156561, 0.15937656116892420788, 0.34414162356457134173, 0.34440937003010801964, 0.31471704006829814837, 0.27226322158180205069, 0.24550847587442392594, 0.24463956799494918082, 0.16276628030235296141, 0.183078101259807835},
310  {0, 0, 0, -0.33781826981928775311, -0.37684193029815427067, -0.3462789133929889962, -0.25060466660909758163, 0.99999999999361011138, -0.31182750009024823301, -0.25849818207822566896, -0.19230025423676194718, -0.15638199224610474514, -0.1860677216141479462, -0.089736178206281214109, -0.12591247971454427867},
311  {0, 0, 0, -1.8754239266677112923e-05, -0.00019673769085880689952, -0.00052669062346466261493, -0.00030449439108233132979, 0.00071230918348081078556, -0.00045941836356435766754, -0.00045256277284001311754, 0.00064215185932415489584, 0.00046541851817373622747, 0.00019049878005133037782, 0.0043442731774379211851, 0.0015460291314785047125},
312  {0, 0, 0, 1.2452803747346312679, 0.74944265252708708314, 0.37224767027460281543, 0.31339057767893530038, -2.0890914872066272956, 0.95830873379506731347, 1.0457163419608694888, 1.1230565694613476868, 1.1770351235140514845, 0.65014435708651741042, 1.129972103442078657, 0.68378819802357770907}
313  };
314 double CSCTFPtMethods::AB_mu14F[4][15] =
315  {
316  {0, 0, 0, 0.12104944074518421415, 0.10503732418316034936, 0.099386285225076712035, 0.15823526186568545593, 0.25605688745800425643, 0.39267951247468363407, 0.32990417209085837191, 0.29155610498631334693, 0.25993455189370084923, 0.27876104145873625839, 0.17123500452830145435, 0.1377101784898823178},
317  {0, 0, 0, -0.34834159047255092156, -0.3100051372552997675, -0.19689884687529440876, -0.42846101907983596968, -0.19825501228941203036, -0.69127391031064666649, -0.37799519092326222536, -0.2813623780771447036, -0.21851172477385713555, -0.29451256139301251746, -0.11968566909919842178, -0.082430041079910781887},
318  {0, 0, 0, 0.0006127466960683334565, 0.0018163416142308417157, 0.0023773788535300438216, 0.0015618030372482551073, 0.0074745015886553429346, 0.018200042017815356438, -0.00044263832599834499045, -0.00013173112084098321899, 0.00048044142847010538715, -0.00028331509653057088387, 0.0047044170533411542104, 0.0077579174433774081635},
319  {0, 0, 0, 1.8999999999207801693, 1.3811827661042299642, 1.361253443017911513, 0.16448981101549500772, 1.7211759130995385458, 0.30399083099267765196, 0.92381972077138352351, 0.98949705099683071818, 1.0305604944719717331, 0.18365768267421325732, 0.96525152167887728893, 1.1235655996998157313}
320  };
321 double CSCTFPtMethods::AB_mu12R[4][15] =
322  {
323  {0, 0.1017548888755877845, 0.13020457985822880831, 0.11777472840868662141, 0.1352735458205116259, 0.14797523226644127003, 0.14891234013414389459, 0.27354809992824791198, 0.25530642162633726544, 0.22812303598569572127, 0.20002002697417936572, 0.18418627647990021279, 0.16918688305075030298, 0.1508108314248207682, 0.11470950874198342084},
324  {0, -0.40835812179222591434, -0.4909339449226597929, -0.19396964458569518341, -0.18405457126044733052, -0.15348184403810183341, -0.11949446624665205352, -0.16735504431990988472, -0.15229364636923176102, -0.1292580848284842765, -0.10394284592826465163, -0.093240808678399900167, -0.073171468194201616519, -0.088574463928718608074, -0.066404462713869835677},
325  {0, -0.00046324193156588387276, -0.0012328343527384165272, 5.8536010291841255454e-05, 5.3175743777652564014e-05, -0.00027992198289290446886, 0.00017291608058844862988, -0.00050299670363365375, 5.1602382309461525441e-05, -3.0783724988483899057e-05, 0.00040527338575157016622, -7.4202404535834238977e-05, 0.00011377538633743067547, 0.0024019828117533849852, 0.0024540507720086741569},
326  {0, 0.82326825991227925439, 0.66225151266154569374, 1.6047267765109303195, 1.172660602794620921, 0.91611151466846096891, 0.923434361821059424, 1.188325655620871224, 1.1930557749505621423, 1.1956156176382155554, 1.2507536548585385106, 1.1818666483459900896, 0.74072890966654614253, 0.49759993894696635808, 1.0630007937555521202}
327  };
328 double CSCTFPtMethods::AB_mu13R[4][15] =
329  {
330  {0, 0, 0, 0.17152643870188713504, 0.18220699353677527466, 0.19718061346676321599, 0.20409261783490945108, 0.28630621673439216046, 0.29827733143097401314, 0.27230375589695204885, 0.23990484313734378174, 0.21461969319950535695, 0.20904691238932027186, 0.17455215996309358939, 0.10530527961885094435},
331  {0, 0, 0, -0.51329151983333287657, -0.43421697939765058205, -0.38701854807672181336, -0.29367743292763504037, -0.21320341238440754239, -0.27792002471255045082, -0.22893879370744105173, -0.17267579393834603385, -0.13655560753345002967, -0.13221415770245384391, -0.092817386598829765276, -0.047633719610788972931},
332  {0, 0, 0, -0.00028330256767296205581, -0.00011104889576832950495, -0.0003659472931155986178, -0.0004494825869971541348, 0.0012300659193085917292, -0.00026218872326014996304, -0.00020411464851317293609, 8.8191777707538176329e-05, 0.0004404702492616239173, -0.00067348981143074907862, 0.0026726730925728564743, 0.0067869187519593900115},
333  {0, 0, 0, 1.0806773148892279135, 0.81710737240426545291, 0.49165515886235822141, 0.40288815951359424616, 1.2315550399117412006, 0.86296110777384626989, 0.94745955410233306804, 1.0617206089312878348, 1.0876186592703975808, 0.81349751271060222191, 0.51174005866205685145, 1.3970393581376403525}
334  };
335 double CSCTFPtMethods::AB_mu14R[4][15] =
336  {
337  {0, 0, 0, 0.11411457974213083666, 0.14612498789299999125, 0.15438328053344949065, 0.17021962182813230036, 0.23217608026225655671, 0.17425716827684778476, 0.28951128865791975198, 0.26122027861775976021, 0.23988161223077880679, 0.21857963541170638555, 0.15353493229270298581, 0.099522853724256579722},
338  {0, 0, 0, -0.32211539883453449429, -0.3332077022119345755, -0.28947013547326555516, -0.31678412927379157038, -0.20453745460807634671, -0.15291198578472323111, -0.37098278728491984602, -0.2755329314623077841, -0.22166866616574540383, -0.17253577136159981009, -0.10047612457203594638, -0.044726394456946053091},
339  {0, 0, 0, 0.0021189308480414714535, 0.0017232488622970817526, 0.0014181868364706309241, 0.0020581588744611055593, 0.0075216673068132632735, 0.0091493927895737042766, -0.00026846347791510813061, -0.00028436387259422706009, -0.00033797061809048655314, -0.00032290147294203845477, 0.0043983126453652227755, 0.0087398105487928243185},
340  {0, 0, 0, 1.8999999998213816799, 1.8999999999320695832, 1.2588510283946776624, 0.91969335359675130626, 1.402123244759204912, 1.6613910381353069745, 0.73820877543905039087, 0.87917754884863041909, 0.86376276633290960394, 0.6479179238685032205, 1.0974109668483333913, 1.4759522529227795395}
341  };
342 double CSCTFPtMethods::AB_sig12F[4][15] =
343  {
344  {0, 0, 0, -0.0076412310580529349199, 0.013106555291144636813, 0.025063779434470568469, 0.01934375127428624927, 0.053326545670601563365, 0.0093197497326487303143, 0.0564902513339693782, 0.032206519204039697757, -0.035023660563668873591, 0.028213900213068406758, 0.022784114759202493683, 0.042615038347082211112},
345  {0, 0, 0, 0.11492024270448454593, 0.021102150917381608253, -4.2436183419689021967e-08, 1.3095720405656430252e-08, -0.037472879155788924033, 0.84044166517252949511, 0.15966830269465748238, 0.37149319186299001316, 0.84416754574977770353, 0.033343799149249016278, 6.6539790067633719506e-08, -1.3686068460749822862e-06},
346  {0, 0, 0, 0.0021104070024291496713, 0.0018253795336503611177, 0.0016311827288382637312, 0.0021015267562687076422, 0.0014715412047011698984, 0.0018518237493182830404, 0.0011606808553826068482, 0.0013698268430796098002, 0.0034437807938464026943, 0.004439146916271847175, 0.0056493862115556715831, 0.0036722950074267479183},
347  {0, 0, 0, 0.90082232171804188514, 1.4715701060292549762, 0.38179435996930433106, 0.90052675260749392994, 1.8999999999893364411, -3.1887755118603267057, -0.93952603198035322674, -1.4200273548894686293, -1.3313935786554595975, 0.84940608722578914147, 1.5495399676596248728, 0.1693217499087649458}
348  };
349 double CSCTFPtMethods::AB_sig13F[4][15] =
350  {
351  {0, 0, 0, -0.016313221502792758094, -0.0012344271616210600317, 0.022739050214132340566, 0.019894322103056659434, 0.070152538754905693907, 0.079150371235280320148, 0.079140295486563524974, 0.073877518420634002982, 0.082767871936852088766, 0.021369139940037504971, -0.16477473035652481781, -0.055605012351420450567},
352  {0, 0, 0, 0.40633016978672931163, 0.31906794350617523337, 0.18604815325310422591, 0.22274309425577301647, -0.038098997442242876765, -0.054611240400435009934, -0.050739779309414811959, -0.040691137768363160043, -0.046730053313388586478, 0.34160850069918163863, 2.4811837846155828657, 1.1192582255168381788},
353  {0, 0, 0, 0.002149342213264975824, 0.0019487436377840527436, 0.0015505100309095498287, 0.0017303935347270330437, 0.0012782681837905638701, 0.00077081684260600570775, 0.00078212255888550081661, 0.00085709016208379811951, 0.00040671635301994584974, 0.0047052241934661294398, 0.0091387563643038176309, 0.0065810423040581775625},
354  {0, 0, 0, -0.47422656465701568118, -0.40214476680739164038, -0.807446632577722756, -1.1159653538458467192, 1.1939302604989951995, 1.2565879679975411332, 1.2135620508983242516, 1.3126461466411822876, 1.3303466630446105778, -1.3225160658785197754, -4.99999996608921915, -3.3146932668018336265}
355  };
356 double CSCTFPtMethods::AB_sig14F[4][15] =
357  {
358  {0, 0, 0, -0.023008179953388042255, -0.087196623845599563474, 0.014221968418245287125, -0.021787486380662964697, 0.066204099694590276548, 0.13000102518515968542, 0.086982120087735009806, 0.086006702272218293892, 0.090001124258988041138, 0.013343436845426187576, 0.058197437679117815235, 0.015055422275464733217},
359  {0, 0, 0, 0.58165240914811378037, 1.6572607614650631813, 0.26374858984348420465, 0.56929114216912790614, -0.031761470721266109318, 6.8045996289272520086e-06, -0.040675205849149999315, -0.038282822732629118168, -0.041914122856581741139, 0.73743983985226857492, -0.015956321538818291073, 0.31976184596833290286},
360  {0, 0, 0, 0.0021194192496740956247, 0.0031051396726804536899, 0.0016030344438190185716, 0.0037337124950505506081, 0.00038923034858751352164, 0.00435858958532461295, 0.00085195563700394898957, 0.0011709394391764601367, 0.0007183252935922569693, 0.0048589598885515790372, 0.0035711294225182332179, 0.0063024666771318840416},
361  {0, 0, 0, -0.11185686895850970035, -2.8414639600328577274, -0.10356160152745381986, -1.2383039973901615038, 1.8999999999999264144, -1.1268332104959208895, 1.3399041969100440319, 1.3441201753115872286, 1.4026191965547902818, -2.9935330315178338978, 1.8045262655928504536, -1.0659192090967317679}
362  };
363 double CSCTFPtMethods::AB_sig12R[4][15] =
364  {
365  {0, -0.024837587047074519142, -0.038443755326854262, 0.010789426545740953695, 0.016714316978066363906, 0.036977680482507623017, 0.023903736191005935108, 0.029083895240537907534, 0.029312604029813168344, -0.035917405187485026974, 0.026066086885230148329, -0.032213952427413247714, 0.034901078113956519877, 0.038079760873761171747, -0.087892299405550919356},
366  {0, 0.44916461963533510504, 0.54293566642571933212, 0.018977673263371359902, 0.007932079958008179596, -9.4309201558850225267e-08, 5.2699963039304353885e-09, 0.41762122295566816987, 0.24571510737505500299, 1.3824483935622682296, 0.59561566602531357262, 1.3203480960823190671, -2.930413320681446443e-08, 6.1897109794855492693e-08, 1.3315902039120812717},
367  {0, 0.0022745078222873717048, 0.0026499504248443657255, 0.0019347176520538985831, 0.0018882668324742895791, 0.0015313004238581028917, 0.0027721700163088574924, 0.0019308246515342586576, 0.0018496886131083114559, 0.0027736328912367847269, 0.0017558352148668789246, 0.0025111400562838814485, 0.0029777661392665598361, 0.0043603280275831372836, 0.0076843830377456264283},
368  {0, -0.87241910961768964761, -1.0549928243465211963, 1.8999999999485288615, 1.6191292705343984792, -0.63912490618228612327, 0.6398194632982362462, -2.0511755324568126113, -0.82689751226606089674, -4.4494753423464956654, -2.9771639242617897736, -4.40606108289291587, 0.96642021015404266926, 0.27486695110845749124, -4.9999999999409219242}
369  };
370 double CSCTFPtMethods::AB_sig13R[4][15] =
371  {
372  {0, 0, 0, 0.0036225404374523491324, 0.020602869778294785608, 0.031371735116656827846, 0.044385023713376312027, 0.069382928901304388725, 0.062546773237833669379, 0.066219648548455148362, 0.066114165216842671335, 0.064968538738919279218, 0.051540701111634862341, -0.14520516686903245374, -0.029300157343301824753},
373  {0, 0, 0, 0.40723755341312423139, 0.24719809506286585798, 0.23886286984905105713, 0.092388265632692603835, -0.038083245108582644556, -0.028685880355116981366, -0.031288010457665590969, -0.03072550558016601957, -0.028439782714834840882, 8.984728870169156334e-07, 1.7723836216527502074, 0.79014046453097108724},
374  {0, 0, 0, 0.0018900875181423510037, 0.0016683560130446085414, 0.0015517088923086459762, 0.0014400104759778459274, 0.00031828667387254205856, 0.0012881264560692922555, 0.00092903731815355522061, 0.0011795342366973096335, 0.00083538332113278278117, 0.0027329868075049237874, 0.0097615976878032660602, 0.0062076155003686038503},
375  {0, 0, 0, -0.50487582216370696653, -0.21797446389232158492, -0.76054681766358056549, -0.16793042826918122556, 1.3727842428768588512, 1.5374702497476731011, 1.4476836940468174042, 1.4342564113548856852, 1.3613055688979065483, 0.85184694861412824096, -3.9945473104690254473, -2.8070030811132413717}
376  };
377 double CSCTFPtMethods::AB_sig14R[4][15] =
378  {
379  {0, 0, 0, -0.035861540596622137889, -0.1163451242952821818, -0.3223054960806409075, 0.028427718090213778546, 0.082096556211394805525, -0.15497655162567502973, 0.077768957491548482142, 0.079360069813406791672, 0.070390471478570457164, 0.045116757562121037606, -0.064677236200079091244, 0.042980998502111025794},
380  {0, 0, 0, 0.91272061044138930175, 1.0649835191592700312, 3.75045883898615795, 0.20554379357162461117, -0.046354224360297492658, 3.4599916691801695379, -0.029070628890768772379, -0.03047627128290695056, -0.02335627487211913364, 0.42581999019359662029, 1.1914459601497096042, 0.11545322117611778179},
381  {0, 0, 0, 0.0023100741888551377598, 0.0065631885708627574205, 0.010122343115052657297, 0.0021541859801294522929, 0.0018078552644429368712, 0.0040217835853228389373, 0.00086395925415043829752, 0.0010071371561587601478, 0.0010978456762463116234, 0.0028425080621485550661, 0.0071491121463381828924, 0.0050018423505071209906},
382  {0, 0, 0, -0.85246870399928331707, -1.26158946908596592, -4.209205295019181392, 0.071706289987386498397, 1.2752968417552010827, -4.9999999999938600226, 1.5920301264071463621, 1.5139604617023065813, 1.5241944088777494848, -2.2799952377707408679, -3.0288053889674522168, -0.35716203827983550312}
383  };
384 double CSCTFPtMethods::AB_mu23[4][15] =
385  {
386  {0, 0, 0.040640362633691015648, 0.04143975404558240816, 0.04469283410800238554, 0.050265056377639047436, 0.057855720910264404888, 0.040911062522024761734, 0.054867130272661442103, 0.054846907254368672258, 0.046280965740868151848, 0.038682214878367017497, 0.047358821703414828719, 0.037269955397813366027, 0.015397788631092694522},
387  {0, 0, -0.30371495175799717581, -0.27234040198084696893, -0.27046501071411871431, -0.26067833814957336314, -0.26954736490580177843, -0.1426457415021130104, -0.23307410221367635961, -0.18779763084602629775, -0.11810763599908662147, -0.072929591279204522558, -0.079006610877654537273, -0.042031527428910676891, 0.46158743398909729549},
388  {0, 0, -0.00025828047348465653929, -0.00027808828382601912237, -0.00020419752504549583318, -0.00028862468215624839229, -0.00051268154965345151715, 0.00019102278127906206339, -0.00054091437361434690362, -0.00041573301097917752687, -0.000207953040744469843, 0.0001988367837501522125, -0.00031823156270582506067, 0.00033071671524661735465, 0.00045799410811140088724},
389  {0, 0, 0.72752266254137853974, 1.0478492412845885617, 0.60915246815134527214, 0.26469232068298520488, 0.036425986309331782886, 0.7132004473344412121, 0.4197273677305951578, 0.44676889254736196211, 0.60643361041043153392, 0.7258089895367305644, 0.21165518657016521575, 0.40994342351793594537, -4.9999999982804226306}
390  };
391 double CSCTFPtMethods::AB_mu24[4][15] =
392  {
393  {0, 0, 0, 0.053011865513752004508, 0.062832623407280213668, 0.052170541013462037871, 0.041027537810126024631, 0.040854761324689348179, 0.071402550009543430676, 0.076745077029754082965, 0.079391267110108354466, 0.061688220309377483908, 0.067651891693652002613, 0.053009728431201032228, 0.046716301280283124842},
394  {0, 0, 0, -0.3616747887108062165, -0.45141581345418907434, -0.28705970459229912528, -0.2938013269353861312, -0.27050961323017558291, -0.55762354970371696972, -0.39024523502067204328, -0.31496123297823475085, -0.1983420756482438263, -0.17915991058479247, -0.1008896787182539112, -0.055261431747836577133},
395  {0, 0, 0, -0.00011948386184051261938, -0.00041171189171825890067, 4.5077223215480308541e-05, 0.00064791923408717482999, 0.00079626044366867831676, -0.00020119232396926791046, -0.00036565327240405023478, -0.00092893743231344070178, -0.00011554026166780945835, -0.00037143262941893379287, 0.00034827979969636918729, 0.00038063971268359605635},
396  {0, 0, 0, 1.2751116233058998883, 0.70084162417453721439, 0.90478318682312330878, 0.6800676895845826353, 0.50537353022178055362, 0.054689818098332523832, 0.35827703859892973126, 0.37385157757276732404, 0.50609881884151997067, 0.24620464307424153039, 0.33739943648039177893, 0.61708181749152601903}
397  };
398 double CSCTFPtMethods::AB_mu34[4][15] =
399  {
400  {0, 0, 0, 0.019865692759581058541, 0.028670254062000518486, 0.0062000769568667634529, 0.059000642112303595954, 0.021075145497371470388, -0.058857073670921543351, 0.022193946634618946789, 0.032900966871925077517, 0.022468452340586538007, 0.017925131684213620187, 0.021562743542542832376, 0.0096332062965229867807},
401  {0, 0, 0, -0.16028204223466294143, -0.24129340031911647446, -0.12167938296678502963, -0.48887217760468759664, -0.41129235965903232497, -0.0044574375495286568116, -0.20497526229305951251, -0.20945390137984670753, -0.133016919476993567, -0.09164367838969658675, -0.078156831196806775264, -0.027061677954361280235},
402  {0, 0, 0, -7.2934093657490810247e-05, -0.0005630858306214800782, 0.00056399922304054862787, -0.0014284170932996325277, 0.00026420696996418537115, 0.0019432020683277269335, 5.0465562334091047629e-05, -0.00051405817655614813658, -0.0001476820743599914173, 6.32019763480822774e-05, -0.00034513677440660433691, 0.00057652344564092553817},
403  {0, 0, 0, 1.4981302006935997007, 0.74196319813429467693, 1.0145720473926143068, -0.61744054266046588531, -0.95877986541993265313, 1.2494500863514628186, 0.39038293713197214085, 0.24923581566989111424, 0.37358913393430570604, 0.3656156971405563616, 0.18480549227136852664, 0.58966094664056056818}
404  };
405 double CSCTFPtMethods::AB_mu51[4][15] =
406  {
407  {0.30091153701686212951, 0.21726754617902110933, 0.1456728385238945378, 0.043250093988852815474, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
408  {-0.29502353719653978681, -0.19109266041343297982, -0.12108184175216289702, 0.72288502126591014374, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
409  {0.00012873560389623916068, 4.9291809907909536412e-05, -0.00021151799450913838594, 0.00032645001523661659488, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
410  {1.5787330473223266658, 1.6594505002776189784, 1.8999999999615408974, -4.9999999999974642506, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
411  };
412 double CSCTFPtMethods::AB_mu52[4][15] =
413  {
414  {0, 0.28757434234141143747, 0.22290303793570814817, 0.17273536730279337448, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
415  {0, -0.42706501927164292054, -0.32770564806566382376, -0.24329418737097086023, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
416  {0, -1.4010615867360699891e-05, -0.00025119211587389166183, 0.0004052999487437024392, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
417  {0, 1.3739531719045416924, 1.2264113571191062046, 1.5786429063982712062, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
418  };
419 double CSCTFPtMethods::AB_mu53[4][15] =
420  {
421  {0, 0, 0.26147063359849342934, 0.21941755760197284575, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
422  {0, 0, -0.62831662471165483641, -0.5360020970162280296, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
423  {0, 0, -0.00054456170542904129128, -5.2823850021272572564e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
424  {0, 0, 0.90160457604797583642, 0.89939017343329996645, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
425  };
426 double CSCTFPtMethods::AB_mu5[4][15] =
427  {
428  {-21.733893412375444143, -20.005957733042006197, -17.376452159382715479, -17.985193664266713398, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
429  {16.418302072038855499, 13.469008846185953843, 12.429426411511585115, 13.9963454706980297, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
430  {-0.055045848107516816283, -0.040869122792827908275, -0.025980934073070366397, 0.24210701585155450233, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
431  {1.8999999999801029382, 1.7642902553920492004, 1.8222993024358542513, 1.7990108859658437979, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
432  };
433 double CSCTFPtMethods::AB_sig23[4][15] =
434  {
435  {0, 0, -0.010357268292725162889, -0.016380566175621592839, -0.019840699509577841564, -0.0086381386262834487788, -0.003374013086892733819, -0.011814434815520722527, -0.00084060561010774765417, -0.017179591290799121894, 0.0035639959717427907582, 0.0047700899414562444867, 0.010577222576560912568, 0.02059122419865432041, 0.011800502388303060752},
436  {0, 0, 0.14187419330052780664, 0.23041504331599421684, 0.31155426692107951459, 0.26259379394895659976, 0.22004268983078550947, 0.34945904479011519195, 0.26666091393686436328, 0.38600077292544848762, 0.18137548923438057136, 0.12968791855407682534, 0.083124796029554012811, 0.010205021983518632739, 0.071807703627737515251},
437  {0, 0, 0.0021465575441230368842, 0.0022224405572812359205, 0.002251545746496887504, 0.0020929103385102986942, 0.0020355680620528313757, 0.0020702424442080634773, 0.0018383336874655056836, 0.0025004017593913750554, 0.001949774989293934788, 0.001939959052276510592, 0.0017195026729185311498, 0.0017139698182589511305, 0.0019431688340545527453},
438  {0, 0, 1.0630745945983459677, 0.3265773132215800123, -0.65134529804641994044, -1.0524984197072553282, -1.0511032049676600764, -1.8483720507053891247, -1.3389601882033761449, -1.8551069091565570712, -0.98414331636612584209, -0.6063730875586622604, -0.38865902654376205394, 0.43290122641744543941, -0.53818963658092677793}
439  };
440 double CSCTFPtMethods::AB_sig24[4][15] =
441  {
442  {0, 0, 0, -0.019324652110983078085, -0.012002425151063148695, -0.02231499394993846988, -0.020935767372829247601, -0.066886386651832344108, -0.04726302695322702474, -0.04612160370322201941, -0.0015531365858601525916, 0.013723579428071824154, 0.016617430908367349096, 0.030685502798890051251, 0.002966505822064327124},
443  {0, 0, 0, 0.38549899615915406148, 0.32619220210735977439, 0.34706342932948464064, 0.68304114341992616666, 0.9242780677421167379, 0.9319676477585573382, 0.81979381283063590402, 0.4452794101956150663, 0.25406245303464969343, 0.16553792723142907173, 0.11438558724198649719, 0.32271248995562107353},
444  {0, 0, 0, 0.0022171043021711415305, 0.0021520852248391748179, 0.0029359514546444223822, 0.0021275297531913790229, 0.0033328143360110804201, 0.0024627396815788253105, 0.0037704003574912637285, 0.0023868429840302176834, 0.0020064709921131366512, 0.0021463956760972590677, 0.0015026596429240307931, 0.0023198792169650144825},
445  {0, 0, 0, 0.086888271968145289192, 0.019758737551725517878, -0.17987080158763540938, -1.7261300785529098967, -2.6644913692232643498, -2.3141437377987581492, -1.8966055410735647158, -1.2208593823013969004, -0.653071688514877291, -0.34080947192812982571, -0.40136037854760781007, -1.4481957993152787534}
446  };
447 double CSCTFPtMethods::AB_sig34[4][15] =
448  {
449  {0, 0, 0, -0.012400659358070893756, -0.009978612935288379282, -0.038466135371859951075, -0.01237181151567546232, -0.055252999880455823389, 0.044965296368124886561, 0.0020215713950015390746, 0.0018486442968475248413, -0.011461744909954231161, 0.00041337329418400558037, 0.013323692621683664444, -0.0011526907758626363416},
450  {0, 0, 0, 0.11483786317689233247, 0.17614008187718299681, 0.35943587710185270767, 0.31393248752071051255, 0.81003852118825403483, 2.8222370465191132238e-07, 0.15870310756426259102, 0.18489150278200164323, 0.2277514636318530572, 0.10863865522427501586, 0.0081807264119966201232, 0.10304189680104243465},
451  {0, 0, 0, 0.0023086535455528549819, 0.002110004845191660542, 0.0030013629537848584249, 0.0021561954526101824794, 0.0029044705640973510034, 0.001129264217117841116, 0.0020148575420415437004, 0.0022924616641584912025, 0.0022462281749858711323, 0.001953151997646814745, 0.0022772917353313174016, 0.002205332383050566912},
452  {0, 0, 0, 1.4465873202620711524, 0.018290937265976234261, -1.0034048194561047129, -1.5842206847979445339, -3.6001627650055127994, 0.54269742517812191718, -0.54629346359450747794, -0.88004590995407039333, -1.0607951764628562596, -0.386770214915317323, 0.73185507165720742329, -0.7791766852022135037}
453  };
454 double CSCTFPtMethods::AB_sig51[4][15] =
455  {
456  {0.0019758831360956788901, 0.046577756215196844392, -0.05341714103952534265, 0.038119020055320480822, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
457  {0.85917433021287148431, 3.6326347655629698252e-08, 1.2753791210899891873, -0.02296026572998403209, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
458  {0.0018421521390111581656, 0.0013309336424003853465, 0.0024439910926895226824, 0.00084506127844618638811, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
459  {-2.8012298341138666125, 0.89678691204809468651, -4.9999999999931583616, 1.899999999961135444, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
460  };
461 double CSCTFPtMethods::AB_sig52[4][15] =
462  {
463  {0, 0.015190485414726475483, 0.029402840059661459332, -0.03788341461455211473, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
464  {0, 0.57880911770054299659, 0.086708840790683153199, 0.96143975820959226564, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
465  {0, 0.0017431812547872745089, 0.0016439557621822475496, 0.0024073931799825833838, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
466  {0, -1.4962480474138397657, 0.43719757342237014486, -2.5570410154645890621, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
467  };
468 double CSCTFPtMethods::AB_sig53[4][15] =
469  {
470  {0, 0, 0.0048807272389305694088, 0.072311934401593946919, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
471  {0, 0, 0.58247011082391897396, -0.031665576145842380673, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
472  {0, 0, 0.0019289670515048294459, -0.00057867999502623438789, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
473  {0, 0, -1.1919870686056455167, 1.8999999999981564969, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
474  };
475 double CSCTFPtMethods::AB_sig5[4][15] =
476  {
477  {8.0056375707676412645, 2.9947749309947320207, 1.2367570923503916624, 19.305763753429292962, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
478  {-30.026695140142752649, 8.307837839928444712e-06, -2.4301404809023985365e-06, -99.99999999998537703, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
479  {0.49287055372768900918, 0.59795299802278500945, 0.72517967446074338422, 1.499999999999955147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
480  {-4.7146152770331735127, -1.6075341775064360128, 0.81763143841002616785, -2.2550678981626472996, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
481  };
482 double CSCTFPtMethods::AB_rho123F[5][15] =
483  {
484  {0, 0, 0, 0.22630471857151249204, -0.013379305064225920779, -0.095121706310405507168, 0.090200403370782444856, 0.068042852566437661554, 0.079571614226972439687, 0.088219335458001243988, 0.11303324434571153378, 0.10710141493712137251, 0.026455786925147606325, 0.046817553749737651769, 0.039162183157051222437},
485  {0, 0, 0, -0.10527570667400622251, 0.12879264930099568187, 0.15092684710998546804, 0.007231087835331297814, -0.015515942667432135182, -0.028054920465640682814, -0.025513746642979444335, -0.038661914393439029969, -0.033319542824023648531, 0.017459601922314698513, -0.015147480411169431461, -0.0040274062679487923622},
486  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
487  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
488  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
489  };
490 double CSCTFPtMethods::AB_rho123R[5][15] =
491  {
492  {0, 0, 0, -0.50534064712241677508, 0.15886026549683709974, 0.24117112423743908289, 0.19155165906038881807, 0.082144222540501604657, 0.079920425013872073428, 0.10933442504482954183, 0.11216820513068381793, 0.14139192912438111605, 0.081067695752670754228, 0.068628530591297767782, 0.105151142748966267},
493  {0, 0, 0, 0.4061798017233729241, -0.036885583937586396974, -0.10109132139709975373, -0.093632233538226902758, -0.023232568114674286008, -0.0085349848344330059985, -0.030347560681224468315, -0.04053489453902145434, -0.065178885697974128788, -0.016390211022617402759, -0.016822502733541477155, -0.062227091495819800149},
494  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
495  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
496  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
497  };
498 double CSCTFPtMethods::AB_rho124F[5][15] =
499  {
500  {0, 0, 0, -0.58347458948865937867, 0.40592680503129663361, 0.01641809001879873664, 0.11475806753693058859, -0.18048876743928712885, 0.0068468168498605876462, -0.030777506509684072339, 0.054741994048828152009, 0.097187337842417537148, 0.025067334674935798366, 0.075946312071830973656, 0.085523782829277653073},
501  {0, 0, 0, 0.4258108214245352463, -0.23106738109445768004, 0.052661321450187599524, -0.038151728575192320192, 0.1458955237360785584, 0.024582860384737240111, 0.040630008358215272124, -0.0014353305569224008437, -0.020931085629827921035, 0.029892828324785188088, -0.014638662581363729928, -0.031371352411171941899},
502  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
503  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
504  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
505  };
506 double CSCTFPtMethods::AB_rho124R[5][15] =
507  {
508  {0, 0, 0, -0.36581744112230984989, -0.016324931472307423197, -0.208168363607231649, -0.15220265819093764526, 0.049548837240151813455, -0.046656697978846251029, 0.037095174357064712722, 0.035330048922600804095, 0.074157637081893032494, 0.036436813593929799626, 0.14420567874993162061, 0.19071920385708884815},
509  {0, 0, 0, 0.29009232235255510979, 0.053824155318333753717, 0.11835331987655291208, 0.10356729636019955387, 0.0067230075967922332814, 0.11622283669531324746, 0.0088495323612498635879, 0.010530505354448004701, -0.015216911572413798284, 0.029269517338766565251, -0.060899379503146208736, -0.10887509306211247406},
510  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
511  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
512  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
513  };
514 double CSCTFPtMethods::AB_rho134F[5][15] =
515  {
516  {0, 0, 0, -0.18585738888975150696, 0.13519522007618323123, 0.28221167590680890092, 0.18146765887707849707, 0.1244677849160726324, 0.31105116640597857414, -0.16202243055042145348, 0.039896884577315043507, -0.37248330593247946929, -0.17019868779262120606, -0.029323371944494535518, 0.149148671625682544},
517  {0, 0, 0, 0.14049664985969073649, -0.0029515280689123499225, -0.14984825183404815174, -0.053408519838017261272, -0.055260431588822184201, -0.24961446622059946243, 0.16914774696773446361, 0.026377838114293443439, 0.38350727297664199966, 0.20884886406321828689, 0.088477254929584317478, -0.049311016665284521099},
518  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
519  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
520  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
521  };
522 double CSCTFPtMethods::AB_rho134R[5][15] =
523  {
524  {0, 0, 0, -0.32424288544586399308, 0.065574046096960866836, -0.49534925125377193833, -0.41401921450752909859, 0, -0.054897105600349827004, -0.054121337557626672532, -0.29310761272328111904, -0.15103243717763431553, -0.24914325132296299969, 0.07909932691386906134, 0.12529327248093721781},
525  {0, 0, 0, 0.27459892265632174224, -0.0040433910166926267937, 0.37706697672498318274, 0.4151086501992986566, 0, 0.096654494887792055668, 0.085974946019564915667, 0.29549944312402365298, 0.18974566842525927846, 0.29979099594550706609, 0.0234247525877835025, -0.040829919454425725456},
526  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
527  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
528  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
529  };
530 double CSCTFPtMethods::AB_rho234[5][15] =
531  {
532  {0, 0, 0, -0.66569231418957641733, -0.16487806934241325263, -0.31385730203879769196, 0.52187103693478709143, 0.37489404891915861784, 0.29994883232428287689, -0.12176552846395131968, 0.023619718470720949682, -0.1231122737596004324, -0.013562360832243002678, 0.153600562632957377, 0.21939787654152581586},
533  {0, 0, 0, 0.5208746747250042608, 0.18612484901444453778, 0.27332732398493131409, -0.23999307292846960848, -0.25179957455310036929, -0.18381974435716647021, 0.20095666079537191639, 0.099861239186999406492, 0.23937023494386369671, 0.16677027620912032724, 0.030275177235765518557, -0.0069954356449047749161},
534  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
535  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
536  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
537  };
538 double CSCTFPtMethods::AB_rho512[5][15] =
539  {
540  {0, -0.10435343690000213612, 0.057141083389519162217, 0.023329220607928163878, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
541  {0, 0.061466220874112284522, -0.001239563289620342415, -0.028051900619679361049, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
542  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
543  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
544  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
545  };
546 double CSCTFPtMethods::AB_rho513[5][15] =
547  {
548  {0, 0, -0.089534856488077518843, -0.084337975857153926751, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
549  {0, 0, 0.058028755308100914145, 0.033446616671726735193, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
550  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
551  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
552  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
553  };
554 double CSCTFPtMethods::AB_rho523[5][15] =
555  {
556  {0, -0.48242311538441046137, 0.25779875833780019345, -0.45638836512748476304, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
557  {0, 0.28941463846496195966, -0.15113497713160561897, 0.36832995181674366147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
558  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
559  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
560  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
561  };
562 double CSCTFPtMethods::AB_rho51B[5][15] =
563  {
564  {98.146234211833089489, 199.99999999999047873, 199.99591177997166369, -3.3007364270967505249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
565  {-198.36420128721084666, 199.99999999971919351, -68.130825896452520851, 5.6331862234953877788, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
566  {138.59040321786872596, -199.99999999975074161, -75.103918757648003179, -3.3878388130039773785, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
567  {-35.107257005538130556, -78.172491143917071099, 0.25111444908575936141, 0.62856545928460827444, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
568  {3.1832394351004249522, 4.981276803141434506, 4.5629636390469778817, 1.1898949050757507973, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
569  };
570 double CSCTFPtMethods::AB_rho52B[5][15] =
571  {
572  {0, -7.746830214751867949, -0.46812267787622985349, -0.41343591928047368489, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
573  {0, 12.920758877131683917, 2.1193678084821674368, 0.85191889903041662091, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
574  {0, -7.1168839095051934507, -2.1008659109588445624, -0.69884960118479577673, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
575  {0, 1.239800569290119725, 0.49720027595717164459, 0.15699136302342500682, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
576  {0, 1.2582151000263612772, 1.2238929501776998343, 0.88233142702097189236, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
577  };
578 double CSCTFPtMethods::AB_rho53B[5][15] =
579  {
580  {0, 0, 105.35018363918895545, 62.071727282426813588, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
581  {0, 0, -180.24672833591944254, -170.8283169841847382, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
582  {0, 0, 109.89608697213377297, 171.57904987557179766, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
583  {0, 0, -25.005328082184355765, -60.507830469988306277, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
584  {0, 0, 3.0701361165201541681, 4.0540449945183194558, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
585  };
586 
587 /*
588  double CSCTFPtMethods::AB_mu12F[4][15] =
589  {
590  {0, 0, 0, 0.089491197077583115038, 0.10739646114119137665, 0.12484612309276715836, 0.12107457559814104042, 0.32100648056577807399, 0.31559934186960514335, 0.27904201938970829566, 0.24107252259247277659, 0.22375609791218128986, 0.21315488055164613646, 0.15525112328982976218, 0.1770936432612582323},
591  {0, 0, 0, -0.16463926016624763626, -0.18522613246415364774, -0.16806343812839372176, -0.11970576992958406604, -0.20980687790723681618, -0.21121432405796525256, -0.17357771168403127171, -0.13447695742874665736, -0.12462497601448342677, -0.13288174494405455284, -0.090885863966620059062, -0.14347955581137328274},
592  {0, 0, 0, 5.3268434221882604226e-06, -8.5107300514016459483e-05, -0.00030578974891000469888, -0.0001603418756362900272, -0.00053214670979622651168, -0.00055664627477279766433, -0.00067837769016207102087, 9.8375418692391242495e-05, -0.00022734717951328333807, -4.6067317621643834487e-05, 0.0028259338550636840109, -0.0012429687928150318348},
593  {0, 0, 0, 1.6276107021895365179, 1.1244503234167095851, 0.48381199206753811026, 0.6521829384503078364, 1.1967186256839628111, 1.0895619640773057668, 1.1511732463823045602, 1.1902521254981024423, 1.1633346478091382004, 0.57785407327314464165, 0.98457540775822882662, 0.72134750742279629687}
594  };
595 double CSCTFPtMethods::AB_mu13F[4][15] =
596  {
597  {0, 0, 0, 0.11794009048617049018, 0.14088759484277332823, 0.16139997805145156473, 0.15924014633426775145, 0.34166140488658447438, 0.34702413335511289594, 0.32010695305030567592, 0.2754515982876076241, 0.24995233529692478802, 0.24473952965767659107, 0.16276629881527174271, 0.18307810125970991333},
598  {0, 0, 0, -0.33781826981928775311, -0.37697407458444626149, -0.34627891339356470235, -0.2495281510358635102, 0.99999999999997757349, -0.31970550241711948036, -0.27098552536887665632, -0.19871096917742270271, -0.16382565983962907308, -0.18583964558555723934, -0.089736193434904326649, -0.12591247971420319041},
599  {0, 0, 0, -1.8754239266677112923e-05, -0.00019661947183321836592, -0.00052669062346857333217, -0.00031426336450206927104, 0.00074135784198859060873, -0.00055327447631547889591, -0.00061397357196147500646, 0.0005513478108715907846, 0.00030281795212565223042, 0.00018809277538133742542, 0.0043442716153720252817, 0.0015460291315088062116},
600  {0, 0, 0, 1.2452803747346312679, 0.74899299728776114193, 0.3722476702724113462, 0.32663500009046370076, -2.0530993850153551605, 0.94271305514658809699, 1.0071853490324427227, 1.0853085211028365986, 1.1204909555426088019, 0.64565209089225994443, 1.1299720140519045053, 0.68378819801841583814}
601  };
602 double CSCTFPtMethods::AB_mu14F[4][15] =
603  {
604  {0, 0, 0, 0.12104944074518421415, 0.10503732418316034936, 0.099386285225076712035, 0.15823526186568545593, 0.25605688745800425643, 0.39267951247468363407, 0.32713902125758226314, 0.29153130557246226262, 0.26057754487562223566, 0.2787610414578671203, 0.17123500452835416219, 0.13771017848907712855},
605  {0, 0, 0, -0.34834159047255092156, -0.3100051372552997675, -0.19689884687529440876, -0.42846101907983596968, -0.19825501228941203036, -0.69127391031064666649, -0.37133716526774046551, -0.28129274363985412588, -0.22005378496424787826, -0.29451256139072762297, -0.11968566909928436692, -0.082430041078971602597},
606  {0, 0, 0, 0.0006127466960683334565, 0.0018163416142308417157, 0.0023773788535300438216, 0.0015618030372482551073, 0.0074745015886553429346, 0.018200042017815356438, -0.00037850173062430958817, -0.0001310013795632218917, 0.0004588064301207423791, -0.00028331509652615585, 0.0047044170533407638976, 0.0077579174434402355109},
607  {0, 0, 0, 1.8999999999207801693, 1.3811827661042299642, 1.361253443017911513, 0.16448981101549500772, 1.7211759130995385458, 0.30399083099267765196, 0.93667281777770805551, 0.98970790081004300642, 1.0239036500876732561, 0.18365768268235896366, 0.9652515216778745355, 1.1235655997117797167}
608  };
609 double CSCTFPtMethods::AB_mu12R[4][15] =
610  {
611  {0, 0.1017548888755877845, 0.13020457923539549561, 0.11777472840871647253, 0.135259653412823172, 0.15046936351520370789, 0.15033311904520965663, 0.27592431185059518306, 0.26261203783391384725, 0.23590422375068151317, 0.20542666917863602882, 0.18571989573685471209, 0.16892774190980749949, 0.15081083142543386111, 0.11470950869186374854},
612  {0, -0.40835812179222591434, -0.49093394317051980424, -0.19396964458572663048, -0.18295086340095234601, -0.15883083260793051661, -0.12180030676387867961, -0.17142280024651118664, -0.16303048487901222741, -0.13932305333731584418, -0.10994759868937176162, -0.094596273339978872996, -0.074565522370199435742, -0.088574463930121957733, -0.066404462635971134299},
613  {0, -0.00046324193156588387276, -0.0012328343343721989093, 5.853601028974310741e-05, 4.6551402962594318029e-05, -0.00037379710698656352843, 0.00013027765573736787424, -0.00058774094710430232688, -0.00026013465704373937588, -0.00031686525863970090673, 0.00019995024156887846161, -0.00013201225684480750316, 0.00012138566102844140695, 0.0024019828116854068101, 0.002454050768466287287},
614  {0, 0.82326825991227925439, 0.6622515135971137612, 1.604726776511440578, 1.1913289041725036999, 0.92295363547504083446, 0.88387376488231517158, 1.1710955379641101448, 1.1237408525988819008, 1.090451903341310258, 1.1596094691084575246, 1.1568643334317050275, 0.75952946727681092121, 0.49759993894885606869, 1.063000794824717099}
615  };
616 double CSCTFPtMethods::AB_mu13R[4][15] =
617  {
618  {0, 0, 0, 0.17151724172609877916, 0.18220699354740277354, 0.1971806134666532484, 0.20374010863761735091, 0.28349946603158304725, 0.29955890850476568632, 0.27687904734885987468, 0.24303184602970617778, 0.21558087490443028633, 0.20880080988319943414, 0.17455215996556627811, 0.10530527997452461542},
619  {0, 0, 0, -0.51324304402681020232, -0.43421697944855691675, -0.38701854807632224409, -0.29241935343763897359, -0.20871597367009694923, -0.28188419096433631195, -0.24021461843739672082, -0.17856499996545552311, -0.13799534780447694771, -0.13259660131895426027, -0.092817386598798845565, -0.047633720002815273242},
620  {0, 0, 0, -0.0002832228831297351054, -0.00011104889602297010609, -0.00036594729311201532962, -0.00045307390748000288998, 0.0013004023247916438651, -0.00030382496669450169283, -0.00035621571030299009489, -1.5526317287871784553e-05, 0.00040373454108751040317, -0.00066646698390456816929, 0.0026726730924115484414, 0.0067869187429414031335},
621  {0, 0, 0, 1.0807877438092829969, 0.81710737216052486964, 0.4916551588634892056, 0.41353040356462944516, 1.2440300524121079562, 0.85083388011817795427, 0.89970477318504005204, 1.0198709857106920129, 1.0706254801939762977, 0.82353411895961936562, 0.51174005860627325148, 1.3970393515240444593}
622  };
623 double CSCTFPtMethods::AB_mu14R[4][15] =
624  {
625  {0, 0, 0, 0.11411457974213083666, 0.14612498789299999125, 0.15438328053344949065, 0.17021962182813230036, 0.23217608026225655671, 0.17425716827684778476, 0.28951128865791975198, 0.26122027861775976021, 0.24000759859415121689, 0.21857963541141381403, 0.1535349322927131166, 0.099523188319583275052},
626  {0, 0, 0, -0.32211539883453449429, -0.3332077022119345755, -0.28947013547326555516, -0.31678412927379157038, -0.20453745460807634671, -0.15291198578472323111, -0.37098278728491984602, -0.2755329314623077841, -0.22199156842477890672, -0.17253577136104261691, -0.10047612457202366454, -0.044726844357957776244},
627  {0, 0, 0, 0.0021189308480414714535, 0.0017232488622970817526, 0.0014181868364706309241, 0.0020581588744611055593, 0.0075216673068132632735, 0.0091493927895737042766, -0.00026846347791510813061, -0.00028436387259422706009, -0.00034200230860254732116, -0.00032290147293964632531, 0.0043983126453619632301, 0.0087397754915012667437},
628  {0, 0, 0, 1.8999999998213816799, 1.8999999999320695832, 1.2588510283946776624, 0.91969335359675130626, 1.402123244759204912, 1.6613910381353069745, 0.73820877543905039087, 0.87917754884863041909, 0.86223584668569153155, 0.64791792386949675908, 1.0974109668486700109, 1.4759477521933648259}
629  };
630 double CSCTFPtMethods::AB_sig12F[4][15] =
631  {
632  {0, 0, 0, -0.0072662909883246416462, 0.013719915012791324485, 0.025391731980074987163, 0.019339420068030886007, 0.053326545665516936201, 0.0093197486670135200326, 0.056490074687743196957, 0.032206767426382759689, -0.035023634200557013374, 0.028213900230512060918, 0.022784146439966394826, 0.042614741605066668029},
633  {0, 0, 0, 0.10823046777530002938, 0.01878931206060864903, 7.6655861869050212487e-08, 2.6103505241896474143e-08, -0.037472879148333762545, 0.84044168914522066061, 0.1596730107851508651, 0.37148947348342054031, 0.84416665360404552487, 0.033343799167991072796, -3.0637296741242714404e-08, 1.0763679972065204327e-07},
634  {0, 0, 0, 0.0021057909484815525922, 0.001787927570908084832, 0.0016044920308954427855, 0.0021017028916686941731, 0.0014715412052789850379, 0.0018518237683180956143, 0.0011606826124997866867, 0.0013698228830716840596, 0.0034437828228962175797, 0.0044391469161792901366, 0.0056493798171646505621, 0.0036723245279772593827},
635  {0, 0, 0, 0.99067714489116509569, 1.5044636171885787945, 0.35129633070368504466, 0.90079093171596547052, 1.8999999999893355529, -3.1887755854982775539, -0.93955730039878893045, -1.4200124454624811765, -1.3313909517381459224, 0.84940608625462010739, 1.5495433266818319229, 0.16930559499641162358}
636  };
637 double CSCTFPtMethods::AB_sig13F[4][15] =
638  {
639  {0, 0, 0, -0.018414620671899382953, -0.0063421183947521258401, 0.019621855504556442312, 0.022067753543131330557, 0.070152538754796989195, 0.079150371235707506212, 0.079140295486170103567, 0.073877518421508400759, 0.082767871937039536046, 0.021369139938776086918, -0.16477473170806974934, -0.055605010807305503551},
640  {0, 0, 0, 0.43219221841769328574, 0.38483806508941348357, 0.21697207053032832591, 0.2101344849017230676, -0.038098997442349964715, -0.054611240401914125375, -0.050739779308866243823, -0.040691137769481910968, -0.046730053313653409364, 0.34160850071169007736, 2.4811837948791053421, 1.119258204820076763},
641  {0, 0, 0, 0.0021781382803023824693, 0.0019875143955268028371, 0.0016285688513061977872, 0.0016305488842204146627, 0.0012782681837918978725, 0.00077081684258208809941, 0.00078212255890452531213, 0.00085709016204132926989, 0.00040671635300752262757, 0.0047052241935035543641, 0.009138756403904884848, 0.006581042287601297433},
642  {0, 0, 0, -0.57972924553460980501, -0.68468820136347818828, -0.97038451810774917217, -1.0717793859812905222, 1.1939302605060790885, 1.256587967991098731, 1.2135620509254290145, 1.3126461466228707131, 1.3303466630418721017, -1.3225160659219186154, -4.9999999661396543615, -3.3146932332622203177}
643  };
644 double CSCTFPtMethods::AB_sig14F[4][15] =
645  {
646  {0, 0, 0, -0.023008179953388042255, -0.087196623845599563474, 0.014221968418245287125, -0.021787486380662964697, 0.066204099694590276548, 0.13000102518515968542, 0.088152940985918665229, 0.086006702296547610231, 0.090001124259240672387, 0.013343436852110169069, 0.058197437719081840379, 0.01505542228323810891},
647  {0, 0, 0, 0.58165240914811378037, 1.6572607614650631813, 0.26374858984348420465, 0.56929114216912790614, -0.031761470721266109318, 6.8045996289272520086e-06, -0.041841810393849120098, -0.038282822754810812149, -0.041914122856969986131, 0.7374398397890853385, -0.015956321800768006464, 0.3197618459139073277},
648  {0, 0, 0, 0.0021194192496740956247, 0.0031051396726804536899, 0.0016030344438190185716, 0.0037337124950505506081, 0.00038923034858751352164, 0.00435858958532461295, 0.00082943931444573449057, 0.0011709394337778087757, 0.00071832529359430491878, 0.0048589598883952743805, 0.0035711294356746648912, 0.0063024666768379707105},
649  {0, 0, 0, -0.11185686895850970035, -2.8414639600328577274, -0.10356160152745381986, -1.2383039973901615038, 1.8999999999999264144, -1.1268332104959208895, 1.3179872870842119781, 1.3441201747507667275, 1.4026191965487366797, -2.9935330314488335368, 1.8045262602213363312, -1.0659192089400841841}
650  };
651 double CSCTFPtMethods::AB_sig12R[4][15] =
652  {
653  {0, -0.024707713454999773173, -0.038443755326060806421, 0.010871842479360502298, 0.016714368961743577419, 0.038685029953164279393, 0.02390372984130531564, 0.029083895236059510714, 0.029312604030381151504, -0.035917405189748431715, 0.026066042529095882763, -0.032213952423461089669, 0.034901078112193437142, 0.038079734973208073656, -0.087892299438871682171},
654  {0, 0.40843932424117945779, 0.54293566641814372531, 0.018832795613827488235, 0.0079319743967482744806, -1.3344384624776675641e-07, 2.4731323841273300523e-08, 0.41762122302294357734, 0.2457151073649548878, 1.3824483935679199309, 0.59561752502182341296, 1.3203480959501494585, -2.9300474866690573439e-08, -5.0505151304169881854e-08, 1.33159020410869533},
655  {0, 0.0023254028360933497871, 0.002649950424820056178, 0.0019277178040729803059, 0.0018882653538893393562, 0.0014641263016252968436, 0.0027721702922578615909, 0.0019308246516262011702, 0.0018496886131080477779, 0.0027736328913035065286, 0.0017558336048563169887, 0.0025111400562683348567, 0.0029777661394122844143, 0.0043603321450967087031, 0.0076843830389115574953},
656  {0, -0.57683271957068615876, -1.054992824312653843, 1.899999999963281061, 1.6191284732501969312, -0.81388064201435006417, 0.63981909200404141203, -2.051175532753063635, -0.82689751221137741677, -4.4494753422774939722, -2.9771693614691576713, -4.4060610825726218565, 0.96642021012703760441, 0.2748708997533949594, -4.9999999999408935025}
657  };
658 double CSCTFPtMethods::AB_sig13R[4][15] =
659  {
660  {0, 0, 0, 0.00360542021125605152, 0.020602869777912733579, 0.03338432349679926886, 0.044385023713335559903, 0.069822381089744381399, 0.062546773236855104927, 0.066219648547959142348, 0.06611416521692425885, 0.06497177188943759063, 0.051540701348302922491, -0.14520516680358769301, -0.029300157339847341526},
661  {0, 0, 0, 0.4085534255831447803, 0.24719809506838325008, 0.22799199818643953175, 0.092388265633298341517, -0.038646029439082504875, -0.028685880353590667569, -0.031288010457215374716, -0.030725505580235051156, -0.028415643540171672127, 9.3603867356737910366e-07, 1.7723836209535592801, 0.79014046450754893414},
662  {0, 0, 0, 0.0018866521687494811326, 0.0016683560130498699577, 0.0014583718343991452365, 0.0014400104759788815573, 0.00030960964835738120741, 0.0012881264560630871496, 0.00092903731815353960809, 0.0011795342366904821955, 0.00083536183942388160095, 0.0027329868065747320999, 0.0097615976862859086399, 0.0062076155002320975926},
663  {0, 0, 0, -0.51153770481744431642, -0.21797446392083433264, -0.73366402168423128227, -0.16793042827415577412, 1.3634759226070360949, 1.5374702497725512007, 1.4476836940432020739, 1.4342564113539701953, 1.3603273178484918127, 0.85184624997002589275, -3.994547309503146959, -2.8070030810796544607}
664  };
665 double CSCTFPtMethods::AB_sig14R[4][15] =
666  {
667  {0, 0, 0, -0.035861540596622137889, -0.1163451242952821818, -0.3223054960806409075, 0.028427718090213778546, 0.082096556211394805525, -0.15497655162567502973, 0.077768957491548482142, 0.079360069813406791672, 0.070390830092954659314, 0.045116757562570351803, -0.064677236200661736287, 0.042980998498605572922},
668  {0, 0, 0, 0.91272061044138930175, 1.0649835191592700312, 3.75045883898615795, 0.20554379357162461117, -0.046354224360297492658, 3.4599916691801695379, -0.029070628890768772379, -0.03047627128290695056, -0.023352404883102650252, 0.42581999018403432489, 1.1914459601584066473, 0.11545322121954273986},
669  {0, 0, 0, 0.0023100741888551377598, 0.0065631885708627574205, 0.010122343115052657297, 0.0021541859801294522929, 0.0018078552644429368712, 0.0040217835853228389373, 0.00086395925415043829752, 0.0010071371561587601478, 0.0010978464681265795791, 0.0028425080621420056176, 0.007149112146344593563, 0.0050018423505699708895},
670  {0, 0, 0, -0.85246870399928331707, -1.26158946908596592, -4.209205295019181392, 0.071706289987386498397, 1.2752968417552010827, -4.9999999999938600226, 1.5920301264071463621, 1.5139604617023065813, 1.5240783568834928019, -2.2799952377284649074, -3.0288053889868216118, -0.35716203856376926851}
671  };
672 double CSCTFPtMethods::AB_mu23[4][15] =
673  {
674  {0, 0, 0.040640362633691015648, 0.041439895659457770538, 0.044692834118692070788, 0.050265059196205767733, 0.057855781845786831419, 0.040911062011686524786, 0.054867129215603105408, 0.054950002550886931085, 0.04628096985537989011, 0.0386822143533562951, 0.047358821668104643388, 0.037269724720912909832, 0.015397965365282755001},
675  {0, 0, -0.30371495175799717581, -0.27234144993672854129, -0.27046501074758982908, -0.26067835847765863377, -0.26954762805984294749, -0.1426457406009814799, -0.23307410258067257081, -0.18832397122889199537, -0.11810764453638407379, -0.07292958939195615109, -0.079006610759413689604, -0.042031026026755985425, 0.46158683411526485463},
676  {0, 0, -0.00025828047348465653929, -0.00027809037187354816549, -0.00020419752530604902245, -0.00028862476294847243165, -0.0005126844925482460175, 0.00019102281095152457563, -0.00054091429879001191611, -0.00041787351999948647895, -0.00020795331916966821283, 0.00019883680996083264846, -0.00031823156140864297236, 0.00033073555709824023052, 0.00045798264976761775616},
677  {0, 0, 0.72752266254137853974, 1.0478460846247070748, 0.60915246823586477465, 0.26469225006383612087, 0.03642520365582532782, 0.71320044222334588735, 0.41972736248122854974, 0.44434170513663123758, 0.60643357599054859008, 0.72580899653377339842, 0.21165518987418086017, 0.40996107847780505207, -4.9999999999467634737}
678  };
679 double CSCTFPtMethods::AB_mu24[4][15] =
680  {
681  {0, 0, 0, 0.053011865513752004508, 0.06313177697029372093, 0.05352084682330453258, 0.041027537820005684222, 0.040854761316574075836, 0.071402550245544899044, 0.07736719855382165334, 0.079438040698963527375, 0.061688220302594951039, 0.067651891731527510898, 0.052963807889076452984, 0.046716371658662027289},
682  {0, 0, 0, -0.3616747887108062165, -0.44478796457305330714, -0.29166259789877752029, -0.29380132699441008359, -0.27050961328514633308, -0.55762354967613492196, -0.3936011893747999868, -0.31526772180018108882, -0.19834207563864661439, -0.17915991072026557496, -0.10076823982822344372, -0.055261578442674569311},
683  {0, 0, 0, -0.00011948386184051261938, -0.0004377035707288234748, -1.5096856666038595447e-06, 0.00064791923379202854411, 0.00079626044396309916297, -0.00020119232514042466927, -0.00038577749709032405209, -0.00093011706547101180315, -0.00011554026119632592904, -0.00037143263105509765351, 0.00035067034962929022942, 0.00038063551578985043659},
684  {0, 0, 0, 1.2751116233058998883, 0.73216838887711510608, 0.89682810391191047916, 0.68006768939986506073, 0.50537352978830141215, 0.054689817039132032628, 0.3551147830680470574, 0.37259002091189941108, 0.50609881889683205891, 0.24620464257366159178, 0.33817952977709087037, 0.61708106073631430188}
685  };
686 double CSCTFPtMethods::AB_mu34[4][15] =
687  {
688  {0, 0, 0, 0.019865692759581058541, 0.028669852043158385729, 0.0061995800427958030338, 0.059000299883545020974, 0.021075145735423551907, -0.058857041409780444519, 0.024667592379148572251, 0.032653808103308000488, 0.022458031770245540787, 0.01792514222572837157, 0.021562783607549321913, 0.0096216089563556771863},
689  {0, 0, 0, -0.16028204223466294143, -0.24129291619361287191, -0.12167690740695827345, -0.48886768749438458403, -0.41129236199911262117, -0.0044580020884623077632, -0.21747416644594624868, -0.20792639176268520873, -0.13295152726891287798, -0.091643743275156591688, -0.078156998408433070447, -0.027032449911459321273},
690  {0, 0, 0, -7.2934093657490810247e-05, -0.00056307052572997283533, 0.00056401627209529397056, -0.001428418455371307811, 0.00026420696280349427725, 0.0019432058653304881864, -1.4101588242989779309e-05, -0.00050638968612514670842, -0.00014734760272619207332, 6.320198060251979149e-05, -0.00034513817764213352126, 0.00057747077087608850686},
691  {0, 0, 0, 1.4981302006935997007, 0.74195678633729156282, 1.0145865296590363958, -0.61742551412101398522, -0.95877987406953490979, 1.2494426320923743834, 0.36142361465918354524, 0.25628769594642597518, 0.3741147629105586736, 0.365615069336391596, 0.18480357829838381378, 0.5901979250242155306}
692  };
693 double CSCTFPtMethods::AB_mu51[4][15] =
694  {
695  {0.30968585217406008336, 0.22114029366912527075, 0.14560838945559098634, 0.043050218711845451847, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
696  {-0.317391172523608045, -0.19748764832039111816, -0.12103956190508825819, 0.72463403638600509815, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
697  {-0.00010752106748940020668, -4.6072314728751336248e-05, -0.00020800584810109703929, 0.00033077669460946062651, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
698  {1.5451989748370562605, 1.5930686622089456073, 1.8999999999979138021, -4.9999999999877386969, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
699  };
700 double CSCTFPtMethods::AB_mu52[4][15] =
701  {
702  {0, 0.29089555712829096024, 0.22409035657291778709, 0.17273536730257388339, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
703  {0, -0.43681921590138955702, -0.33001737647025841671, -0.24329418737026767272, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
704  {0, -0.00010643314222352778407, -0.00031956169647435724371, 0.00040529994876056351771, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
705  {0, 1.3951067657640845443, 1.2698178861615445623, 1.5786429063985620846, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
706  };
707 double CSCTFPtMethods::AB_mu53[4][15] =
708  {
709  {0, 0, 0.26038412925299281309, 0.21941755760271858255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
710  {0, 0, -0.61721194828669312393, -0.53600209701934642403, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
711  {0, 0, -0.00056428232649683839756, -5.2823850044021085706e-05, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
712  {0, 0, 0.94850025872825582951, 0.89939017342749116857, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
713  };
714 double CSCTFPtMethods::AB_mu5[4][15] =
715  {
716  {-21.773943957733699506, -20.451306495642462835, -17.619293017663956391, -17.985193664137248959, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
717  {15.981287025955555947, 13.662338397855792849, 12.698834069804624036, 13.996345470486554419, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
718  {-0.061346409143613597759, -0.030528939724191926641, -0.021492236674697007964, 0.24210701584829638633, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
719  {1.8075565358091265633, 1.6365385762740469744, 1.7445149566969406774, 1.7990108859790623352, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
720  };
721 double CSCTFPtMethods::AB_sig23[4][15] =
722  {
723  {0, 0, -0.0094472830143822704441, -0.010353883065660221541, -0.015601327378638136373, -0.0083991887622088135662, -0.0038116819341330646607, 0.017694776574912907813, -3.0418423374763137179e-05, -0.017083474678572161537, 0.0030620488929764769909, 0.017250003890826686587, 0.0093475052428345049849, 0.020375148710649073486, 0.010825941272754753195},
724  {0, 0, 0.12318105169788677589, 0.16505972139582619773, 0.263159083213652778, 0.26421790122008942392, 0.23011122781312612351, -0.0029907504110232440049, 0.2662480243269049196, 0.37307765589709518395, 0.18835664858385614551, -0.0037750353709654835277, 0.098617292357490976551, 0.012272312117637594608, 0.08273140888309518659},
725  {0, 0, 0.0021613847603855311508, 0.0021330265880287833241, 0.0021695206819646582243, 0.0020640370557124072468, 0.0020048207254594494972, 0.0014767405252029560357, 0.0017674128894213845219, 0.0025204999982808081078, 0.0019567585272304921853, 0.0017176170124729862442, 0.0017211733630609592216, 0.0017231460782773917826, 0.0019575057733585408438},
726  {0, 0, 1.2774261918853997422, 0.78296130809877573231, -0.37439956367077026345, -1.069757156759185035, -1.1169051718060274414, 1.8723437538832861105, -1.3529025051179361938, -1.7597610310938422984, -1.0397927716846628865, 1.751460152036041773, -0.5607845639862726328, 0.38169069644802128272, -0.67820448402866129189}
727  };
728 double CSCTFPtMethods::AB_sig24[4][15] =
729  {
730  {0, 0, 0, -0.019324652110983078085, -0.014097627204506661333, -0.024009933572701678411, -0.020935767487239648893, -0.066886386670231376406, -0.04726302695081713301, -0.04581885223042039823, -0.0022530391239994115166, 0.012941230376038602781, 0.015015675163022421112, 0.040290964473749905916, 0.00057743831082023152831},
731  {0, 0, 0, 0.38549899615915406148, 0.36399829139474371154, 0.35169918487968249154, 0.68304114463142939773, 0.924278067861450503, 0.93196764772733042825, 0.81473285865204680967, 0.45546643991332796952, 0.26322508591964527414, 0.1818180989316907914, 0.043498303978469606002, 0.34659825827423174083},
732  {0, 0, 0, 0.0022171043021711415305, 0.0021747338101839835782, 0.0029940267352052294877, 0.0021275297553744344087, 0.00333281433667635121, 0.0024627396815433810068, 0.0037669222073941294529, 0.0023976648979574955584, 0.0020217750711657845979, 0.0021837076490728861596, 0.0012144425569054367355, 0.002374985696282168237},
733  {0, 0, 0, 0.086888271968145289192, -0.16601964501317648115, -0.17314993364576378165, -1.7261300821354781387, -2.664491369228591644, -2.3141437377298186284, -1.8792879627112784036, -1.2606774796648803072, -0.69467662222261306049, -0.43108677719729054933, 0.10302409352825184219, -1.5414538145867078267}
734  };
735 double CSCTFPtMethods::AB_sig34[4][15] =
736  {
737  {0, 0, 0, -0.011900935391395110405, -0.0099786129323683296632, -0.03846567510080637492, -0.012370991149719094346, -0.055252999502503549745, 0.044966193083524036433, -0.00027213472446938578864, 0.0021399237064631750245, -0.012043959370962682362, 0.00030539002522898643643, 0.013165853183139508698, 0.00031172134354808022152},
738  {0, 0, 0, 0.111273956912252725, 0.1761400818445788552, 0.35943108699238940362, 0.31392703938750776693, 0.81003851538686244549, 7.9026928716339345238e-07, 0.17123782818945096351, 0.18309348520126816906, 0.23474101370135130873, 0.10971023080469560762, 0.010540318711930948131, 0.097075156214686139644},
739  {0, 0, 0, 0.0023008684843514003171, 0.0021100048451113389419, 0.0030013525121405674675, 0.0021561747583490843347, 0.0029044705579195947802, 0.0011292473915371563191, 0.0020602518937551739589, 0.0022831018423480099744, 0.0022549864255083677464, 0.0019554188567418107417, 0.0022790974638247727541, 0.002187312548748918551},
740  {0, 0, 0, 1.4773740578325260664, 0.018290937563995572634, -1.0033798535764466564, -1.5842086993923574223, -3.6001627441020871423, 0.54264104475808871975, -0.59687853097356946552, -0.87818291672479875665, -1.1101641260377899112, -0.39819220908857072549, 0.64153798465161648856, -0.77169187422540497234}
741  };
742 double CSCTFPtMethods::AB_sig51[4][15] =
743  {
744  {0.00020466983430282321282, 0.047505782475661187392, -0.053417141048077265708, 0.039017115805722264732, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
745  {0.91340592460032132838, -2.3265261778725176978e-09, 1.2753791211682063977, -0.024097491702141229236, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
746  {0.0018152770979815904123, 0.0012666078956331508661, 0.0024439910928461300484, 0.00081068594431841524677, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
747  {-2.9577250260529730497, 0.83105421659328959638, -4.9999999999931565853, 1.8999999999836647557, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
748  };
749 double CSCTFPtMethods::AB_sig52[4][15] =
750  {
751  {0, 0.013024634848957779287, 0.030326831867631701134, -0.037883414612387561471, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
752  {0, 0.60655763110407245886, 0.086549467449585568146, 0.96143975817822979746, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
753  {0, 0.0017838502242368942628, 0.001549072940288412966, 0.0024073931799526598375, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
754  {0, -1.5742327665558009109, 0.42138058335326011861, -2.5570410153890166249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
755  };
756 double CSCTFPtMethods::AB_sig53[4][15] =
757  {
758  {0, 0, 0.0050716226036932833196, 0.072311934385767509537, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
759  {0, 0, 0.584416896221089055, -0.031665576103488260462, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
760  {0, 0, 0.0019163928931876126824, -0.00057867999258552171686, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
761  {0, 0, -1.1966097325097744264, 1.8999999999981582732, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
762  };
763 double CSCTFPtMethods::AB_sig5[4][15] =
764  {
765  {7.8205209077391470984, 2.9855734606682107213, 1.1825497246141358776, 19.305732840291909724, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
766  {-28.925099295750328565, -1.1590698515764885634e-05, 2.1058004914323302792e-06, -99.999999999237957127, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
767  {0.49543754065341683024, 0.59927339473627028177, 0.72787082140560965815, 1.4999999999905031522, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
768  {-4.4205814548277118092, -1.731856240515097678, 0.91982931738965656443, -2.2550825501853273281, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
769  };
770 double CSCTFPtMethods::AB_rho123F[5][15] =
771  {
772  {0, 0, 0, 0.21591246799314617322, -0.0088050420313028690544, -0.088535622769352645411, 0.1006486675958642163, 0.067288821235719803449, 0.094183111621421872206, 0.11161107798998388951, 0.11398888280887224667, 0.10503939211879674553, 0.024474774056199476852, 0.046753912210887135781, 0.040088150557658401574},
773  {0, 0, 0, -0.098239875317249245046, 0.12779984161744517568, 0.14575642641392180798, 0.00097994339623410156581, -0.017044028681701687417, -0.041821834675341319765, -0.03996460686227946979, -0.038564860655556879032, -0.033600698334453546479, 0.018439524738640494794, -0.015109111485474606418, -0.0045695887184472334247},
774  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
775  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
776  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
777  };
778 double CSCTFPtMethods::AB_rho123R[5][15] =
779  {
780  {0, 0, 0, -0.47568140563221139594, 0.16168003252830986938, 0.25872690555461436146, 0.199495248815122872, 0.10461699853024816753, 0.096749760238894186304, 0.12110848659141376649, 0.11865295930901736954, 0.13774043814412179065, 0.084006936630821260614, 0.068568916018588138561, 0.10326984780227360661},
781  {0, 0, 0, 0.38437441019930046471, -0.039988232827630004751, -0.11333474899807700897, -0.098018610920314108714, -0.027684275921977110485, -0.020477410702221525429, -0.039128511514004080118, -0.041694544300297106676, -0.063510349952433278742, -0.017922560128537899649, -0.016785071384088808, -0.061230529811631448367},
782  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
783  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
784  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
785  };
786 double CSCTFPtMethods::AB_rho124F[5][15] =
787  {
788  {0, 0, 0, -0.59309777973105870519, 0.40674864730572002358, 0.025457362459962610407, 0.12390836361392933151, -0.095057602683116318443, 0.020804212882217412717, 0.0037573456395767730956, 0.051564942370207866862, 0.095392860178285313055, 0.025068145207744741559, 0.074930159107728350198, 0.083894685659705744984},
789  {0, 0, 0, 0.43249344815524365382, -0.22620914049875265328, 0.047340519949311848924, -0.043393009608351185147, 0.089991823076996074748, 0.017785749716159038325, 0.018363489474203294888, 0.00038439875526154188012, -0.01981142588979651134, 0.029870972349476748731, -0.014713153742897349188, -0.030515833639204549554},
790  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
791  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
792  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
793  };
794 double CSCTFPtMethods::AB_rho124R[5][15] =
795  {
796  {0, 0, 0, -0.3790214723591084911, 0.008629294656197683891, -0.18476862186063011673, -0.14382291114342518612, 0.062423042856956378888, -0.01457735302975383257, 0.054710076752791991783, 0.046163675870020424996, 0.073923291317618017304, 0.036368609033315117685, 0.13845699145909207139, 0.19089158859242033595},
797  {0, 0, 0, 0.29446400959310820022, 0.036382668388190271547, 0.10273587571656045414, 0.098901655648261907472, -0.0024084820537273766983, 0.096524156316618106577, -0.0020090841757854135258, 0.0041754682815653386407, -0.015903678190480090987, 0.029186690106470097872, -0.057996964818734043912, -0.10902135889862836493},
798  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
799  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
800  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
801  };
802 double CSCTFPtMethods::AB_rho134F[5][15] =
803  {
804  {0, 0, 0, -0.18540056438689667129, 0.13948900273564729391, 0.28239862898948059344, 0.18152200630689951932, 0.12019173512533826154, 0.33004964169263961704, -0.19271610018409221499, 0.010571838928394724014, -0.35782517965138482818, -0.1667933388665421568, -0.029610523966235428178, 0.14921983595489249352},
805  {0, 0, 0, 0.14018592629407464201, -0.0058491444860705784498, -0.15000052378446995793, -0.053446371008268357683, -0.054095925229749527996, -0.25878658016296007816, 0.19159454488908850278, 0.051622440147487090589, 0.37406385695410443448, 0.20690833738895109128, 0.088602990694543637407, -0.049658965143950316301},
806  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
807  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
808  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
809  };
810 double CSCTFPtMethods::AB_rho134R[5][15] =
811  {
812  {0, 0, 0, -0.32466278494115075048, 0.06557151645351706748, -0.49502508225505659212, -0.41235874470132255487, 0, -0.058206185496771437049, -0.11994212694833844557, -0.28765504885129739021, -0.14630986783496638393, -0.2506902435838725407, 0.077895192872688825969, 0.124491687529346029},
813  {0, 0, 0, 0.27488604690515439088, -0.0040425703778970423219, 0.37667381909165875697, 0.41399717354299681027, 0, 0.099105082166226002305, 0.14152702361577107482, 0.29199015482789675291, 0.18481068509958351043, 0.30061000836172008244, 0.024035962765780741895, -0.039987755352911616424},
814  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
815  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
816  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
817  };
818 double CSCTFPtMethods::AB_rho234[5][15] =
819  {
820  {0, 0, 0, -0.70172108162723456637, -0.16790171221494132325, -0.31359257756370256809, 0.52195596788366016572, 0.35469616250708335681, 0.29972961639836864789, -0.12733383185241853308, 0.023732260311915418655, -0.11620070369401960808, -0.012271043428981569592, 0.15272636020019583758, 0.22639228046259637916},
821  {0, 0, 0, 0.5466181131903057322, 0.1896976252586676237, 0.27309056219009231192, -0.2403671552670139655, -0.24805788613689500055, -0.18366569226946502513, 0.20613233813122075477, 0.099476351393539552692, 0.23721131992179073089, 0.1662158153666866145, 0.030774565037216095043, -0.011281034689275959773},
822  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
823  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
824  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
825  };
826 double CSCTFPtMethods::AB_rho512[5][15] =
827  {
828  {0, -0.10122374386788027256, 0.05867279399992569866, 0.022992784714161641768, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
829  {0, 0.060780405957416211438, -0.0018903031693155436521, -0.027696685591685570732, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
830  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
831  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
832  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
833  };
834 double CSCTFPtMethods::AB_rho513[5][15] =
835  {
836  {0, 0, -0.089930042979514415724, -0.093269939725297734689, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
837  {0, 0, 0.058029285354766410587, 0.03709347335623498082, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
838  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
839  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
840  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
841  };
842 double CSCTFPtMethods::AB_rho523[5][15] =
843  {
844  {0, -0.36007557586623134549, 0.36086751765228869404, -0.49597380394918910707, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
845  {0, 0.23104888116180791191, -0.21165442151467717125, 0.39616810472416036371, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
846  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
847  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
848  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
849  };
850 double CSCTFPtMethods::AB_rho51B[5][15] =
851  {
852  {-23.317206441977930353, 0.38311096711317893515, 138.73025928148325647, -3.3895984991624619198, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
853  {39.81331931040932659, -0.58265538873024502742, -197.09814590529396128, 5.7801784630612900173, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
854  {-21.692379671233720018, 0.16303933981615081894, 92.527943431966605203, -3.4630147948370328947, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
855  {3.6815612322193729256, 2.1215317965894708863e-05, -18.739157224127048096, 0.64092416582054112517, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
856  {1.4065782520225946772, 0.47918084713644876205, 3.4270868776988145932, 1.1911679883977874805, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
857  };
858 double CSCTFPtMethods::AB_rho52B[5][15] =
859  {
860  {0, -11.115614234839123142, 199.99999993867194803, -0.41345082980668335093, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
861  {0, 18.640929927342266836, 199.91384480242638233, 0.85194663719311369832, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
862  {0, -10.215935151734681696, -199.99199382783231727, -0.69886651036510760715, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
863  {0, 1.758281666952397071, -95.546949944038203739, 0.15699448924348563539, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
864  {0, 1.3487188994777750128, 5.4534491073916449011, 0.88233434422240508699, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
865  };
866 double CSCTFPtMethods::AB_rho53B[5][15] =
867  {
868  {0, 0, 199.20037694773515113, 58.711955576749318197, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
869  {0, 0, -50.001539058211825761, -162.05665958847185948, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
870  {0, 0, -75.823665036302642761, 163.90256775382573551, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
871  {0, 0, -0.56535096647798599445, -58.227592407129677099, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
872  {0, 0, 4.7457461205225630607, 4.0420077737038067056, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
873  };
874 */
875 
876 // Anna's 2010 parametrization
877 const double CSCTFPtMethods::A_mu12Front[4][15] =
878  {{0, 0, 0, -0.10523922235654110946, -0.10983929659374999654, -0.11452047380694262146, -0.11922097760176857129, -0.31345770385362781152, -0.29879434616186489881, -0.26915122313015271693, -0.23825592462089598134, -0.21577716540165170489, -0.19031742310020227649, -0.16472747325571124311, -0.13913752341122032075}, {0, 0, 0, 0.26520808786388666567, 0.20543788970357632073, 0.15092171845376831096, 0.10960449046799547457, 0.07249357497808966988, 0.084725241812656573726, 0.080545185052021503469, 0.063499540823294411962, 0.052274729725005748826, 0.041661879230324716517, 0.030222161181156725895, 0.018782443131988790785}, {0, 0, 0, 0.00053807554094229155788, 0.00045289727656323158257, 0.00048500971554021258918, 0.00062343043239925161666, 0.00018916793540052533398, 9.9877853046464147579e-05, 0.00011936753945903473204, -0.00013555974179713960442, -0.00018396374782998390577, -0.00027673232078907284218, -0.0003749024169206836149, -0.00047307251305229438762}, {0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.59999999975777595917, 0.59999999975777595917, 0.59999999975777595917}};
879 
880 const double CSCTFPtMethods::A_sig12Front[3][15] =
881  {{0, 0, 0, 0.012128390128145795368, 0.0060118459615588950434, 0.0066857690437444544998, 0.016870580188088974555, 3.2471855065940857799e-17, 0.04950616849006982817, 0.047875666889731632869, 0.046434926233452016031, 0.043576561593816925955, 0.04204094046553233377, 0.040117984331038282486, 0.038195028196544238142}, {0, 0, 0, 0.11205437847560090203, 0.14710111810994394577, 0.12139003108545433351, 0.05805544863709271447, 0.44230910905171338943, 0.097455948703866090987, 0.091167182629549800565, 0.08155034337565571223, 0.10115334241053108855, 0.066199416910004638126, 0.058246614245665323528, 0.05029381158132600893}, {0, 0, 0, 0.00045794655246943964493, 0.00060328713936987944655, 0.00059167776206113108402, 0.00032821487645948946993, 0.0017467056059844235372, 0.00059613339189244513722, 0.00058184715339610595854, 0.00064476542748265707177, 0.00065843267283058381015, 0.00062029466140044826547, 0.00062029466140044826547, 0.00062029466140044826547}};
882 const double CSCTFPtMethods::A_mu13Front[4][15] =
883  {{0, 0, 0, -0.13778088536998894797, -0.15278054690526707282, -0.143346136779766542, -0.14969165155567873415, -0.31735124864642083597, -0.33366154127080654979, -0.32035587063652937179, -0.29063133844224109392, -0.2625110988870774098, -0.24099599747273847683, -0.21667841153818945266, -0.19236082560364053951}, {0, 0, 0, 0.50472519215627242861, 0.45431218833331760143, 0.27978303792475944789, 0.21659344933388599563, 0.39042059382545513113, 0.21436973705419076763, 0.21989939737961083921, 0.17248537946455347325, 0.14545152483288878442, 0.068978577839075017053, 0.015796328281602489696, -0.037385921275869593572}, {0, 0, 0, 0.00074029784977316568338, 0.00094379263107391029794, 0.00044290989468863904959, 0.00032465731761844673995, 0.00080437043173185620963, 0.00030621821048436737717, 0.00036742704696401365556, 0.00031744969589481185704, 4.3755432326479009111e-05, -8.5155390635296632218e-05, -0.0002361552419779932438, -0.00038715509332068898801}, {0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.59999999975777595917, 0.59999999975777595917, 0.59999999975777595917}};
884 const double CSCTFPtMethods::A_sig13Front[3][15] =
885  {{0, 0, 0, 0.022229486577380466045, 0.014786622332179612943, 0.022206319015528955263, 0.030956563988669690696, 0.10438632614093404372, 0.052151139493775117151, 0.061379169888241082165, 0.063070119166874993866, 0.062738437335733338029, 0.062395908796719634637, 0.062395908796719634637, 0.062395908796719634637}, {0, 0, 0, 0.17561127734822717938, 0.248243347883890908, 0.15435972163154007553, 0.098222588303399416265, 0.28864281120179885454, 0.28143242857015660086, 0.16091447629058408531, 0.13483945718353784748, 0.13542102637707623125, 0.062124540683669238206, 0.015713618115037908396, -0.030697304453592977325}, {0, 0, 0, 0.00050105260335033322255, 0.00060095811169912115909, 0.00049407859567527159534, 0.00062091453005704531909, 0.00046438613640785659023, 0.00074251112464886865304, 0.00070054085319381544095, 0.00064104982805283157888, 0.00060566613754535849647, 0.00055493548941629275602, 0.00050793289077544624514, 0.00046093029213459995111}};
886 const double CSCTFPtMethods::A_mu14Front[4][15] =
887  {{0, 0, 0, 0, 0, 0, 0, 0, 0, -0.32728513383665119862, -0.30618420062024648276, -0.27554118389520276811, -0.16285631900256525295, -0.13698434403203019194, -0.084591397909304699709}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.32023477684420448286, 0.2693691108403535317, 0.22056748837118930751, 0.064251774309308562483, 0.014418130072725965363, -0.067256932934660618173}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00042613689417415228419, 0.00055054357631906247761, 0.00015434926334609733872, -0.012950297280226659088, 0.00037700991127977064596, 0.00037700991127977064596}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.59999999974533591018, 0.59999999974533591018}};
888 const double CSCTFPtMethods::A_sig14Front[3][15] =
889  {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0.060082258981389996544, 0.07247051398468504213, 0.069785008221314948074, 3.6424053064063738328e-12, 0.067445927062646751637, 0.067445927062646751637}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30722806049859069377, 0.20925971382909466789, 0.21969785537300090539, 0.022179262487250456931, -0.021585840075354578715, -0.10605666532436131}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00094734288756094921311, 0.00069588950170735620632, 0.00069173065831375820777, 0.095265205090887594697, 0.0007783210158606876589, 0.0007783210158606876589}};
890 
891 //
892 // Rare without CSCTF resolution
893 const double CSCTFPtMethods::A_mu12Rare[4][15] =
894  {{0, -0.10374889091836100863, -0.099788822609968519384, -0.13818657823143312702, -0.13717556879309533713, -0.14490849378394998759, -0.14408105919423722097, -0.2740736915947392105, -0.25354252758973594428, -0.22856287512160483599, -0.19978450972956338094, -0.18078462391477437277, -0.15524879962407600598, -0.13121518430206646766, -0.10718156898005704036}, {0, 0.43901381552049162371, 0.33269140862921836588, 0.2867281989745522619, 0.1745740696789168378, 0.13068773408294853677, 0.090289532623200399741, 0.14511096793044100939, 0.089110172781148286325, 0.088325915559225531837, 0.058284739852102536439, 0.054838099980182117288, 0.023722628572238391165, 0.0025855116892946616858, -0.018551605193649012282}, {0, 0.00090427118272218449946, 0.00051285798655137816021, 0.00096712518524937637985, 0.0005533967588738022839, 0.00058699577022335697706, 0.00046096277656442602704, 0.00059775151582151515688, 0.0002982802094889720106, 0.00025087464533485412822, -1.2763501682976573746e-06, 8.7075909949317653082e-05, -0.00014973114536521569401, -0.0002818219225062231284, -0.00041391269964723056279}, {0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.59999999975777595917, 0.59999999975777595917, 0.59999999975777595917}};
895 const double CSCTFPtMethods::A_sig12Rare[3][15] =
896  {{0, 0.0038093885421048444447, 0.0065769632315039548015, 0.0055592323950014550446, 0.0093835962422483230883, 0.017396352418037726306, 0.020259861529127568686, 0.028034021369845840699, 0.039800110854239546809, 0.039980148857628114434, 0.038524308685830198351, 0.040281758067103733134, 0.039646581616244812307, 0.039646581616244812307, 0.039646581616244812307}, {0, 0.23514753393254139713, 0.20840454339700395514, 0.1734554515667367236, 0.14712778893221009624, 0.068478644292554124995, 0.045578777378287992084, 0.17971688457142401263, 0.10413274328597779683, 0.096806606002943468292, 0.095972114441355463321, 0.077888109608563196873, 0.073807795186255298336, 0.065850955926872206669, 0.057894116667489142758}, {0, 0.00060835884164537896556, 0.00057248928258038056342, 0.00054601310456751364283, 0.00045596139082362406765, 0.00036256195477186049098, 0.00033554189220614231851, 0.00081415383922815243514, 0.00064529700989722222747, 0.00063280618158918571729, 0.00066801533625483495039, 0.00061304601669530541484, 0.0006244051798697089397, 0.00061825079737559966893, 0.00061209641488149039816}};
897 const double CSCTFPtMethods::A_mu13Rare[4][15] =
898  {{0, 0, -0.12623127354128180211, -0.17935797490956165157, -0.18060840788964968584, -0.18696605249703140972, -0.19077279628481272344, -0.29349472537983850584, -0.28999462954606641807, -0.28042269536018021858, -0.24794997339523475177, -0.22381101094323510581, -0.21271098141773814305, -0.1945697729153351152, -0.17642856441293225389}, {0, 0, 0.46581826439734036471, 0.59045368664701669559, 0.42112504758806018623, 0.31214409746624299791, 0.22991099738945788844, 0.38259688787882195626, 0.21032714197086083141, 0.23803428613207575082, 0.16848812991169570541, 0.13391107896586992854, 0.064908316006158539579, 0.010987253017647136133, -0.042933809970864045269}, {0, 0, 0.0002201385928033240463, 0.00094588024264893161806, 0.0006090017795757148196, 0.00055819818498869361832, 0.00051220623767016942862, 0.0010722093641169425093, 0.00033951226487555219435, 0.00057667736469464204747, 0.00038672362687909188003, 0.00018665348905046641372, -4.8148940218185019846e-06, -0.00017720493282215006928, -0.00034959497162248120289}, {0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.59999999975777595917, 0.59999999975777595917, 0.59999999975777595917}};
899 const double CSCTFPtMethods::A_sig13Rare[3][15] =
900  {{0, 0, 0.015046443595756202674, 0.024350274050281187077, 0.030516519859742685661, 0.034951536569288559064, 0.040872596013944946514, 0.075500038528175023034, 0.054258877880390701809, 0.057948329004836200695, 0.055684189309453437089, 0.055547652610341891055, 0.055859762201452584085, 0.055859762201452584085, 0.055859762201452584085}, {0, 0, 0.72981359973468040714, 0.25552798678505961316, 0.20538399097483123201, 0.13568477284924612691, 0.087691623490571385391, 0.14380693710811331965, 0.17784552932129321645, 0.15447707796169932171, 0.15118995597952319954, 0.13106219757004208826, 0.11773441089914793434, 0.10337069917555474774, 0.089006987451961616653}, {0, 0, 0.00047001852983351251119, 0.00053481400606665866967, 0.00036348184816972377081, 0.00037774161715020031574, 0.00026657604722595630358, 0.00029086094173271957383, 0.00068184877937593074432, 0.00058313040724595804811, 0.00061068422520455867882, 0.00061315948044054677767, 0.0006222057231541136546, 0.0006222057231541136546, 0.0006222057231541136546}};
901 const double CSCTFPtMethods::A_mu14Rare[4][15] =
902  {{0, 0, 0, 0, 0, 0, 0, 0, 0, -0.2849452232390318196, -0.26600970450734234829, -0.23683395869018955548, -0.22057309433227462181, -0.1965174620579153153, -0.17428824880417448373}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.33740004932669764859, 0.27762229117854592131, 0.19628468723350062097, 0.17323896845886521678, 0.10268128741218718325, 0.045299202757331347158}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00036794862559287675862, 0.00059266387001125628905, 0.00029802341315537321086, 0.00025629117987456756858, 0.00022132857323278612785, 0.00015836729382168461717}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.59999999974533591018, 0.59999999974533591018}};
903 const double CSCTFPtMethods::A_sig14Rare[3][15] =
904  {{0, 0, 0, 0, 0, 0, 0, 0, 0, 0.057936258148966857107, 0.067831242837197713857, 0.065620840504349520206, 0.054328715544637938561, 0.061429264258856704217, 0.061429264258856704217}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.30423086251952391468, 0.20761013178198547968, 0.19093892168102474804, 0.38288685251508419727, 0.2714166921244430819, 0.2714166921244430819}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00080261760198784384054, 0.00063696047781503656055, 0.00065139580093967995589, 0.00069639579902228165072, 0.00069684237379447067084, 0.00069684237379447067084}};
905 
906 
907 const double CSCTFPtMethods::A_mu51[4][15] =
908  {
909  {-0.30205049387075266765, -0.19825408793401680385, -0.10259572704977054647, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
910  {0.39029489236430164878, -0.99999999999950184293, -0.99999999991334242999, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
911  {-0.0082240407388394932281, -0.008489109806000837144, -0.0096722775887914218262, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
912  {1.4884036315353963431, -2.8577685774096766025, -3.1123617094902709113, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
913  };
914 
915 const double CSCTFPtMethods::A_sig51[3][15] =
916  {
917  {0.013883456707760059509, 0.011790507803505339071, 2.4609763012162222395e-15, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
918  {0.33358000572065177325, 0.19837044850549298558, 0.21329994540971500272, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
919  {0.0026062373849642236565, 0.0026272077989507240485, 0.0025484832112267707081, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
920  };
921 
922 const double CSCTFPtMethods::A_mu52[4][15] =
923  {
924  {0, -0.31934822512291188845, -0.24671378669106625026, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
925  {0, -0.99999999999980493381, -0.99999999999999167333, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
926  {0, -0.0073087160764979198016, -0.0070564603063957591009, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
927  {0, -5.0384103551069152616, -5.6736067150957572025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
928  };
929 const double CSCTFPtMethods::A_sig52[3][15] =
930  {
931  {0, 0.021754484285831678786, 0.0079969520010703034479, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
932  {0, 0.31662456185786602703, 0.25320436095234394314, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
933  {0, 0.0026259453672001680305, 0.0027192866432913216992, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
934  };
935 
936 const double CSCTFPtMethods::A_mu53[4][15] =
937  {
938  {0, 0, -0.2362111548723856147, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
939  {0, 0, 0.58675988413655344456, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
940  {0, 0, -0.0074765217760223816323, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
941  {0, 0, 1.392910355886719076, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
942  };
943 
944 const double CSCTFPtMethods::A_sig53[3][15] =
945  {
946  {0, 0, 0.010082748878246528337, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
947  {0, 0, 0.37397019929001934502, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
948  {0, 0, 0.002686637834141298968, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
949  };
950 
952 const double CSCTFPtMethods::A_rho512[5][15] =
953  {
954  {0, -1.3270643828972497058, -0.40947841616853780655, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
955  {0, 2.025201781399017964, 0.58089265964690128818, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
956  {0, -0.73760841017029699085, -0.060534778841327505083, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
957  {0, 0.077735281441295198124, -0.017952905037001157251, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
958  {0, 0.005510074476231469412, 0.26061236699994605459, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
959  };
960 const double CSCTFPtMethods::A_rho513[5][15] =
961  {
962  {0, 0, 0.18116780706048338234, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
963  {0, 0, -0.10826967270771679919, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
964  {0, 0, 0.033488168126484141318, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
965  {0, 0, -0.0040355575386412517735, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
966  {0, 0, -0.4934185910548575249, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
967  };
968 const double CSCTFPtMethods::A_rho523[5][15] =
969  {
970  {0, 0, -1.9080285362497979573, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
971  {0, 0, 3.2540326879755121503, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
972  {0, 0, -1.2246911037569772063, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
973  {0, 0, 0.13624286476587679773, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0},
974  {0, 0, 0.24605674796105389546, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}
975  };
976 
977 
978 
979 const double CSCTFPtMethods::A_mu23[4][15] =
980  {
981 
982  {0, 0, -0.038262994788483634112, -0.038329955987871006107, -0.0374748823380766094, -0.041131685825480934771, -0.041682237062370237901, -0.043941548191289134251, -0.036858451809650610853, -0.041160145519271960912, -0.03640665951155453578, -0.037033177234847232395, -0.039730205721839016719, -0.041049544792113090708, -0.03904511674158141904},
983  {0, 0, 0.22476203480449799543, 0.19067575131669534105, 0.15256324303025625699, 0.13801063658393192268, 0.12256502197662035025, 0.11905632873396845839, 0.10056103279215167223, 0.094455197819930808434, 0.06542931061274483151, 0.055715924150473321308, 0.053301837423971050456, 0.045890095913808617856, 0.027949821903864861122},
984  {0, 0, 0.00069404495353071109318, 0.00065670816947569431686, 0.00050715045635956769714, 0.00051087666765004164943, 0.00050201870311558270069, 0.00025160072489320881679, 0.00026119341522217484446, 0.00027099698566654400892, 9.9011225161971808595e-05, 7.3884094779271263388e-05, 0.00025118886053809180194, 0.00035276812785148709559, 0.00023201907068018601732},
985  {0, 0, 1.5949221750821838128, 1.7201281725872403783, 1.58953615582846286, 1.1423843849936006212, 0.97788843089194554814, 0.90488697221367975221, 1.1715145764654877336, 1.1384185105977693286, 1.1222106905033706337, 0.8870702391119174024, 0.61881410578333895245, 0.2103057782202895909, 0.20906493220451535797}
986  };
987 const double CSCTFPtMethods::A_sig23[3][15] =
988  {
989  {0, 0, 5.1487948019707241443e-14, 1.371515748194163109e-17, 5.7867664653155070908e-15, 0.0018689633292167232882, 0.0022366390858728274135, 0.0098612407883851022766, 6.8801945206625053642e-12, 0.0032973305248131545321, 0.0054990363466139750501, 0.0092745687266331533483, 0.011501230292384876167, 0.012866555123334103353, 0.01433335748409165708},
990  {0, 0, 0.20455300017238808863, 0.19201919320235372179, 0.17201776141542601817, 0.12441381076621171875, 0.1050096955004960475, 0.086699597450937707088, 0.12195247491883690061, 0.12325808533281308599, 0.096676601548240911899, 0.075608663356511091047, 0.063411508431177876499, 0.053299915739310803342, 0.048982690822271121589},
991  {0, 0, 0.00067345631439024247495, 0.00071637601448934864513, 0.00073991596851847836816, 0.0007991069380909875423, 0.0008004777620410123912, 0.00089609812741991013828, 0.001505913962207979526, 0.0014477291363779595194, 0.001410515534491615236, 0.0013306603256628582281, 0.0012465454381592282456, 0.0012290059929163277448, 0.001182792281371985825}
992  };
993 const double CSCTFPtMethods::A_mu24[4][15] =
994  {
995  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.061959407101930465134, -0.058818321370234280532, -0.068352281408454867995, -0.061460298909070447404, -0.052235918421231680719, -0.072498226107478094815},
996  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.21211506894042392313, 0.1693324759070968244, 0.16427164509165567696, 0.12206249376578166832, 0.059425221503678751778, 0.10342818163255371178},
997  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00082310131655814202344, 0.00076119821363284040708, 0.0011383177083823211358, 0.00088025107979697856699, 0.00053811687741542281113, 0.0012072828551724611168},
998  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.90513569051375386554, 0.84830498879329219175, 0.61907648481747246105, 0.62281733240515868566, 0.96959526780257299095, 0.22278747273629403991}
999  };
1000 const double CSCTFPtMethods::A_sig24[3][15] =
1001  {
1002  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.036897103741702109991, 0.039899187881393870236, 0.037199371928606554671, 0.044110460084859734464, 0.04574632914580819415, 0.043819228659279139959},
1003  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.12588087914450593607, 0.096275574709463407341, 0.097301378507412841778, 0.062284950968221723666, 0.040981290949611878793, 0.062080679266191686472},
1004  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00015197851743841865125, 0.00020141684336612834154, 0.00023753469072643055345, 5.280883524679438998e-05, 5.5577569515852236366e-05, 6.1083145679098556401e-05}
1005  };
1006 const double CSCTFPtMethods::A_mu34[4][15] =
1007  {
1008  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0058446275511135183447, -0.0044363335612002457661, -0.0063690633680748938092, -0.0071732602982787522714, -0.0060076595959582691081, -0.0097192787716524169095},
1009  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.069899440774008433919, 0.041945454306693608082, 0.033695321175754334997, 0.02572107994967174141, 0.011966531649750349747, 0.013632158523237790024},
1010  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.00028713324507221590172, -0.00029722368993748908127, -0.00021881992359872021571, -0.00019444183718237873664, -0.00019245346134829781652, -4.7403620157884084486e-05},
1011  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.23011991602398707, 1.3460026509066507217, 1.3048596027895269511, 1.1101126497057096643, 1.3404667534791459005, 1.1961024662925265893}
1012  };
1013 const double CSCTFPtMethods::A_sig34[3][15] =
1014  {
1015  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.014243461206981972156, 0.010278183995352333305, 0.013373297961434488582, 0.018049641090122695714, 0.018285814028279508137, 0.018004419633993375832},
1016  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.080281940189430453514, 0.097702954127336857915, 0.068717674384759980244, 0.047838267178665204449, 0.043271382660605303694, 0.034571413197575895371},
1017  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.00019610172919627981338, 0.00020181030100052541531, 9.721123551963389408e-05, 7.9515919724251022879e-05, 3.152903608551011833e-05, -1.5281155054305934032e-05}
1018  };
1019 
1020 /*
1021 const double CSCTFPtMethods::A_mu23CSCTF[4][15] =
1022  {
1023  {0, 0, -0.05159583579882612292, -0.057495850955557127604, -0.038777381197559336601, -0.034650103854195257735, -0.035866685307932126558, -0.036520018265937925772, -0.039140048431005991514, -0.04132313862170765989, -0.036795418654570546946, -0.034712298048110004633, -0.030675971294882777712, -0.026581567107835060715, -0.027082610124683551694},
1024  {0, 0, 0.30930157379625533576, 0.30528792735566101513, 0.18101621729540517958, 0.13261043687180154582, 0.11710185518524707238, 0.1042269425450448872, 0.12842978872597279882, 0.11026714080229071957, 0.077195052828225488306, 0.052779807661988357992, 0.031907294195008026327, 0.015010793353952620391, 0.0083693744640667474405},
1025  {0, 0, 0.003303237228747075635, 0.0036877622923072827903, 0.0028778748613812418257, 0.0027697479676805046578, 0.0029722472234315878113, 0.0027557729541331493078, 0.0027439686054866367984, 0.0027429867920243330461, 0.0026205380860322580877, 0.0025684796211763527909, 0.0024501533836338673482, 0.0022886566312508992323, 0.0023109047428951515549},
1026  {0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778}
1027  };
1028 const double CSCTFPtMethods::A_sig23CSCTF[3][15] =
1029  {
1030  {0, 0, 1.9795336160186027818e-14, 1.9915059185082739646e-14, 3.1018595894952150083e-13, 3.247104191431149367e-15, 8.1315162936412832551e-20, 1.240503468176445967e-14, 5.42101086242752217e-20, 1.0611672131288774068e-13, 1.5769479363818283968e-13, 1.3950757324528162417e-13, 9.006754760412793992e-14, 6.4351600220433069488e-14, 3.422793732471562933e-14},
1031  {0, 0, 0.16247290882387102617, 0.17175130285728712476, 0.12863499593873295446, 0.087195343431809388401, 0.075178796525218818947, 0.084968005914806410406, 0.097534051101499472103, 0.10072101959821762318, 0.086515842289935293574, 0.077487068666586722543, 0.066495426545906038962, 0.05829523793723847408, 0.058469062331064518279},
1032  {0, 0, 0.0030866184008234202017, 0.0027157845892710396826, 0.0031000107472930020502, 0.0032948728256854639164, 0.0032523838944876529676, 0.0032908170044063911851, 0.0031077703733701392101, 0.003168310045777431895, 0.0031995826882447926144, 0.0033172473608836330373, 0.003481731357302361371, 0.0035885923423450909013, 0.0036197682854273677093}
1033  };
1034 const double CSCTFPtMethods::A_mu24CSCTF[4][15] =
1035  {
1036  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.040588070215567317867, -0.037244899938720932298, -0.032557928194235655206, -0.033625486248390609734, -0.030979888871088396424, -0.034417775727303090427},
1037  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.14679164922919202274, 0.10155103197601543508, 0.05654629310554831062, 0.045376829456755543579, 0.027509877797561234358, 0.023419523710039816256},
1038  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0020633358759647897618, 0.001896533050698436711, 0.0017858761282068486096, 0.001844050222271934221, 0.0017557139477893672803, 0.0018426777898371733428},
1039  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.8287338692316308375, 0.99774828307731855404, 1.1829866290816364316, 1.1602087549628306018, 1.2464326048294538385, 1.2759641819434877075}
1040  };
1041 const double CSCTFPtMethods::A_sig24CSCTF[3][15] =
1042  {
1043  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.037625952557573547064, 0.01799213091317735172, 1.6125862879181815379e-11, 1.0562397310953652863e-12, 1.241077634541939978e-12, 0.0010355011396506045348},
1044  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.042427032035622765094, 0.098803329688397070751, 0.14389559700484103044, 0.13799560522998333134, 0.12970987520579105312, 0.12360506328208811788},
1045  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0016583711392086320988, 0.0026285030865632191821, 0.0035332492384275056285, 0.0035536381484177958709, 0.0036008804486243150937, 0.003671342260090017847}
1046  };
1047 const double CSCTFPtMethods::A_mu34CSCTF[4][15] =
1048  {
1049  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.024386862247056880632, -0.021528537191676071216, -0.02005083006670880727, -0.01336094590546606925, -0.011202986245246833105, -0.010221348552148104907},
1050  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.13932346391503466765, 0.10879329554634586952, 0.082131024131389118725, 0.049386143583177943839, 0.031626039045900805613, 0.018428910788041489438},
1051  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.002260334327917361795, 0.0022298163315863312253, 0.0022548694122104897576, 0.0018759307742583139749, 0.00177881208252465557, 0.0017313182633728260718},
1052  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778, 0.5999999999999999778}
1053  };
1054 const double CSCTFPtMethods::A_sig34CSCTF[3][15] =
1055  {
1056  {0, 0, 0, 0, 0, 0, 0, 0, 0, 8.7898167477201694098e-15, 9.6596450456509774796e-15, 5.8301345522149272682e-15, 4.2091980942404738641e-15, 5.3458485468199645751e-15, 3.1712051604473878719e-13},
1057  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.093687563387992001118, 0.079820927326800600321, 0.066984420892720844543, 0.056708328335080805671, 0.047536365785603315604, 0.038169598629265347189},
1058  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.0030253104511002268558, 0.0031726875548676886779, 0.0032496716988121504902, 0.0033443354915219845012, 0.0034738654347779623563, 0.0036318730482019275646}
1059 //
1060  };
1061 */
1062 
1063 /*
1064 // correlation
1065 const double CSCTFPtMethods::A_rho123FrontCSCTF[5][15] =
1066  {
1067  {0, 0, 0, -7.1040670977031510347, -12.670315837935662628, -8.7170331637018456661, -0.67519391792989291723, -82.734134458636077625, -0.75423027516740670517, -1.5375638068488624022, -1.9436626689216969233, -3.3048393305106831264, 0, 0, 0},
1068  {0, 0, 0, 13.120105991486797237, 24.351734925387280128, 17.466447377883568493, 3.4093984643667423207, 194.02337279340923715, 2.3366398860307699969, 3.18999491763136378, 3.6653450973208929753, 5.5669645488507377706, 0, 0, 0},
1069  {0, 0, 0, -6.3122732945347292954, -12.092235620129875073, -8.964306376251860442, -2.0956518253881668556, -14.276757245102295713, -1.052341283927880955, -1.3351509494835234193, -1.4259213982588558878, -1.7115493310298179885, 0, 0, 0},
1070  {0, 0, 0, 0.88435981237335747895, 1.7435813620171676241, 1.3426959412552754713, 0.34444942151920626694, -87.449791709635917414, 0.12377690603711703765, 0.15538477196375066747, 0.15008809252689520042, 0.10296388213110005405, 0, 0, 0},
1071  {0, 0, 0, 0.6301630452598394605, 0.95776009332113687389, 0.9017528066816278276, 0.50478537372345588796, 4.2993192028223639056, 0.44617114302999638653, 0.34541691945594366064, 0.42054938381219214572, 0.7433264993299159018, 0, 0, 0}
1072  };
1073 const double CSCTFPtMethods::A_rho124FrontCSCTF[5][15] =
1074  {
1075  {0, 0, 0, 0, 0, 0, 0, 0, -67.653257351760515803, -14.640453888061129462, -8.0061864057341729506, -6.380532066411966241, 0, 0, 0},
1076  {0, 0, 0, 0, 0, 0, 0, 0, 199.99999998356389597, 18.625354490890874359, 10.511672179624257595, 8.772341856627665635, 0, 0, 0},
1077  {0, 0, 0, 0, 0, 0, 0, 0, -190.6065599611967798, -3.7847886886961528141, -2.2651826031392530147, -1.9160721119800219192, 0, 0, 0},
1078  {0, 0, 0, 0, 0, 0, 0, 0, 58.439288729233759057, -2.3364343906401296991e-06, 3.6855623904152867709e-07, -3.0414002648998517131e-06, 0, 0, 0},
1079  {0, 0, 0, 0, 0, 0, 0, 0, 2.8796301484731765541, 1.3626067779332513563, 1.0087454870715759636, 0.90653374832410571482, 0, 0, 0}
1080  };
1081 const double CSCTFPtMethods::A_rho134FrontCSCTF[5][15] =
1082  {
1083  {0, 0, 0, 0, 0, 0, 0, 0, 0, -5.1253686146165238213, -3.9460979852191035988, 50.876993645544430933, 0, 0, 0},
1084  {0, 0, 0, 0, 0, 0, 0, 0, 0, 8.6945510876485556651, 6.9804335263398149536, -138.23002940118752235, 0, 0, 0},
1085  {0, 0, 0, 0, 0, 0, 0, 0, 0, -3.7766962717672067917, -3.021481709800325266, 114.72054763323052384, 0, 0, 0},
1086  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.47276435137618078031, 0.37604585592516825976, -25.936589905717454485, 0, 0, 0},
1087  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.67139180168906242852, 0.65599257431238855443, 2.2983843503797514174, 0, 0, 0}
1088  };
1089 const double CSCTFPtMethods::A_rho123RareCSCTF[5][15] =
1090  {
1091  {0, 3.693736660096563762e-07, -6.3780194230193432148, -13.770035906375994728, -5.1562051118343141809, -3.7461867441730016814, -1.2805080447177172864, 0.50294375115506961826, -1.4740723006986149457, -2.5387426474729517523, -2.1923622917088105844, -3.0911905495886267126, 0, 0, 0},
1092  {0, 1.2460479107724575787e-08, 11.270599218378388073, 22.392173152402016001, 9.3862642825355049325, 7.7578075325167734633, 4.2953294294048536273, 0.22827419724359693243, 3.4825602170197607066, 5.0470037914562615455, 4.4340011683393560915, 6.2256125281916929737, 0, 0, 0},
1093  {0, -3.4521070809865814222e-09, -5.0004899240308509079, -10.311644488849697865, -4.282123228906844048, -3.7150337817860408229, -2.2556284401727886291, -0.25683718959054824271, -1.5532530344313972837, -2.0501268102747358668, -1.6048499907132562914, -2.42639211677826383, 0, 0, 0},
1094  {0, 0.11247782203128549317, 0.65621333795917502485, 1.4508425971339706795, 0.57554752401241371373, 0.51651149712728827712, 0.32553981050209734871, 0.041454698814621479541, 0.1892053332712004543, 0.23183666635265892664, 0.14070399770166691633, 0.25037305153793043555, 0, 0, 0},
1095  {0, 5.2468060541259898405e-05, 0.59902231088968072026, 0.64691306718481345062, 0.56825725017267580963, 0.55227308775738792601, 0.52292618714173277894, 0.15015264640230108206, 0.47276305428305431811, 0.58130632102024715202, 0.66287057871639254447, 0.70571047503796380251, 0, 0, 0}
1096  };
1097 const double CSCTFPtMethods::A_rho124RareCSCTF[5][15] =
1098  {
1099  {0, 0, 0, 0, 0, 0, 0, 0, -62.063614454439573365, -9.3911739932179134627, -6.1205175819402386495, -3.1911920231298327444, 0, 0, 0},
1100  {0, 0, 0, 0, 0, 0, 0, 0, 176.01031612404437965, 12.375741099204100593, 8.5587121090773408127, 5.7559625518179906578, 0, 0, 0},
1101  {0, 0, 0, 0, 0, 0, 0, 0, -160.26616104904954341, -2.5400842729151151822, -1.8386520927660907621, -2.1326757988726772197, 0, 0, 0},
1102  {0, 0, 0, 0, 0, 0, 0, 0, 46.856826297399912562, -4.8053174807327625473e-07, 3.6069918621373098233e-07, 0.21904388264162638622, 0, 0, 0},
1103  {0, 0, 0, 0, 0, 0, 0, 0, 2.6686667219206672286, 1.1798705662301880448, 0.9751334566408034199, 0.50657760373212734617, 0, 0, 0}
1104  };
1105 const double CSCTFPtMethods::A_rho134RareCSCTF[5][15] =
1106  {
1107  {0, 0, 0, 0, 0, 0, 0, 0, 0, 22.63925623244709584, 33.307602374459399641, -4.7351194818759818617, 0, 0, 0},
1108  {0, 0, 0, 0, 0, 0, 0, 0, 0, -81.727537829168539929, -106.94890709205490964, 9.1466321665848884237, 0, 0, 0},
1109  {0, 0, 0, 0, 0, 0, 0, 0, 0, 81.287234092264910146, 99.769637227574477834, -3.9238059375998592948, 0, 0, 0},
1110  {0, 0, 0, 0, 0, 0, 0, 0, 0, -19.366748957614952076, -21.885672253322599801, 0.45930089549956160111, 0, 0, 0},
1111  {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.3976365353544930592, 2.6613591378002552368, 0.90958735012798141994, 0, 0, 0}
1112  };
1113 const double CSCTFPtMethods::A_rho234CSCTF[5][15] =
1114  {
1115  {0, 0, 0, 0, 0, 0, 0, 0, 0, -9.8545541776242284726, -64.883134763134137302, -2.7111481630799327824, -0.094635535725662925377, -0.24145993067693449774, -0.86334668692406080215},
1116  {0, 0, 0, 0, 0, 0, 0, 0, 0, 20.483521463583567623, 128.78793309543945611, 8.4668465066294569255, 3.2196840916959703627, 3.5062716967070435281, 4.8689870431603861078},
1117  {0, 0, 0, 0, 0, 0, 0, 0, 0, -10.072715847457928362, -81.865408753031090328, -4.2797400827660840861, -1.8900888882082564901, -2.0494364954339538976, -2.6715697235200512871},
1118  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.4368420319765635718, 44.864139609984853507, 0.57906617181020891838, 0.27668065500104588317, 0.30413204972393043102, 0.38082905421452400985},
1119  {0, 0, 0, 0, 0, 0, 0, 0, 0, 1.1952334817255199084, 3.5585102799355743386, 1.062066264100966162, 0.76269875289384825301, 0.75934194995400139394, 0.84343143505690310047}
1120  };
1121 */
1122 // correlation is calculated without CSCTF resolution
1123 const double CSCTFPtMethods::A_rho123FrontCSCTF[5][15] =
1124  {{0, 0, 0, -1.8018355270558423786, -3.0800442413303450451, -73.019003781704810763, -71.455790570687398144, -64.380384468942153831, 2.1550121774347754666, 2.5576552488389672213, 2.449616802429892104, 2.6048654763866916362, 2.4417874257938438909, 2.4417874257938438909, 2.4417874257938438909}, {0, 0, 0, -2.1007675246065984354, 5.0425956104081919307, 199.99999998505296617, 197.550283903424031, 199.99999998947504309, -3.6752175165788334432, -5.1722529027050292427, -4.3622079033393852399, -3.8822092661387657131, -4.2729718954881441562, -4.2729718954881441562, -4.2729718954881441562}, {0, 0, 0, 4.7467280498208239692, -0.9954101483761357283, -174.31370635014994264, -172.76138545990900752, -195.76348611065316163, 3.4105036734574345481, 4.6147873662827647578, 3.7484788313774726198, 3.1712066148946220778, 3.7362441319556776165, 3.7362441319556776165, 3.7362441319556776165}, {0, 0, 0, 0.30810891952961361184, -1.5943850767419220915e-06, 54.774256057823905053, 53.990647071858525408, 62.484493391665445472, -0.69848464296741152868, -0.91930506751317175862, -0.74283883233049896599, -0.63029551267626326982, -0.74773101223055604692, -0.74773101223055604692, -0.74773101223055604692}, {0, 0, 0, 1.5832663901749726154, 0.74552216086091394054, 2.3871718840149540597, 2.3429031884405246977, 2.5923987724387411724, 0.78470036712835855575, 0.84997184658808944135, 0.77449725473134001241, 0.7103384244719952445, 0.77987697419799162368, 0.77987697419799162368, 0.77987697419799162368}};
1125 const double CSCTFPtMethods::A_rho124FrontCSCTF[5][15] =
1126  {{0, 0, 0, 0, 0, 0, 0, 0, 0, 1.3870060999256690337, 2.9712356450806232111, 3.570810174736656073, 4.8268213813923779298, 5.9187234187980806155, 7.0106254562037761957}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -2.5249315692538325528, -5.0029964029336300158, -5.9723457657194050086, -7.9475054424365261241, -9.6712125406703215447, -11.394919638904116965}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.5905258665507675531, 3.7350919226554304409, 4.4308882990573090765, 5.4258644619269134068, 6.3460456781797809356, 7.2662268944326449116}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.46509034721864128681, -0.65123509278498414865, -0.77222404956138701593, -0.93665019886425904261, -1.0902170500355508054, -1.24378390120684168}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.80362588618902608406, 0.76388670904989408594, 0.8119443249235495097, 0.79315230672804426515, 0.79315230672804426515, 0.79315230672804426515}};
1127 const double CSCTFPtMethods::A_rho134FrontCSCTF[5][15] =
1128  {{0, 0, 0, 0, 0, 0, 0, 0, 0, 1.9650106495811070495, 4.4682144046367060497, 3.6127345552596952238, 3.3486532031297944201, 3.3486532031297944201, 3.3486532031297944201}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -2.8639423697800454605, -8.5042162539937766752, -6.2743097440414938859, -5.8808227847000313915, -5.8808227847000313915, -5.8808227847000313915}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.3846745836159768395, 6.2976695885419857746, 4.8907783903396619962, 4.5243741882849342062, 4.5243741882849342062, 4.5243741882849342062}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.45508861624906205012, -1.1535577557401812676, -0.887603855749135362, -0.83208340850272133338, -0.83208340850272133338, -0.83208340850272133338}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.61133320621013831353, 0.8416666357275194299, 0.84060163399865650558, 0.76453382567690186811, 0.76453382567690186811, 0.76453382567690186811}};
1129 const double CSCTFPtMethods::A_rho123RareCSCTF[5][15] =
1130  {{0, 3.693736660096563762e-07, 3.6624889920579235536, -1.5878130861362493853, -16.882029490672145755, -19.782998814333478066, -60.455933184308456418, 4.7409034663087075145, 1.2313698717610916944, 4.0535624038761168819, 2.839672990936767949, 1.1264072104945499486, 2.7983831906712062221, 2.7983831906712062221, 2.7983831906712062221}, {0, 1.2460479107724575787e-08, -9.1322692253088106895, 2.7885945213228429118, 35.574384349975474606, 52.562872763020486389, 165.96545891988304788, -7.8572084740661054525, -2.2073725837258022509, -8.2319545861659868535, -5.2739465547973312098, -1.6641893104460985242, -5.0469343040027743186, -5.0469343040027743186, -5.0469343040027743186}, {0, -3.4521070809865814222e-09, 0.304049807886722534, -1.0070939003771062215, -25.509204584815140748, -43.856338459435548316, -142.9795139802988615, 5.1120722960994200434, 2.5507720910098483635, 6.5298492011791555711, 4.4578719360600889132, 2.2487455007422072484, 4.1798622107590110986, 4.1798622107590110986, 4.1798622107590110986}, {0, 0.11247782203128549317, 6.1743739480412145326, 0.11162411914689808479, 8.9528675403092599083, 15.100558849256662697, 44.430568006333729159, -0.9341261050017011236, -0.55701647459573400134, -1.2571707419142834627, -0.88779580801276813951, -0.51779245640493165581, -0.83078031791749751278, -0.83078031791749751278, -0.83078031791749751278}, {0, 5.2468060541259898405e-05, 1.8940496384956984066, 0.066707207826664116634, 1.7508237418861856138, 1.8900280458873763845, 2.1844068317738409846, 0.76180412238695105476, 0.72372957011062566401, 0.89275082928758009437, 0.81250184984526685472, 0.71783981961882159517, 0.78172523860247711269, 0.78172523860247711269, 0.78172523860247711269}};
1131 const double CSCTFPtMethods::A_rho124RareCSCTF[5][15] =
1132  {{0, 0, 0, 0, 0, 0, 0, 0, 0, 3.6863837484595949334, 2.3224336525694582178, 3.2507026803368823664, 3.0865066927589901447, 3.0865066927589901447, 3.0865066927589901447}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -6.9075821699787951502, -4.3426737934213210934, -6.2428017762167931082, -5.8310192443035493426, -5.8310192443035493426, -5.8310192443035493426}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 5.1741882361155777659, 3.6659747818805397124, 5.1137870308059385493, 4.6513166894848883004, 4.6513166894848883004, 4.6513166894848883004}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.8788429753762293517, -0.6687776952912940498, -0.89611818355296113392, -0.81457961884259244556, -0.81457961884259244556, -0.81457961884259244556}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.89064996021251574554, 0.79339716446029262542, 0.92504977817804989737, 0.86969896765468779343, 0.86969896765468779343, 0.86969896765468779343}};
1133 const double CSCTFPtMethods::A_rho134RareCSCTF[5][15] =
1134  {{0, 0, 0, 0, 0, 0, 0, 0, 0, 3.4612440846722587473, 5.7154640478562965811, 6.1988763822017318716, 7.8628271357737773428, 9.2316432845389506667, 10.600459433304120438}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -5.7252426310553330424, -10.734814097449786985, -11.773479219426080888, -15.459415237678861388, -18.483533531863088228, -21.507651826047307964}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 4.1825411479975462825, 7.4929964403945605866, 8.4655628853855269256, 10.996721895319737428, 13.138232764016670728, 15.279743632713589818}, {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.76190351147590362757, -1.349101837260204606, -1.4909015696715794963, -1.9296336976648227335, -2.2941327267626210329, -2.6586317558604193323}, {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.73180297067413413448, 0.85937126410475961347, 0.96408406745158758966, 1.0840338641877096393, 1.200174412576484162, 1.3163149609652586847}};
1135 //
1136 const double CSCTFPtMethods::A_rho234CSCTF[5][15] =
1137  {
1138  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.90545523934272553745, 0.87175008048078328482, 11.473027189906936485, 11.663806475851881572, 0.42441495626586411838, 0.32838673222117276129},
1139  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.44139458152853866535, -0.42393288245808863346, -22.394533628750806997, -23.701781706067023947, 0.3795109868989199331, 0.61276617249320963765},
1140  {0, 0, 0, 0, 0, 0, 0, 0, 0, 0.051844682585598461655, 0.049996912305763613338, 16.507523030995347568, 17.496995261382853215, -0.25771028946901503032, -0.35814371755433299649},
1141  {0, 0, 0, 0, 0, 0, 0, 0, 0, 2.7429208195040022389e-07, 9.0318461390404003453e-08, -3.1629404839892929502, -3.4008584782052286855, 0.032310851118482836197, 0.04444079467290308616},
1142  {0, 0, 0, 0, 0, 0, 0, 0, 0, -0.42794073513595692893, -0.42484700224018712156, 1.2597467573071601254, 1.2343273593218078155, -0.1335866415068663049, -0.10123375520631937297}
1143  };
1144 
1145 // Constructor
1147  : trigger_scale( ptScale )
1148 {
1149 }
1150 
1151 // compute PT from dphi = A/Pt + B/Pt^2
1152 // this involves solving the quadratic equation and storing it as Pt
1153 // out of the two possible roots, the return value is always the larger value for Pt
1154 
1155 float CSCTFPtMethods::Pt2Stn(int type, float eta, float dphi, int fr) const
1156 {
1157  float A = 0;
1158  float B = 0;
1159  if (dphi == 0.0) dphi = 1.e-6;
1160  if (eta < 0.0) eta = static_cast<float>(fabs(static_cast<double>(eta)));
1161  if (dphi < 0.0) dphi = static_cast<float>(fabs(static_cast<double>(dphi)));
1163 #ifdef L1CSC_STANDALONE
1164  if (type == kME1andME2 && eta <= 1.25) fr = 1;
1165 #else
1166  if (type == kME1andME2 && eta < 1.2) fr = 1;
1167 #endif
1168  if (type >= kME1andME2 &&
1169  type <= kME2andMB2 && eta < 2.5)
1170  {
1171  if (eta >= 0.0 && eta < 1.6)
1172  {
1173  A = AkLowEta_Fit2[type-1][0] + AkLowEta_Fit2[type-1][1]*eta
1174  + AkLowEta_Fit2[type-1][2]*eta*eta + AkLowEta_Fit2[type-1][3]*eta*eta*eta;
1175  B = BkLowEta_Fit2[type-1][0] + BkLowEta_Fit2[type-1][1]*eta
1176  + BkLowEta_Fit2[type-1][2]*eta*eta + BkLowEta_Fit2[type-1][3]*eta*eta*eta;
1177  if (fr >= 0 && fr <= 1)
1178  {
1179  A *= FRCorrLowEta[type-1][fr];
1180  B *= FRCorrLowEta[type-1][fr];
1181  }
1182  }
1183 
1184  if (eta >= 1.6 && eta < 2.5)
1185  {
1186  A = AkHighEta_Fit2[type-1][0] + AkHighEta_Fit2[type-1][1]*eta
1187  + AkHighEta_Fit2[type-1][2]*eta*eta + AkHighEta_Fit2[type-1][3]*eta*eta*eta;
1188  B = BkHighEta_Fit2[type-1][0] + BkHighEta_Fit2[type-1][1]*eta
1189  + BkHighEta_Fit2[type-1][2]*eta*eta + BkHighEta_Fit2[type-1][3]*eta*eta*eta;
1190  if (fr >= 0 && fr <= 1)
1191  {
1192  A *= FRCorrHighEta[type-1][fr];
1193  B *= FRCorrHighEta[type-1][fr];
1194  }
1195  }
1196 
1197  A *= kGlobalScaleFactor;
1198  B *= kGlobalScaleFactor;
1199  float Pt = (A + sqrt(A*A + 4.*dphi*B))/(2.*dphi);
1200 
1201  // return (Pt>0.0) ? Pt : 0.0;
1202  return (Pt>trigger_scale->getPtScale()->getLowEdge(1)) ? Pt
1204  }
1205  return 0.0;
1206 }
1207 
1208 float CSCTFPtMethods::Pt3Stn(int type, float eta, float dphi1, float dphi2, int fr ) const
1209 {
1210  int ty1 = 0, ty2 =0;
1211 
1212  switch (type)
1213  {
1214  case 1 :
1215  ty1 = kME1andME2 -1; // subtype sets the right position for array A
1216  ty2 = kME2andME3 -1;
1217  break;
1218  case 2 :
1219  ty1 = kME1andME2 -1;
1220  ty2 = kME2andME4 -1;
1221  break;
1222  case 3 :
1223  ty1 = kME1andME3 -1;
1224  ty2 = kME3andME4 -1;
1225  break;
1226  case 4 :
1227  ty1 = kME2andME3 -1;
1228  ty2 = kME3andME4 -1;
1229  break;
1230  default:
1231  return 0.0;
1232  }
1233 
1234  // Switch to 2-Station measurement if dphi is too small
1235  // box cut around Pt of 10 GeV
1236  float Pt;
1237 // if ( (fabs(static_cast<double>(dphi2))<0.004) &&
1238 // (fabs(static_cast<double>(dphi1))<0.030)) {
1239  if ( fabs(static_cast<double>(dphi2))<0.004 )
1240  {
1241  Pt = Pt2Stn((ty1+1), eta, dphi1, fr);
1242  }
1243  else
1244  {
1245  float c1=(-.2999 * (eta*eta*eta) + 2.030 * (eta*eta) - 4.235 * eta + 3.024) + 0.02;
1246  float c2=(-2.484 * (eta*eta*eta) + 14.43 * (eta*eta) - 27.66 * eta + 18.47)*.72;
1247  float r = 0.6; //correlation
1248  float A1 = 0;
1249  float A2 = 0;
1250 
1251  if (dphi1 == 0.0) dphi1 = 1.e-6;
1252  if (dphi2 == 0.0) dphi2 = 1.e-6;
1253  if (eta < 0.0) eta = static_cast<float>(fabs(static_cast<double>(eta)));
1254  if (eta >= 0.0 && eta < 1.6)
1255  {
1256  A1 = AkLowEta_Fit1[ty1][0] + AkLowEta_Fit1[ty1][1]*eta
1257  + AkLowEta_Fit1[ty1][2]*eta*eta + AkLowEta_Fit1[ty1][3]*eta*eta*eta;
1258  A2 = AkLowEta_Fit1[ty2][0] + AkLowEta_Fit1[ty2][1]*eta
1259  + AkLowEta_Fit1[ty2][2]*eta*eta + AkLowEta_Fit1[ty2][3]*eta*eta*eta;
1260  if (fr >= 0 && fr <= 1)
1261  {
1262  A1 *= FRCorrLowEta[ty1][fr];
1263  }
1264  }
1265 
1266  if (eta >= 1.6 && eta < 2.5)
1267  {
1268  A1 = AkHighEta_Fit1[ty1][0] + AkHighEta_Fit1[ty1][1]*eta
1269  + AkHighEta_Fit1[ty1][2]*eta*eta + AkHighEta_Fit1[ty1][3]*eta*eta*eta;
1270  A2 = AkHighEta_Fit1[ty2][0] + AkHighEta_Fit1[ty2][1]*eta
1271  + AkHighEta_Fit1[ty2][2]*eta*eta + AkHighEta_Fit1[ty2][3]*eta*eta*eta;
1272  if (fr >= 0 && fr <= 1)
1273  {
1274  A1 *= FRCorrHighEta[ty1][fr];
1275  }
1276  }
1277  A1 *= kGlobalScaleFactor;
1278  A2 *= kGlobalScaleFactor;
1279  Pt = 1/((( -dphi1/c1/c1/A1+r*dphi2/c1/c2/A2+dphi1*r/c1/c2/A1-dphi2/c2/c2/A2)
1280  + sqrt( (dphi1/c1/c1/A1-r*dphi2/c1/c2/A2-dphi1*r/c1/A1/c2+dphi2/c2/c2/A2)
1281  *(dphi1/c1/c1/A1-r*dphi2/c1/c2/A2-dphi1*r/c1/A1/c2+dphi2/c2/c2/A2)
1282  + 8*(1-r*r)*(dphi1*dphi1/c1/c1/A1/A1-2*dphi1*dphi2*r/c1/A1/c2/A2
1283  +dphi2*dphi2/c2/c2/A2/A2)))/(4*(1-r*r)));
1284 
1285  } // end 2 or 3 station method
1286  // if (Pt<0.0) Pt = 0.0;
1287  if (Pt<trigger_scale->getPtScale()->getLowEdge(1))
1288  Pt = trigger_scale->getPtScale()->getLowEdge(1);
1289 
1290  // switch to 2-stn Pt above 10 GeV:
1291  /*
1292  if (Pt>10.0) {
1293  switch (type)
1294  {
1295  case 1 :
1296  case 2 :
1297  Pt = Pt2Stn(1, eta, dphi1);
1298  break;
1299  case 3:
1300  Pt = Pt2Stn(2, eta, dphi1);
1301  break;
1302  case 4:
1303  Pt = Pt2Stn(3, eta, dphi1);
1304  }
1305  }
1306  */
1307 
1308  return Pt;
1309 }
1310 
1311 // Now for C.Yeh's Chisquare method
1312 
1313 /*
1314 type:
1315 sta1-2 = 0
1316 sta1-3 = 1
1317 sta2-3 = 2
1318 sta2-4 = 3
1319 sta1-2-3 = 4
1320 sta1-2-4 = 5
1321 
1322 2.0 <= pt < 140.0
1323 0.9 <= eta < 2.4
1324 
1325 Note: So far,
1326 Pt2Stn only defined for types 0 and 1
1327 Pt3Stn only defined for types 4 and 5
1328 */
1329 
1330 //arrays for pt and eta bins
1331 
1332 const float CSCTFPtMethods::ptbins[29] =
1333  {2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 6.0, 7.0, 8.0,
1334  10.0, 12.0, 14.0, 16.0, 18.0, 20.0, 25.0, 30.0, 35.0, 40.0,
1335  45.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100.0, 120.0, 140.0};
1336 
1337 const float CSCTFPtMethods::etabins[16] =
1338  {0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6,
1339  1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.4};
1340 
1341 double CSCTFPtMethods::Likelihood2(double *phi12, double *par_m12, double *par_sig12, double *v) const
1342  {
1343  double fitval = 0.;
1344  double Pi = acos(-1.);
1345  double m12 = 0;
1346  if(v[0] > par_m12[3])
1347  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1348  double sig12 = 0.1;
1349  if(v[0] > 0.) sig12 = par_sig12[0]/v[0] + par_sig12[1]/v[0]/v[0] + par_sig12[2];//sig12
1350 //
1351  fitval = -(phi12[0] - m12)*(phi12[0] - m12)/2./sig12/sig12;
1352  fitval = fitval - log(sig12) - 0.5*log(2*Pi) ;
1353 
1354  return fitval; }
1355 double CSCTFPtMethods::Likelihood2_2011(double *phi12, double *par_m12, double *par_sig12, double *v) const
1356  {
1357  double fitval = 0.;
1358  double Pi = acos(-1.);
1359  double m12 = 0;
1360  if(v[0] > par_m12[3])
1361  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1362  double sig12 = 0.1;
1363  if(v[0] > par_sig12[3]) sig12 = par_sig12[0]/(v[0]-par_sig12[3]) + par_sig12[1]/(v[0]-par_sig12[3])/(v[0]-par_sig12[3]) + par_sig12[2];//sig12
1364  if(sig12 <0.0015)sig12 = 0.0015;
1365 //
1366  fitval = -(phi12[0] - m12)*(phi12[0] - m12)/2./sig12/sig12;
1367  fitval = fitval - log(sig12) - 0.5*log(2*Pi) ;
1368 
1369  return fitval; }
1370 double CSCTFPtMethods::Likelihood(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
1371  {
1372  double fitval = 0.;
1373  //double Pi = acos(-1.);
1374  double m12 = 0.;
1375  if(v[0] > par_m12[3])
1376  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1377  double m23 = 0.;
1378  if(v[0] > par_m23[3])
1379  m23 = par_m23[0]/(v[0]-par_m23[3]) + par_m23[1]/(v[0]-par_m23[3])/(v[0]-par_m23[3]) + par_m23[2]; //mu23
1380  double sig12 = 0.1;
1381  if(v[0] > 0.) sig12 = par_sig12[0]/v[0] + par_sig12[1]/v[0]/v[0] + par_sig12[2];//sig12
1382  double sig23 = 0.1;
1383  if(v[0] > 0.) sig23 = par_sig23[0]/v[0] + par_sig23[1]/v[0]/v[0] + par_sig23[2];//sig23
1384 
1385  double rho = (par_rho[0] + par_rho[1]*log(v[0]) + par_rho[2]*log(v[0])*log(v[0]) + par_rho[3]*log(v[0])*log(v[0])*log(v[0]))*exp(-par_rho[4]*log(v[0])); //rho
1386  if(rho > 0.95) rho = 0.95;
1387  if(rho < -0.95) rho = -0.95;
1388 //
1389  fitval = (phi12[0] - m12)*(phi12[0] - m12)/sig12/sig12 + (phi23[0] - m23)*(phi23[0] - m23)/sig23/sig23;
1390  fitval = fitval - 2.*rho*(phi12[0] - m12)*(phi23[0] - m23)/sig12/sig23;
1391  fitval = fitval*(-1./(2.*(1-rho*rho)));
1392  fitval = fitval - log(sig12) - log(sig23) - 0.5*log(1-rho*rho) ;
1393 
1394  return fitval;
1395  }
1396 double CSCTFPtMethods::Likelihood2011(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
1397  {
1398  double fitval = 0.;
1399  //double Pi = acos(-1.);
1400  double m12 = 0.;
1401  if(v[0] > par_m12[3])
1402  m12 = par_m12[0]/(v[0]-par_m12[3]) + par_m12[1]/(v[0]-par_m12[3])/(v[0]-par_m12[3]) + par_m12[2]; //mu12
1403  double m23 = 0.;
1404  if(v[0] > par_m23[3])
1405  m23 = par_m23[0]/(v[0]-par_m23[3]) + par_m23[1]/(v[0]-par_m23[3])/(v[0]-par_m23[3]) + par_m23[2]; //mu23
1406  double sig12 = 0.1;
1407  if(v[0] > par_sig12[3]) sig12 = par_sig12[0]/(v[0]-par_sig12[3]) + par_sig12[1]/(v[0]-par_sig12[3])/(v[0]-par_sig12[3]) + par_sig12[2];//sig12
1408  double sig23 = 0.1;
1409  if(v[0] > par_sig23[3]) sig23 = par_sig23[0]/(v[0]-par_sig23[3]) + par_sig23[1]/(v[0]-par_sig23[3])/(v[0]-par_sig23[3]) + par_sig23[2];//sig12
1410  if(sig12 <0.0015)sig12 = 0.0015;
1411  if(sig23 <0.0015)sig23 = 0.0015;
1412 
1413  double rho = (par_rho[0] + par_rho[1]*log(v[0]) + par_rho[2]*log(v[0])*log(v[0]) + par_rho[3]*log(v[0])*log(v[0])*log(v[0]))*exp(-par_rho[4]*log(v[0])); //rho
1414  //if(rho > 0.95) rho = 0.95;
1415  //if(rho < -0.95) rho = -0.95;
1416  if(rho > 0.7) rho = 0.7;
1417  if(rho < -0.7) rho = -0.7;
1418  //rho = 0.4;
1419 //
1420  fitval = (phi12[0] - m12)*(phi12[0] - m12)/sig12/sig12 + (phi23[0] - m23)*(phi23[0] - m23)/sig23/sig23;
1421  fitval = fitval - 2.*rho*(phi12[0] - m12)*(phi23[0] - m23)/sig12/sig23;
1422  fitval = fitval*(-1./(2.*(1-rho*rho)));
1423  fitval = fitval - log(sig12) - log(sig23) - 0.5*log(1-rho*rho) ;
1424 
1425  return fitval;
1426  }
1427 
1428 float CSCTFPtMethods::Pt2Stn2010(int type, float eta, float dphi, int fr, int method) const
1429 {
1430  if(fabs(eta) >= 2.4) eta = 2.35;
1431  double PTsolv = 1.; // for muon plus hypothesis
1432  double PTsolvMinus = 1.;//for muon minus hypothesis
1433  for(int iETA = 0; iETA < 15; iETA++){
1434  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
1435 
1436 // calculate curvers of mean and sigma
1437  // calculate phi12 mean
1438  double par1[4] = {0., 0., 0., 0.};
1439  //double phi12mean = fitf5(v, par1); //mu12
1440  double par_sig1[3] = {0., 0., 0.};
1441  int iETA1 = iETA;
1442  switch (type) // type = mode here
1443  {
1444  case 6 : //1-2
1445  if(fr == 1){
1446  if(iETA1 < 3)iETA1 = 3;
1447  //if(iETA1 > 11)iETA1 = 11;
1448  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1449  par1[0] = A_mu12Front[0][iETA1];
1450  par1[1] = A_mu12Front[1][iETA1];
1451  par1[2] = A_mu12Front[2][iETA1];
1452  par1[3] = A_mu12Front[3][iETA1];
1453  par_sig1[0] = A_sig12Front[0][iETA1];
1454  par_sig1[1] = A_sig12Front[1][iETA1];
1455  par_sig1[2] = A_sig12Front[2][iETA1];
1456  }
1457  if(fr == 0){
1458  if(iETA1 < 1)iETA1 = 1;
1459  //if(iETA1 > 11)iETA1 = 11;
1460  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1461  par1[0] = A_mu12Rare[0][iETA1];
1462  par1[1] = A_mu12Rare[1][iETA1];
1463  par1[2] = A_mu12Rare[2][iETA1];
1464  par1[3] = A_mu12Rare[3][iETA1];
1465  par_sig1[0] = A_sig12Rare[0][iETA1];
1466  par_sig1[1] = A_sig12Rare[1][iETA1];
1467  par_sig1[2] = A_sig12Rare[2][iETA1];
1468  }
1469  break;
1470  case 7 : //1-3
1471  if(fr == 1){
1472  if(iETA1 < 3)iETA1 = 3;
1473  //if(iETA1 > 11)iETA1 = 11;
1474  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1475  par1[0] = A_mu13Front[0][iETA1];
1476  par1[1] = A_mu13Front[1][iETA1];
1477  par1[2] = A_mu13Front[2][iETA1];
1478  par1[3] = A_mu13Front[3][iETA1];
1479  par_sig1[0] = A_sig13Front[0][iETA1];
1480  par_sig1[1] = A_sig13Front[1][iETA1];
1481  par_sig1[2] = A_sig13Front[2][iETA1];
1482  }
1483  if(fr == 0){
1484  if(iETA1 < 2)iETA1 = 2;
1485  //if(iETA1 > 11)iETA1 = 11;
1486  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
1487  par1[0] = A_mu13Rare[0][iETA1];
1488  par1[1] = A_mu13Rare[1][iETA1];
1489  par1[2] = A_mu13Rare[2][iETA1];
1490  par1[3] = A_mu13Rare[3][iETA1];
1491  par_sig1[0] = A_sig13Rare[0][iETA1];
1492  par_sig1[1] = A_sig13Rare[1][iETA1];
1493  par_sig1[2] = A_sig13Rare[2][iETA1];
1494  }
1495  break;
1496  case 8 : //2-3
1497  if(iETA1 < 2)iETA1 = 2;
1498  par1[0] = A_mu23[0][iETA1];
1499  par1[1] = A_mu23[1][iETA1];
1500  par1[2] = A_mu23[2][iETA1];
1501  par1[3] = A_mu23[3][iETA1];
1502  par_sig1[0] = A_sig23[0][iETA1];
1503  par_sig1[1] = A_sig23[1][iETA1];
1504  par_sig1[2] = A_sig23[2][iETA1];
1505  break;
1506  case 9 : //2-4
1507  if(iETA1 < 9)iETA1 = 9;
1508  par1[0] = A_mu24[0][iETA1];
1509  par1[1] = A_mu24[1][iETA1];
1510  par1[2] = A_mu24[2][iETA1];
1511  par1[3] = A_mu24[3][iETA1];
1512  par_sig1[0] = A_sig24[0][iETA1];
1513  par_sig1[1] = A_sig24[1][iETA1];
1514  par_sig1[2] = A_sig24[2][iETA1];
1515  break;
1516  case 10 : //3-4
1517  if(iETA1 < 9)iETA1 = 9;
1518  par1[0] = A_mu34[0][iETA1];
1519  par1[1] = A_mu34[1][iETA1];
1520  par1[2] = A_mu34[2][iETA1];
1521  par1[3] = A_mu34[3][iETA1];
1522  par_sig1[0] = A_sig34[0][iETA1];
1523  par_sig1[1] = A_sig34[1][iETA1];
1524  par_sig1[2] = A_sig34[2][iETA1];
1525  break;
1526  case 13 : //1-4
1527  if(iETA1 < 9)iETA1 = 9;
1528  if(iETA1 > 12)iETA1 = 12;
1529  if(fr == 1){
1530  par1[0] = A_mu14Front[0][iETA1];
1531  par1[1] = A_mu14Front[1][iETA1];
1532  par1[2] = A_mu14Front[2][iETA1];
1533  par1[3] = A_mu14Front[3][iETA1];
1534  par_sig1[0] = A_sig14Front[0][iETA1];
1535  par_sig1[1] = A_sig14Front[1][iETA1];
1536  par_sig1[2] = A_sig14Front[2][iETA1];
1537  }
1538  if(fr == 0){
1539  par1[0] = A_mu14Rare[0][iETA1];
1540  par1[1] = A_mu14Rare[1][iETA1];
1541  par1[2] = A_mu14Rare[2][iETA1];
1542  par1[3] = A_mu14Rare[3][iETA1];
1543  par_sig1[0] = A_sig14Rare[0][iETA1];
1544  par_sig1[1] = A_sig14Rare[1][iETA1];
1545  par_sig1[2] = A_sig14Rare[2][iETA1];
1546  }
1547  break;
1548  case 11 : // b1-3
1549  if(iETA1 != 2)iETA1 = 2;
1550  par1[0] = A_mu53[0][iETA1];
1551  par1[1] = A_mu53[1][iETA1];
1552  par1[2] = A_mu53[2][iETA1];
1553  par1[3] = A_mu53[3][iETA1];
1554  par_sig1[0] = A_sig53[0][iETA1];
1555  par_sig1[1] = A_sig53[1][iETA1];
1556  par_sig1[2] = A_sig53[2][iETA1];
1557 
1558  break;
1559  case 12 : //1-2-b1 = 2-b1 for pt_method < 10, for pt_method > 10: b1-2
1560  if(iETA1 < 1)iETA1 = 1;
1561  if(iETA1 > 2)iETA1 = 2;
1562  par1[0] = A_mu52[0][iETA1];
1563  par1[1] = A_mu52[1][iETA1];
1564  par1[2] = A_mu52[2][iETA1];
1565  par1[3] = A_mu52[3][iETA1];
1566  par_sig1[0] = A_sig52[0][iETA1];
1567  par_sig1[1] = A_sig52[1][iETA1];
1568  par_sig1[2] = A_sig52[2][iETA1];
1569  break;
1570  case 14 : //2-b1 for pt_method < 10 and b1-1 for pt_method > 10
1571  if(method < 10){
1572  if(iETA1 < 1)iETA1 = 1;
1573  if(iETA1 > 2)iETA1 = 2;
1574  }
1575  par1[0] = A_mu52[0][iETA1];
1576  par1[1] = A_mu52[1][iETA1];
1577  par1[2] = A_mu52[2][iETA1];
1578  par1[3] = A_mu52[3][iETA1];
1579  par_sig1[0] = A_sig52[0][iETA1];
1580  par_sig1[1] = A_sig52[1][iETA1];
1581  par_sig1[2] = A_sig52[2][iETA1];
1582  if(method > 10){
1583  if(iETA1 > 2)iETA1 = 2;
1584  par1[0] = A_mu51[0][iETA1];
1585  par1[1] = A_mu51[1][iETA1];
1586  par1[2] = A_mu51[2][iETA1];
1587  par1[3] = A_mu51[3][iETA1];
1588  par_sig1[0] = A_sig51[0][iETA1];
1589  par_sig1[1] = A_sig51[1][iETA1];
1590  par_sig1[2] = A_sig51[2][iETA1];
1591  }
1592  break;
1593  //default:
1594  //return 0.0;
1595  }
1596 
1597 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
1598  //if(fabs(dphi) >= 0.002)
1599  //if(fabs(dphi) >= 0.00)
1600  //if(fabs(dphi) >= 0.002 || (fabs(dphi) >= 0.01 && (type == 12 || type == 14)))
1601  //{
1602  double pt = 140;
1603  double dpt = 0.1;
1604  double step = 5.;
1605  while(pt > 2. ){
1606  double par_phi12[1] = {dphi};
1607  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
1608  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
1609  v[0] = pt;
1610  lpt1_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1611  v[0] = pt + dpt;
1612  lpt1_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1613  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
1614  v[0] = pt - step;
1615  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1616  v[0] = pt - step + dpt;
1617  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1618  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
1619  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
1620  v[0] = pt - 0.5*step;
1621  double fx = Likelihood2(par_phi12, par1, par_sig1, v);
1622  v[0] = pt - 0.5*step + dpt;
1623  double fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1624  v[0] = pt - 0.5*step + 2*dpt;
1625  double fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1626 
1627  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
1628  //if(lpt1*lpt2 <= 0 && lpt2nd < 0) std::cout << "lpt2nd < 0 dphi12 = " << dphi <<" PT = " << pt<< " eta =" << fabs(eta) << std::endl;
1629  //lpt2nd = 1.; // don't care about 2nd derivative
1630  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
1631 /*
1632  if(pt == 140.){
1633  v[0] = 200;
1634  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1635  v[0] = 200. + 5.;
1636  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1637  lpt2 = (lpt2_2-lpt2_1)/5.;
1638 
1639  v[0] = 170.;
1640  fx = Likelihood2(par_phi12, par1, par_sig1, v);
1641  v[0] = 170.+5.;
1642  fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1643  v[0] = 170.+2*5.;
1644  fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1645  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
1646  }
1647  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1 ){PTsolv = 137.5; break;}
1648 */
1649  if(pt > 25) {dpt = 0.1; step = 5.;}
1650  if(pt <= 25) {dpt = 0.01; step = 0.5;}
1651  pt = pt - step;
1652  }// end while
1653 //*********** end solve equation for muon plus
1654 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
1655 // for one station method we know sing of muon: dphi > 0 for muon minus!!! => dphi = -dphi < 0
1656  dphi = - dphi;
1657  pt = 140;
1658  dpt = 0.1;
1659  step = 5.;
1660  while(pt > 2. ){
1661  double par_phi12[1] = {dphi};
1662  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
1663  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
1664  v[0] = pt;
1665  lpt1_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1666  v[0] = pt + dpt;
1667  lpt1_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1668  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
1669  v[0] = pt - step;
1670  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1671  v[0] = pt - step + dpt;
1672  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1673  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
1674  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
1675  v[0] = pt - 0.5*step;
1676  double fx = Likelihood2(par_phi12, par1, par_sig1, v);
1677  v[0] = pt - 0.5*step + dpt;
1678  double fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1679  v[0] = pt - 0.5*step + 2*dpt;
1680  double fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1681 
1682  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
1683 
1684  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
1685 /*
1686  if(pt == 140.){
1687  v[0] = 200;
1688  lpt2_1 = Likelihood2(par_phi12, par1, par_sig1, v);
1689  v[0] = 200. + 5.;
1690  lpt2_2 = Likelihood2(par_phi12, par1, par_sig1, v);
1691 
1692  lpt2 = (lpt2_2-lpt2_1)/5.;
1693 
1694  v[0] = 170.;
1695  fx = Likelihood2(par_phi12, par1, par_sig1, v);
1696  v[0] = 170.+5.;
1697  fxh = Likelihood2(par_phi12, par1, par_sig1, v);
1698  v[0] = 170.+2*5.;
1699  fx2h = Likelihood2(par_phi12, par1, par_sig1, v);
1700  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
1701  }
1702  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1){PTsolvMinus = 137.5; break;}
1703 */
1704  if(pt > 25) {dpt = 0.1; step = 5.;}
1705  if(pt <= 25) {dpt = 0.01; step = 0.5;}
1706  pt = pt - step;
1707  }// end while
1708 // }// if(fabs(dphi) >= 0.002)
1709 // else
1710 // {PTsolv = 137.5;}
1711 
1712 //*********** end solve equation for muon minus
1713  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
1714  PTsolv = PTsolv*1.2;
1715  if(PTsolv > 137.5) PTsolv = 137.5;
1716  if(fabs(dphi) <= 0.002 && PTsolv < 120.)PTsolv = 140.;
1717  if( fabs(dphi) <= 0.01 && (type == 11 || type == 12 || type == 14) && PTsolv < 120.)PTsolv = 140.;
1718  dphi = - dphi; //return to correct sing dphi
1719 
1720  } //if(fabs(eta_TracMy)
1721  } //end "for by iETA"
1722 
1723  float Pt = PTsolv;
1724  if(Pt > 10 && fabs(dphi) >= 0.1 ) std::cout << "iF = 0 for dphi = " << dphi <<" and Pt = " << Pt << std::endl;
1725 
1726  //if(Pt > 100 && (type == 12 || type == 14) && fabs(eta) <= 1.2 && dphi > 0.015 )std::cout << "dphi = " << dphi << " eta = " << eta << std::endl;
1727  //if(Pt < 10 && (type == 12 || type == 14) && fabs(eta) <= 1.2 && dphi < 0.01)std::cout << "dphi = " << dphi << " eta = " << eta << std::endl;
1728  // return (Pt>0.0) ? Pt : 0.0;
1729 
1730  float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
1731  if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
1732 
1733  return (Pt > Pt_min) ? Pt : Pt_min;
1734 }
1735 float CSCTFPtMethods::Pt2Stn2011(int type, float eta, float dphi, int fr, int method, int phiSign) const
1736 {
1737 
1738 
1739 
1740  //if(fabs(eta) >= 2.4) eta = 2.35;
1741  if(fabs(eta) >= 2.2) eta = 2.15;
1742  double PTsolv = 1.; // for muon plus hypothesis
1743  double PTsolvMinus = 1.;//for muon minus hypothesis
1744  for(int iETA = 0; iETA < 15; iETA++){
1745  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
1746 
1747 // calculate curvers of mean and sigma
1748  // calculate phi12 mean
1749  double par1[4] = {0., 0., 0., 0.};
1750  //double phi12mean = fitf5(v, par1); //mu12
1751  double par_sig1[4] = {0., 0., 0.,0};
1752  int iETA1 = iETA;
1753  int iETA2 = iETA;
1754 
1755  double (*Amean12FnoME11)[15] = AB_mu12FnoME11;
1756  double (*Asig12FnoME11)[15] = AB_sig12FnoME11;
1757  double (*Amean12RnoME11)[15] = AB_mu12RnoME11;
1758  double (*Asig12RnoME11)[15] = AB_sig12RnoME11;
1759 
1760  double (*Amean13FnoME11)[15] = AB_mu13FnoME11;
1761  double (*Asig13FnoME11)[15] = AB_sig13FnoME11;
1762  double (*Amean13RnoME11)[15] = AB_mu13RnoME11;
1763  double (*Asig13RnoME11)[15] = AB_sig13RnoME11;
1764 
1765  double (*Amean14FnoME11)[15] = AB_mu14FnoME11;
1766  double (*Asig14FnoME11)[15] = AB_sig14FnoME11;
1767  double (*Amean14RnoME11)[15] = AB_mu14RnoME11;
1768  double (*Asig14RnoME11)[15] = AB_sig14RnoME11;
1769  //
1770  double (*Amean12FME11)[15] = AB_mu12FME11;
1771  double (*Asig12FME11)[15] = AB_sig12FME11;
1772  double (*Amean12RME11)[15] = AB_mu12RME11;
1773  double (*Asig12RME11)[15] = AB_sig12RME11;
1774 
1775  double (*Amean13FME11)[15] = AB_mu13FME11;
1776  double (*Asig13FME11)[15] = AB_sig13FME11;
1777  double (*Amean13RME11)[15] = AB_mu13RME11;
1778  double (*Asig13RME11)[15] = AB_sig13RME11;
1779 
1780  double (*Amean14FME11)[15] = AB_mu14FME11;
1781  double (*Asig14FME11)[15] = AB_sig14FME11;
1782  double (*Amean14RME11)[15] = AB_mu14RME11;
1783  double (*Asig14RME11)[15] = AB_sig14RME11;
1784  //
1785  double (*Amean12F)[15] = AB_mu12F;
1786  double (*Asig12F)[15] = AB_sig12F;
1787  double (*Amean12R)[15] = AB_mu12R;
1788  double (*Asig12R)[15] = AB_sig12R;
1789 
1790  double (*Amean13F)[15] = AB_mu13F;
1791  double (*Asig13F)[15] = AB_sig13F;
1792  double (*Amean13R)[15] = AB_mu13R;
1793  double (*Asig13R)[15] = AB_sig13R;
1794 
1795  double (*Amean14F)[15] = AB_mu14F;
1796  double (*Asig14F)[15] = AB_sig14F;
1797  double (*Amean14R)[15] = AB_mu14R;
1798  double (*Asig14R)[15] = AB_sig14R;
1799 
1800  double (*Amean23)[15] = AB_mu23;
1801  double (*Asig23)[15] = AB_sig23;
1802  double (*Amean24)[15] = AB_mu24;
1803  double (*Asig24)[15] = AB_sig24;
1804  double (*Amean34)[15] = AB_mu34;
1805  double (*Asig34)[15] = AB_sig34;
1806 
1807  double (*Amean51)[15] = AB_mu51;
1808  double (*Asig51)[15] = AB_sig51;
1809  double (*Amean52)[15] = AB_mu52;
1810  double (*Asig52)[15] = AB_sig52;
1811  double (*Amean53)[15] = AB_mu53;
1812  double (*Asig53)[15] = AB_sig53;
1813 
1814  switch (type) // type = mode here
1815  {
1816  case 6 : //1-2
1817  if(fr == 1){
1818  if(iETA1 < 3)iETA1 = 3;
1819  //if(iETA1 > 11)iETA1 = 11;
1820  par1[0] = (*(Amean12F+0))[iETA1];
1821  par1[1] = (*(Amean12F+1))[iETA1];
1822  par1[2] = (*(Amean12F+2))[iETA1];
1823  par1[3] = (*(Amean12F+3))[iETA1];
1824  par_sig1[0] = (*(Asig12F+0))[iETA1];
1825  par_sig1[1] = (*(Asig12F+1))[iETA1];
1826  par_sig1[2] = (*(Asig12F+2))[iETA1];
1827  par_sig1[3] = (*(Asig12F+3))[iETA1];
1828  }
1829  if(fr == 0){
1830  if(iETA1 < 1)iETA1 = 1;
1831  //if(iETA1 > 11)iETA1 = 11;
1832  par1[0] = (*(Amean12R+0))[iETA1];
1833  par1[1] = (*(Amean12R+1))[iETA1];
1834  par1[2] = (*(Amean12R+2))[iETA1];
1835  par1[3] = (*(Amean12R+3))[iETA1];
1836  par_sig1[0] = (*(Asig12R+0))[iETA1];
1837  par_sig1[1] = (*(Asig12R+1))[iETA1];
1838  par_sig1[2] = (*(Asig12R+2))[iETA1];
1839  par_sig1[3] = (*(Asig12R+3))[iETA1];
1840  }
1841  if(phiSign == 0){ // track belong to ME11 station
1842  if(fr == 1){
1843  if(iETA2 < 7)iETA2 = 7;
1844  par1[0] = (*(Amean12FME11+0))[iETA2];
1845  par1[1] = (*(Amean12FME11+1))[iETA2];
1846  par1[2] = (*(Amean12FME11+2))[iETA2];
1847  par1[3] = (*(Amean12FME11+3))[iETA2];
1848  par_sig1[0] = (*(Asig12FME11+0))[iETA2];
1849  par_sig1[1] = (*(Asig12FME11+1))[iETA2];
1850  par_sig1[2] = (*(Asig12FME11+2))[iETA2];
1851  par_sig1[3] = (*(Asig12FME11+3))[iETA2];
1852  }
1853  if(fr == 0){
1854  if(iETA2 < 7)iETA2 = 7;
1855  par1[0] = (*(Amean12RME11+0))[iETA2];
1856  par1[1] = (*(Amean12RME11+1))[iETA2];
1857  par1[2] = (*(Amean12RME11+2))[iETA2];
1858  par1[3] = (*(Amean12RME11+3))[iETA2];
1859  par_sig1[0] = (*(Asig12RME11+0))[iETA2];
1860  par_sig1[1] = (*(Asig12RME11+1))[iETA2];
1861  par_sig1[2] = (*(Asig12RME11+2))[iETA2];
1862  par_sig1[3] = (*(Asig12RME11+3))[iETA2];
1863  }
1864  }
1865  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
1866  if(fr == 1){
1867  if(iETA2 < 3)iETA2 = 3;
1868  if(iETA2 > 7)iETA2 = 7;
1869  par1[0] = (*(Amean12FnoME11+0))[iETA2];
1870  par1[1] = (*(Amean12FnoME11+1))[iETA2];
1871  par1[2] = (*(Amean12FnoME11+2))[iETA2];
1872  par1[3] = (*(Amean12FnoME11+3))[iETA2];
1873  par_sig1[0] = (*(Asig12FnoME11+0))[iETA2];
1874  par_sig1[1] = (*(Asig12FnoME11+1))[iETA2];
1875  par_sig1[2] = (*(Asig12FnoME11+2))[iETA2];
1876  par_sig1[3] = (*(Asig12FnoME11+3))[iETA2];
1877  }
1878  if(fr == 0){
1879  if(iETA2 < 1)iETA2 = 1;
1880  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
1881  par1[0] = (*(Amean12RnoME11+0))[iETA2];
1882  par1[1] = (*(Amean12RnoME11+1))[iETA2];
1883  par1[2] = (*(Amean12RnoME11+2))[iETA2];
1884  par1[3] = (*(Amean12RnoME11+3))[iETA2];
1885  par_sig1[0] = (*(Asig12RnoME11+0))[iETA2];
1886  par_sig1[1] = (*(Asig12RnoME11+1))[iETA2];
1887  par_sig1[2] = (*(Asig12RnoME11+2))[iETA2];
1888  par_sig1[3] = (*(Asig12RnoME11+3))[iETA2];
1889  }
1890  }
1891 
1892  break;
1893  case 7 : //1-3
1894  if(fr == 1){
1895  if(iETA1 < 3)iETA1 = 3;
1896  //if(iETA1 > 11)iETA1 = 11;
1897  par1[0] = (*(Amean13F+0))[iETA1];
1898  par1[1] = (*(Amean13F+1))[iETA1];
1899  par1[2] = (*(Amean13F+2))[iETA1];
1900  par1[3] = (*(Amean13F+3))[iETA1];
1901  par_sig1[0] = (*(Asig13F+0))[iETA1];
1902  par_sig1[1] = (*(Asig13F+1))[iETA1];
1903  par_sig1[2] = (*(Asig13F+2))[iETA1];
1904  par_sig1[3] = (*(Asig13F+3))[iETA1];
1905  }
1906  if(fr == 0){
1907  if(iETA1 < 3)iETA1 = 3;
1908  //if(iETA1 > 11)iETA1 = 11;
1909  par1[0] = (*(Amean13R+0))[iETA1];
1910  par1[1] = (*(Amean13R+1))[iETA1];
1911  par1[2] = (*(Amean13R+2))[iETA1];
1912  par1[3] = (*(Amean13R+3))[iETA1];
1913  par_sig1[0] = (*(Asig13R+0))[iETA1];
1914  par_sig1[1] = (*(Asig13R+1))[iETA1];
1915  par_sig1[2] = (*(Asig13R+2))[iETA1];
1916  par_sig1[3] = (*(Asig13R+3))[iETA1];
1917  }
1918  if(phiSign == 0){ // track belong to ME11 station
1919  if(fr == 1){
1920  if(iETA2 < 7)iETA2 = 7;
1921  par1[0] = (*(Amean13FME11+0))[iETA2];
1922  par1[1] = (*(Amean13FME11+1))[iETA2];
1923  par1[2] = (*(Amean13FME11+2))[iETA2];
1924  par1[3] = (*(Amean13FME11+3))[iETA2];
1925  par_sig1[0] = (*(Asig13FME11+0))[iETA2];
1926  par_sig1[1] = (*(Asig13FME11+1))[iETA2];
1927  par_sig1[2] = (*(Asig13FME11+2))[iETA2];
1928  par_sig1[3] = (*(Asig13FME11+3))[iETA2];
1929  }
1930  if(fr == 0){
1931  if(iETA2 < 7)iETA2 = 7;
1932  par1[0] = (*(Amean13RME11+0))[iETA2];
1933  par1[1] = (*(Amean13RME11+1))[iETA2];
1934  par1[2] = (*(Amean13RME11+2))[iETA2];
1935  par1[3] = (*(Amean13RME11+3))[iETA2];
1936  par_sig1[0] = (*(Asig13RME11+0))[iETA2];
1937  par_sig1[1] = (*(Asig13RME11+1))[iETA2];
1938  par_sig1[2] = (*(Asig13RME11+2))[iETA2];
1939  par_sig1[3] = (*(Asig13RME11+3))[iETA2];
1940  }
1941  }
1942  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
1943  if(fr == 1){
1944  if(iETA2 < 3)iETA2 = 3;
1945  if(iETA2 > 7)iETA2 = 7;
1946  par1[0] = (*(Amean13FnoME11+0))[iETA2];
1947  par1[1] = (*(Amean13FnoME11+1))[iETA2];
1948  par1[2] = (*(Amean13FnoME11+2))[iETA2];
1949  par1[3] = (*(Amean13FnoME11+3))[iETA2];
1950  par_sig1[0] = (*(Asig13FnoME11+0))[iETA2];
1951  par_sig1[1] = (*(Asig13FnoME11+1))[iETA2];
1952  par_sig1[2] = (*(Asig13FnoME11+2))[iETA2];
1953  par_sig1[3] = (*(Asig13FnoME11+3))[iETA2];
1954  }
1955  if(fr == 0){
1956  if(iETA2 < 3)iETA2 = 3;
1957  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
1958  par1[0] = (*(Amean13RnoME11+0))[iETA2];
1959  par1[1] = (*(Amean13RnoME11+1))[iETA2];
1960  par1[2] = (*(Amean13RnoME11+2))[iETA2];
1961  par1[3] = (*(Amean13RnoME11+3))[iETA2];
1962  par_sig1[0] = (*(Asig13RnoME11+0))[iETA2];
1963  par_sig1[1] = (*(Asig13RnoME11+1))[iETA2];
1964  par_sig1[2] = (*(Asig13RnoME11+2))[iETA2];
1965  par_sig1[3] = (*(Asig13RnoME11+3))[iETA2];
1966  }
1967  }
1968  break;
1969  case 8 : //2-3
1970  if(iETA1 < 2)iETA1 = 2;
1971  par1[0] = (*(Amean23+0))[iETA1];
1972  par1[1] = (*(Amean23+1))[iETA1];
1973  par1[2] = (*(Amean23+2))[iETA1];
1974  par1[3] = (*(Amean23+3))[iETA1];
1975  par_sig1[0] = (*(Asig23+0))[iETA1];
1976  par_sig1[1] = (*(Asig23+1))[iETA1];
1977  par_sig1[2] = (*(Asig23+2))[iETA1];
1978  par_sig1[3] = (*(Asig23+3))[iETA1];
1979 
1980  break;
1981  case 9 : //2-4
1982  if(iETA1 < 3)iETA1 = 3;
1983  par1[0] = (*(Amean24+0))[iETA1];
1984  par1[1] = (*(Amean24+1))[iETA1];
1985  par1[2] = (*(Amean24+2))[iETA1];
1986  par1[3] = (*(Amean24+3))[iETA1];
1987  par_sig1[0] = (*(Asig24+0))[iETA1];
1988  par_sig1[1] = (*(Asig24+1))[iETA1];
1989  par_sig1[2] = (*(Asig24+2))[iETA1];
1990  par_sig1[3] = (*(Asig24+3))[iETA1];
1991  break;
1992  case 10 : //3-4
1993  if(iETA1 < 3)iETA1 = 3;
1994  par1[0] = (*(Amean34+0))[iETA1];
1995  par1[1] = (*(Amean34+1))[iETA1];
1996  par1[2] = (*(Amean34+2))[iETA1];
1997  par1[3] = (*(Amean34+3))[iETA1];
1998  par_sig1[0] = (*(Asig34+0))[iETA1];
1999  par_sig1[1] = (*(Asig34+1))[iETA1];
2000  par_sig1[2] = (*(Asig34+2))[iETA1];
2001  par_sig1[3] = (*(Asig34+3))[iETA1];
2002  break;
2003  case 13 : //1-4
2004  if(fr == 1){
2005  if(iETA1 < 3)iETA1 = 3;
2006  //if(iETA1 > 11)iETA1 = 11;
2007  par1[0] = (*(Amean14F+0))[iETA1];
2008  par1[1] = (*(Amean14F+1))[iETA1];
2009  par1[2] = (*(Amean14F+2))[iETA1];
2010  par1[3] = (*(Amean14F+3))[iETA1];
2011  par_sig1[0] = (*(Asig14F+0))[iETA1];
2012  par_sig1[1] = (*(Asig14F+1))[iETA1];
2013  par_sig1[2] = (*(Asig14F+2))[iETA1];
2014  par_sig1[3] = (*(Asig14F+3))[iETA1];
2015  }
2016  if(fr == 0){
2017  if(iETA1 < 2)iETA1 = 2;
2018  //if(iETA1 > 11)iETA1 = 11;
2019  par1[0] = (*(Amean14R+0))[iETA1];
2020  par1[1] = (*(Amean14R+1))[iETA1];
2021  par1[2] = (*(Amean14R+2))[iETA1];
2022  par1[3] = (*(Amean14R+3))[iETA1];
2023  par_sig1[0] = (*(Asig14R+0))[iETA1];
2024  par_sig1[1] = (*(Asig14R+1))[iETA1];
2025  par_sig1[2] = (*(Asig14R+2))[iETA1];
2026  par_sig1[3] = (*(Asig14R+3))[iETA1];
2027  }
2028  if(phiSign == 0){ // track belong to ME11 station
2029  if(fr == 1){
2030  if(iETA2 < 9)iETA2 = 9;
2031  par1[0] = (*(Amean14FME11+0))[iETA2];
2032  par1[1] = (*(Amean14FME11+1))[iETA2];
2033  par1[2] = (*(Amean14FME11+2))[iETA2];
2034  par1[3] = (*(Amean14FME11+3))[iETA2];
2035  par_sig1[0] = (*(Asig14FME11+0))[iETA2];
2036  par_sig1[1] = (*(Asig14FME11+1))[iETA2];
2037  par_sig1[2] = (*(Asig14FME11+2))[iETA2];
2038  par_sig1[3] = (*(Asig14FME11+3))[iETA2];
2039  }
2040  if(fr == 0){
2041  if(iETA2 < 9)iETA2 = 9;
2042  par1[0] = (*(Amean14RME11+0))[iETA2];
2043  par1[1] = (*(Amean14RME11+1))[iETA2];
2044  par1[2] = (*(Amean14RME11+2))[iETA2];
2045  par1[3] = (*(Amean14RME11+3))[iETA2];
2046  par_sig1[0] = (*(Asig14RME11+0))[iETA2];
2047  par_sig1[1] = (*(Asig14RME11+1))[iETA2];
2048  par_sig1[2] = (*(Asig14RME11+2))[iETA2];
2049  par_sig1[3] = (*(Asig14RME11+3))[iETA2];
2050  }
2051  }
2052  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
2053  if(fr == 1){
2054  if(iETA2 < 4)iETA2 = 4;
2055  if(iETA2 > 7)iETA2 = 7;
2056  par1[0] = (*(Amean14FnoME11+0))[iETA2];
2057  par1[1] = (*(Amean14FnoME11+1))[iETA2];
2058  par1[2] = (*(Amean14FnoME11+2))[iETA2];
2059  par1[3] = (*(Amean14FnoME11+3))[iETA2];
2060  par_sig1[0] = (*(Asig14FnoME11+0))[iETA2];
2061  par_sig1[1] = (*(Asig14FnoME11+1))[iETA2];
2062  par_sig1[2] = (*(Asig14FnoME11+2))[iETA2];
2063  par_sig1[3] = (*(Asig14FnoME11+3))[iETA2];
2064  }
2065  if(fr == 0){
2066  if(iETA2 < 4)iETA2 = 4;
2067  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
2068  par1[0] = (*(Amean14RnoME11+0))[iETA2];
2069  par1[1] = (*(Amean14RnoME11+1))[iETA2];
2070  par1[2] = (*(Amean14RnoME11+2))[iETA2];
2071  par1[3] = (*(Amean14RnoME11+3))[iETA2];
2072  par_sig1[0] = (*(Asig14RnoME11+0))[iETA2];
2073  par_sig1[1] = (*(Asig14RnoME11+1))[iETA2];
2074  par_sig1[2] = (*(Asig14RnoME11+2))[iETA2];
2075  par_sig1[3] = (*(Asig14RnoME11+3))[iETA2];
2076  }
2077  }
2078 
2079  break;
2080  case 11 : // b1-3 for pt_method > 10 & fr = 0, singles for pt_method < 10
2081  if(iETA1 != 2)iETA1 = 2;
2082  par1[0] = (*(Amean53+0))[iETA1];
2083  par1[1] = (*(Amean53+1))[iETA1];
2084  par1[2] = (*(Amean53+2))[iETA1];
2085  par1[3] = (*(Amean53+3))[iETA1];
2086  par_sig1[0] = (*(Asig53+0))[iETA1];
2087  par_sig1[1] = (*(Asig53+1))[iETA1];
2088  par_sig1[2] = (*(Asig53+2))[iETA1];
2089  par_sig1[3] = (*(Asig53+3))[iETA1];
2090  break;
2091 
2092  case 12 : //1-2-b1 = 2-b1 for pt_method < 10, for pt_method > 10 & fr = 0: b1-2
2093  if(iETA1 < 1)iETA1 = 1;
2094  if(iETA1 > 2)iETA1 = 2;
2095 
2096  par1[0] = (*(Amean52+0))[iETA1];
2097  par1[1] = (*(Amean52+1))[iETA1];
2098  par1[2] = (*(Amean52+2))[iETA1];
2099  par1[3] = (*(Amean52+3))[iETA1];
2100  par_sig1[0] = (*(Asig52+0))[iETA1];
2101  par_sig1[1] = (*(Asig52+1))[iETA1];
2102  par_sig1[2] = (*(Asig52+2))[iETA1];
2103  par_sig1[3] = (*(Asig52+3))[iETA1];
2104 
2105  break;
2106  case 14 : //2-b1 for pt_method < 10 and b1-1 for pt_method > 10 & fr = 0
2107  if(method < 10){
2108  if(iETA1 < 1)iETA1 = 1;
2109  if(iETA1 > 2)iETA1 = 2;
2110  }
2111  par1[0] = (*(Amean52+0))[iETA1];
2112  par1[1] = (*(Amean52+1))[iETA1];
2113  par1[2] = (*(Amean52+2))[iETA1];
2114  par1[3] = (*(Amean52+3))[iETA1];
2115  par_sig1[0] = (*(Asig52+0))[iETA1];
2116  par_sig1[1] = (*(Asig52+1))[iETA1];
2117  par_sig1[2] = (*(Asig52+2))[iETA1];
2118  par_sig1[3] = (*(Asig52+3))[iETA1];
2119 
2120  if(method > 10){
2121  if(iETA1 > 2)iETA1 = 2;
2122  par1[0] = (*(Amean51+0))[iETA1];
2123  par1[1] = (*(Amean51+1))[iETA1];
2124  par1[2] = (*(Amean51+2))[iETA1];
2125  par1[3] = (*(Amean51+3))[iETA1];
2126  par_sig1[0] = (*(Asig51+0))[iETA1];
2127  par_sig1[1] = (*(Asig51+1))[iETA1];
2128  par_sig1[2] = (*(Asig51+2))[iETA1];
2129  par_sig1[3] = (*(Asig51+3))[iETA1];
2130  }
2131  break;
2132  //default:
2133  //return 0.0;
2134  }
2135 
2136 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
2137  //if(fabs(dphi) >= 0.002)
2138  //if(fabs(dphi) >= 0.00)
2139  //if(fabs(dphi) >= 0.002 || (fabs(dphi) >= 0.01 && (type == 12 || type == 14)))
2140  //{
2141  double pt = 140;
2142  double dpt = 0.1;
2143  double step = 5.;
2144  while(pt > 2. ){
2145  double par_phi12[1] = {dphi};
2146  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2147  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2148  v[0] = pt;
2149  lpt1_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2150  v[0] = pt + dpt;
2151  lpt1_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2152  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2153  v[0] = pt - step;
2154  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2155  v[0] = pt - step + dpt;
2156  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2157  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2158  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2159  v[0] = pt - 0.5*step;
2160  double fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2161  v[0] = pt - 0.5*step + dpt;
2162  double fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2163  v[0] = pt - 0.5*step + 2*dpt;
2164  double fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2165 
2166  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2167  //if(lpt1*lpt2 <= 0 && lpt2nd < 0) std::cout << "lpt2nd < 0 dphi12 = " << dphi <<" PT = " << pt<< " eta =" << fabs(eta) << std::endl;
2168  //lpt2nd = 1.; // don't care about 2nd derivative
2169  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2170 /*
2171  if(pt == 140.){
2172  v[0] = 200;
2173  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2174  v[0] = 200. + 5.;
2175  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2176  lpt2 = (lpt2_2-lpt2_1)/5.;
2177 
2178  v[0] = 170.;
2179  fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2180  v[0] = 170.+5.;
2181  fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2182  v[0] = 170.+2*5.;
2183  fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2184  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2185  }
2186  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1 ){PTsolv = 137.5; break;}
2187 */
2188  if(pt > 25) {dpt = 0.1; step = 5.;}
2189  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2190  pt = pt - step;
2191  }// end while
2192 //*********** end solve equation for muon plus
2193 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
2194 // for one station method we know sing of muon: dphi > 0 for muon minus!!! => dphi = -dphi < 0
2195  dphi = - dphi;
2196  pt = 140;
2197  dpt = 0.1;
2198  step = 5.;
2199  while(pt > 2. ){
2200  double par_phi12[1] = {dphi};
2201  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2202  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2203  v[0] = pt;
2204  lpt1_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2205  v[0] = pt + dpt;
2206  lpt1_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2207  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2208  v[0] = pt - step;
2209  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2210  v[0] = pt - step + dpt;
2211  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2212  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2213  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2214  v[0] = pt - 0.5*step;
2215  double fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2216  v[0] = pt - 0.5*step + dpt;
2217  double fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2218  v[0] = pt - 0.5*step + 2*dpt;
2219  double fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2220 
2221  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2222 
2223  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2224 /*
2225  if(pt == 140.){
2226  v[0] = 200;
2227  lpt2_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2228  v[0] = 200. + 5.;
2229  lpt2_2 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2230 
2231  lpt2 = (lpt2_2-lpt2_1)/5.;
2232 
2233  v[0] = 170.;
2234  fx = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2235  v[0] = 170.+5.;
2236  fxh = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2237  v[0] = 170.+2*5.;
2238  fx2h = Likelihood2_2011(par_phi12, par1, par_sig1, v);
2239  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2240  }
2241  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0 && fabs(dphi) < 0.1){PTsolvMinus = 137.5; break;}
2242 */
2243  if(pt > 25) {dpt = 0.1; step = 5.;}
2244  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2245  pt = pt - step;
2246  }// end while
2247 // }// if(fabs(dphi) >= 0.002)
2248 // else
2249 // {PTsolv = 137.5;}
2250 
2251 //*********** end solve equation for muon minus
2252  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
2253  PTsolv = PTsolv*1.2;
2254  if(PTsolv > 137.5) PTsolv = 137.5;
2255  if(fabs(dphi) <= 0.002 && PTsolv < 120.)PTsolv = 140.;
2256  //if( fabs(dphi) <= 0.01 && (type == 11 || type == 12 || type == 14) && PTsolv < 120.)PTsolv = 140.;
2257  dphi = - dphi; //return to correct sing dphi
2258 
2259  } //if(fabs(eta_TracMy)
2260  } //end "for by iETA"
2261 
2262  float Pt = PTsolv;
2263 
2264  //float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
2265  //if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
2266  float Pt_min = 2;// 0 GeV
2267 
2268  return (Pt > Pt_min) ? Pt : Pt_min;
2269 }
2270 float CSCTFPtMethods::Pt3Stn2010(int type, float eta, float dphi1, float dphi2, int fr, int method) const
2271 {
2272 
2273  if(fabs(eta) >= 2.4)eta = 2.35;
2274  float Pt = 0.;
2275  double PTsolv = 1.; // for muon plus hypothesis
2276  double PTsolvMinus = 1.;//for muon minus hypothesis
2277  for(int iETA = 0; iETA < 15; iETA++){
2278  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
2279 
2280 // calculate curvers of mean and sigma
2281  // calculate phi12 mean
2282  double par1[4] = {0., 0., 0., 0.};
2283  //double phi12mean = fitf5(v, par1); //mu12
2284  double par_sig1[3] = {0., 0., 0.};
2285  // calculate phi23 mean
2286  double par2[4] = {0., 0., 0., 0.};
2287  // calculate phi23 sig
2288  double par_sig2[3] = {0., 0., 0.};
2289  // calculate correlation rho
2290  double par_rho[5] = {0., 0., 0., 0., 0.};
2291  int iETA1 = iETA;
2292  int iETA2 = iETA;
2293  switch (type) // type = mode here
2294  {
2295  case 2 : //1-2-3
2296  if(fr == 1){
2297  if(iETA1 < 3)iETA1 = 3;
2298  //if(iETA1 > 11)iETA1 = 11;
2299  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
2300  par1[0] = A_mu12Front[0][iETA1];
2301  par1[1] = A_mu12Front[1][iETA1];
2302  par1[2] = A_mu12Front[2][iETA1];
2303  par1[3] = A_mu12Front[3][iETA1];
2304  par_sig1[0] = A_sig12Front[0][iETA1];
2305  par_sig1[1] = A_sig12Front[1][iETA1];
2306  par_sig1[2] = A_sig12Front[2][iETA1];
2307  par_rho[0] = A_rho123FrontCSCTF[0][iETA1];
2308  par_rho[1] = A_rho123FrontCSCTF[1][iETA1];
2309  par_rho[2] = A_rho123FrontCSCTF[2][iETA1];
2310  par_rho[3] = A_rho123FrontCSCTF[3][iETA1];
2311  par_rho[4] = A_rho123FrontCSCTF[4][iETA1];
2312  }
2313  if(fr == 0){
2314  if(iETA1 < 1)iETA1 = 1;
2315  //if(iETA1 > 11)iETA1 = 11;
2316  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
2317  par1[0] = A_mu12Rare[0][iETA1];
2318  par1[1] = A_mu12Rare[1][iETA1];
2319  par1[2] = A_mu12Rare[2][iETA1];
2320  par1[3] = A_mu12Rare[3][iETA1];
2321  par_sig1[0] = A_sig12Rare[0][iETA1];
2322  par_sig1[1] = A_sig12Rare[1][iETA1];
2323  par_sig1[2] = A_sig12Rare[2][iETA1];
2324  par_rho[0] = A_rho123RareCSCTF[0][iETA1];
2325  par_rho[1] = A_rho123RareCSCTF[1][iETA1];
2326  par_rho[2] = A_rho123RareCSCTF[2][iETA1];
2327  par_rho[3] = A_rho123RareCSCTF[3][iETA1];
2328  par_rho[4] = A_rho123RareCSCTF[4][iETA1];
2329  }
2330  if(iETA2 < 2)iETA2 = 2;
2331  par2[0] = A_mu23[0][iETA2];
2332  par2[1] = A_mu23[1][iETA2];
2333  par2[2] = A_mu23[2][iETA2];
2334  par2[3] = A_mu23[3][iETA2];
2335  par_sig2[0] = A_sig23[0][iETA2];
2336  par_sig2[1] = A_sig23[1][iETA2];
2337  par_sig2[2] = A_sig23[2][iETA2];
2338 
2339  break;
2340  case 3 : //1-2-4
2341  if(fr == 1){
2342  if(iETA1 < 3)iETA1 = 3;
2343  //if(iETA1 > 11)iETA1 = 11;
2344  par1[0] = A_mu12Front[0][iETA1];
2345  par1[1] = A_mu12Front[1][iETA1];
2346  par1[2] = A_mu12Front[2][iETA1];
2347  par1[3] = A_mu12Front[3][iETA1];
2348  par_sig1[0] = A_sig12Front[0][iETA1];
2349  par_sig1[1] = A_sig12Front[1][iETA1];
2350  par_sig1[2] = A_sig12Front[2][iETA1];
2351  par_rho[0] = A_rho124FrontCSCTF[0][iETA1];
2352  par_rho[1] = A_rho124FrontCSCTF[1][iETA1];
2353  par_rho[2] = A_rho124FrontCSCTF[2][iETA1];
2354  par_rho[3] = A_rho124FrontCSCTF[3][iETA1];
2355  par_rho[4] = A_rho124FrontCSCTF[4][iETA1];
2356  }
2357  if(fr == 0){
2358  if(iETA1 < 1)iETA1 = 1;
2359  //if(iETA1 > 11)iETA1 = 11;
2360  par1[0] = A_mu12Rare[0][iETA1];
2361  par1[1] = A_mu12Rare[1][iETA1];
2362  par1[2] = A_mu12Rare[2][iETA1];
2363  par1[3] = A_mu12Rare[3][iETA1];
2364  par_sig1[0] = A_sig12Rare[0][iETA1];
2365  par_sig1[1] = A_sig12Rare[1][iETA1];
2366  par_sig1[2] = A_sig12Rare[2][iETA1];
2367  par_rho[0] = A_rho124RareCSCTF[0][iETA1];
2368  par_rho[1] = A_rho124RareCSCTF[1][iETA1];
2369  par_rho[2] = A_rho124RareCSCTF[2][iETA1];
2370  par_rho[3] = A_rho124RareCSCTF[3][iETA1];
2371  par_rho[4] = A_rho124RareCSCTF[4][iETA1];
2372  }
2373  if(iETA2 < 9)iETA2 = 9;
2374  par2[0] = A_mu24[0][iETA2];
2375  par2[1] = A_mu24[1][iETA2];
2376  par2[2] = A_mu24[2][iETA2];
2377  par2[3] = A_mu24[3][iETA2];
2378  par_sig2[0] = A_sig24[0][iETA2];
2379  par_sig2[1] = A_sig24[1][iETA2];
2380  par_sig2[2] = A_sig24[2][iETA2];
2381  break;
2382  case 4 : //1-3-4
2383  if(fr == 1){
2384  if(iETA1 < 3)iETA1 = 3;
2385  //if(iETA1 > 11)iETA1 = 11;
2386  par1[0] = A_mu13Front[0][iETA1];
2387  par1[1] = A_mu13Front[1][iETA1];
2388  par1[2] = A_mu13Front[2][iETA1];
2389  par1[3] = A_mu13Front[3][iETA1];
2390  par_sig1[0] = A_sig13Front[0][iETA1];
2391  par_sig1[1] = A_sig13Front[1][iETA1];
2392  par_sig1[2] = A_sig13Front[2][iETA1];
2393  par_rho[0] = A_rho134FrontCSCTF[0][iETA1];
2394  par_rho[1] = A_rho134FrontCSCTF[1][iETA1];
2395  par_rho[2] = A_rho134FrontCSCTF[2][iETA1];
2396  par_rho[3] = A_rho134FrontCSCTF[3][iETA1];
2397  par_rho[4] = A_rho134FrontCSCTF[4][iETA1];
2398  }
2399  if(fr == 0){
2400  if(iETA1 < 2)iETA1 = 2;
2401  //if(iETA1 > 11)iETA1 = 11;
2402  par1[0] = A_mu13Rare[0][iETA1];
2403  par1[1] = A_mu13Rare[1][iETA1];
2404  par1[2] = A_mu13Rare[2][iETA1];
2405  par1[3] = A_mu13Rare[3][iETA1];
2406  par_sig1[0] = A_sig13Rare[0][iETA1];
2407  par_sig1[1] = A_sig13Rare[1][iETA1];
2408  par_sig1[2] = A_sig13Rare[2][iETA1];
2409  par_rho[0] = A_rho134RareCSCTF[0][iETA1];
2410  par_rho[1] = A_rho134RareCSCTF[1][iETA1];
2411  par_rho[2] = A_rho134RareCSCTF[2][iETA1];
2412  par_rho[3] = A_rho134RareCSCTF[3][iETA1];
2413  par_rho[4] = A_rho134RareCSCTF[4][iETA1];
2414  }
2415  if(iETA2 < 9)iETA2 = 9;
2416  par2[0] = A_mu34[0][iETA2];
2417  par2[1] = A_mu34[1][iETA2];
2418  par2[2] = A_mu34[2][iETA2];
2419  par2[3] = A_mu34[3][iETA2];
2420  par_sig2[0] = A_sig34[0][iETA2];
2421  par_sig2[1] = A_sig34[1][iETA2];
2422  par_sig2[2] = A_sig34[2][iETA2];
2423  break;
2424  case 5 ://2-3-4
2425  if(iETA1 < 9)iETA1 = 9;
2426  par1[0] = A_mu23[0][iETA1];
2427  par1[1] = A_mu23[1][iETA1];
2428  par1[2] = A_mu23[2][iETA1];
2429  par1[3] = A_mu23[3][iETA1];
2430  par_sig1[0] = A_sig23[0][iETA1];
2431  par_sig1[1] = A_sig23[1][iETA1];
2432  par_sig1[2] = A_sig23[2][iETA1];
2433  par_rho[0] = A_rho234CSCTF[0][iETA1];
2434  par_rho[1] = A_rho234CSCTF[1][iETA1];
2435  par_rho[2] = A_rho234CSCTF[2][iETA1];
2436  par_rho[3] = A_rho234CSCTF[3][iETA1];
2437  par_rho[4] = A_rho234CSCTF[4][iETA1];
2438 
2439  par2[0] = A_mu34[0][iETA1];
2440  par2[1] = A_mu34[1][iETA1];
2441  par2[2] = A_mu34[2][iETA1];
2442  par2[3] = A_mu34[3][iETA1];
2443  par_sig2[0] = A_sig34[0][iETA1];
2444  par_sig2[1] = A_sig34[1][iETA1];
2445  par_sig2[2] = A_sig34[2][iETA1];
2446  break;
2447  case 11 : // b1-1-3
2448  if(iETA1 != 2)iETA1 = 2;
2449  par1[0] = A_mu51[0][iETA1];
2450  par1[1] = A_mu51[1][iETA1];
2451  par1[2] = A_mu51[2][iETA1];
2452  par1[3] = A_mu51[3][iETA1];
2453  par_sig1[0] = A_sig51[0][iETA1];
2454  par_sig1[1] = A_sig51[1][iETA1];
2455  par_sig1[2] = A_sig51[2][iETA1];
2456  par_rho[0] = A_rho513[0][iETA1];
2457  par_rho[1] = A_rho513[0][iETA1];
2458  par_rho[2] = A_rho513[0][iETA1];
2459  par_rho[3] = A_rho513[0][iETA1];
2460  par_rho[4] = A_rho513[0][iETA1];
2461 
2462  par2[0] = A_mu13Rare[0][iETA1];
2463  par2[1] = A_mu13Rare[1][iETA1];
2464  par2[2] = A_mu13Rare[2][iETA1];
2465  par2[3] = A_mu13Rare[3][iETA1];
2466  par_sig2[0] = A_sig13Rare[0][iETA1];
2467  par_sig2[1] = A_sig13Rare[1][iETA1];
2468  par_sig2[2] = A_sig13Rare[2][iETA1];
2469  break;
2470  case 12 : // b1-2-3
2471  if(iETA1 != 2)iETA1 = 2;
2472  par1[0] = A_mu52[0][iETA1];
2473  par1[1] = A_mu52[1][iETA1];
2474  par1[2] = A_mu52[2][iETA1];
2475  par1[3] = A_mu52[3][iETA1];
2476  par_sig1[0] = A_sig52[0][iETA1];
2477  par_sig1[1] = A_sig52[1][iETA1];
2478  par_sig1[2] = A_sig52[2][iETA1];
2479  par_rho[0] = A_rho523[0][iETA1];
2480  par_rho[1] = A_rho523[0][iETA1];
2481  par_rho[2] = A_rho523[0][iETA1];
2482  par_rho[3] = A_rho523[0][iETA1];
2483  par_rho[4] = A_rho523[0][iETA1];
2484 
2485  par2[0] = A_mu23[0][iETA1];
2486  par2[1] = A_mu23[1][iETA1];
2487  par2[2] = A_mu23[2][iETA1];
2488  par2[3] = A_mu23[3][iETA1];
2489  par_sig2[0] = A_sig23[0][iETA1];
2490  par_sig2[1] = A_sig23[1][iETA1];
2491  par_sig2[2] = A_sig23[2][iETA1];
2492  break;
2493  case 14 : // b1-1-2-(3)
2494  if(iETA1 < 1)iETA1 = 1;
2495  if(iETA1 > 2)iETA1 = 2;
2496  par1[0] = A_mu51[0][iETA1];
2497  par1[1] = A_mu51[1][iETA1];
2498  par1[2] = A_mu51[2][iETA1];
2499  par1[3] = A_mu51[3][iETA1];
2500  par_sig1[0] = A_sig51[0][iETA1];
2501  par_sig1[1] = A_sig51[1][iETA1];
2502  par_sig1[2] = A_sig51[2][iETA1];
2503  par_rho[0] = A_rho512[0][iETA1];
2504  par_rho[1] = A_rho512[0][iETA1];
2505  par_rho[2] = A_rho512[0][iETA1];
2506  par_rho[3] = A_rho512[0][iETA1];
2507  par_rho[4] = A_rho512[0][iETA1];
2508 
2509  par2[0] = A_mu12Rare[0][iETA1];
2510  par2[1] = A_mu12Rare[1][iETA1];
2511  par2[2] = A_mu12Rare[2][iETA1];
2512  par2[3] = A_mu12Rare[3][iETA1];
2513  par_sig2[0] = A_sig12Rare[0][iETA1];
2514  par_sig2[1] = A_sig12Rare[1][iETA1];
2515  par_sig2[2] = A_sig12Rare[2][iETA1];
2516  break;
2517  //default:
2518  //return 0.0;
2519  }
2520 
2521  // Switch to 2-Station measurement if dphi is too small
2522  // box cut around Pt of 10 GeV
2523  if ( fabs(static_cast<double>(dphi2))<0.004 )
2524  {
2525  if(type == 2 || type == 3) type = 6; // 1-2-3(or 4) -> 1-2
2526  if(type == 4) type = 7; // 1-3-4 -> 1-3
2527  if(type == 5) type = 8; // 2-3-4 -> 2-3
2528  if(type == 11) type = 14; // b1-1-3 -> b1-1 for pt_method > 10
2529  Pt = Pt2Stn2010(type, eta, dphi1, fr, method);
2530  }
2531  else
2532  {
2533 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
2534  double pt = 140;
2535  double dpt = 0.1;
2536  double step = 5.;
2537  while(pt > 2. ){
2538  double par_phi12[1] = {dphi1};
2539  double par_phi23[1] = {dphi2};
2540  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2541  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2542  v[0] = pt;
2543  lpt1_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2544  v[0] = pt + dpt;
2545  lpt1_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2546  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2547  v[0] = pt - step;
2548  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2549  v[0] = pt - step + dpt;
2550  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2551  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2552  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2553  v[0] = pt - 0.5*step;
2554  double fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2555  v[0] = pt - 0.5*step + dpt;
2556  double fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2557  v[0] = pt - 0.5*step + 2*dpt;
2558  double fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2559 
2560  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2561 
2562  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2563 /*
2564  if(pt == 140.){
2565  v[0] = 200.;
2566  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2567  v[0] = 200.+ 5.;
2568  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2569  lpt2 = (lpt2_2-lpt2_1)/5.;
2570  v[0] = 170.;
2571  fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2572  v[0] = 170.+5.;
2573  fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2574  v[0] = 170.+2*5.;
2575  fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2576  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2577  }
2578 
2579  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = 137.5; break;}
2580 */
2581  //double rho = fitfrho(v, par_rho); //rho
2582  if(pt > 25) {dpt = 0.1; step = 5.;}
2583  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2584  pt = pt - step;
2585  }// end while
2586 //*********** end solve equation for muon plus
2587 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
2588 // for one station method we know sing of muon: dphi1 > 0 for muon minus!!! => dphi1 = -dphi1 < 0
2589  dphi1 = - dphi1;
2590  dphi2 = - dphi2;
2591  pt = 140;
2592  dpt = 0.1;
2593  step = 5.;
2594  while(pt > 2. ){
2595  double par_phi12[1] = {dphi1};
2596  double par_phi23[1] = {dphi2};
2597  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
2598  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
2599  v[0] = pt;
2600  lpt1_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2601  v[0] = pt + dpt;
2602  lpt1_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2603  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
2604  v[0] = pt - step;
2605  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2606  v[0] = pt - step + dpt;
2607  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2608  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
2609  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
2610  v[0] = pt - 0.5*step;
2611  double fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2612  v[0] = pt - 0.5*step + dpt;
2613  double fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2614  v[0] = pt - 0.5*step + 2*dpt;
2615  double fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2616 
2617  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
2618 
2619  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
2620  //if(iETA == 3 && v[0] < 4 && v[0] > 3) cout << "m12 = " << fitf5(v, par1) << " sig12 = " << fitf2(v, par_sig1) << endl;
2622 /*
2623  if(pt == 140.){
2624  v[0] = 200.;
2625  lpt2_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2626  v[0] = 200.+ 5.;
2627  lpt2_2 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2628  lpt2 = (lpt2_2-lpt2_1)/5.;
2629  v[0] = 170.;
2630  fx = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2631  v[0] = 170.+5.;
2632  fxh = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2633  v[0] = 170.+2*5.;
2634  fx2h = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
2635  lpt2nd = -(fx2h + fx - 2*fxh)/5./5.;
2636  }
2637  if(pt == 140. && lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = 137.5; break;}
2638 */
2639  //double rho = fitfrho(v, par_rho); //rho
2640  if(pt > 25) {dpt = 0.1; step = 5.;}
2641  if(pt <= 25) {dpt = 0.01; step = 0.5;}
2642  pt = pt - step;
2643  }// end while
2644 //*********** end solve equation for muon minus
2645  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
2646  PTsolv = PTsolv*1.2; // correction to have 90% efficiency for trigger cuts
2647  if(PTsolv > 137.5) PTsolv = 137.5;
2648  //if(fabs(dphi1) < 0.002 && fabs(dphi2) <= CutPhi23){PTsolv = 140;}
2649  dphi1 = - dphi1; //return to correct sing dphi
2650  dphi2 = - dphi2; //return to correct sing dphi
2651  Pt = PTsolv;
2652  } // end 2 or 3 station method
2653  }}
2654  // if ( fabs(static_cast<double>(dphi2))>0.004 ) std::cout << "Pt = " << Pt << " Mode = " << type << " dphi1 = " << dphi1 << " dphi2 = " << dphi2 << std::endl;
2655 
2656  float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
2657  if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
2658 
2659  return (Pt > Pt_min) ? Pt : Pt_min;
2660 }
2661 float CSCTFPtMethods::Pt3Stn2011(int type, float eta, float dphi1, float dphi2, int fr, int method) const
2662 {
2663 
2664  //if(fabs(eta) >= 2.4)eta = 2.35;
2665  if(fabs(eta) >= 2.2) eta = 2.15;
2666  float Pt = 0.;
2667  double PTsolv = 1.; // for muon plus hypothesis
2668  double PTsolvMinus = 1.;//for muon minus hypothesis
2669  for(int iETA = 0; iETA < 15; iETA++){
2670  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
2671 
2672 // calculate curvers of mean and sigma
2673  // calculate phi12 mean
2674  double par1[4] = {0., 0., 0., 0.};
2675  //double phi12mean = fitf5(v, par1); //mu12
2676  double par_sig1[4] = {0., 0., 0., 0};
2677  // calculate phi23 mean
2678  double par2[4] = {0., 0., 0., 0.};
2679  // calculate phi23 sig
2680  double par_sig2[4] = {0., 0., 0., 0.};
2681  // calculate correlation rho
2682  double par_rho[5] = {0., 0., 0., 0., 0.};
2683  int iETA1 = iETA;
2684  int iETA2 = iETA;
2685 
2686 // defind which parameters will be use
2687  double (*Amean12F)[15] = AB_mu12F;
2688  double (*Asig12F)[15] = AB_sig12F;
2689  double (*Amean12R)[15] = AB_mu12R;
2690  double (*Asig12R)[15] = AB_sig12R;
2691 
2692  double (*Amean13F)[15] = AB_mu13F;
2693  double (*Asig13F)[15] = AB_sig13F;
2694  double (*Amean13R)[15] = AB_mu13R;
2695  double (*Asig13R)[15] = AB_sig13R;
2696 
2697  //double (*Amean14F)[15] = AB_mu14F;
2698  //double (*Asig14F)[15] = AB_sig14F;
2699  //double (*Amean14R)[15] = AB_mu14R;
2700  //double (*Asig14R)[15] = AB_sig14R;
2701 
2702  double (*Amean23)[15] = AB_mu23;
2703  double (*Asig23)[15] = AB_sig23;
2704  double (*Amean24)[15] = AB_mu24;
2705  double (*Asig24)[15] = AB_sig24;
2706  double (*Amean34)[15] = AB_mu34;
2707  double (*Asig34)[15] = AB_sig34;
2708 
2709  double (*Amean5)[15] = AB_mu5;
2710  double (*Asig5)[15] = AB_sig5;
2711  double (*Amean51)[15] = AB_mu51;
2712  double (*Asig51)[15] = AB_sig51;
2713  double (*Amean52)[15] = AB_mu52;
2714  double (*Asig52)[15] = AB_sig52;
2715  double (*Amean53)[15] = AB_mu53;
2716  double (*Asig53)[15] = AB_sig53;
2717 
2718  double (*Arho123F)[15] = AB_rho123F;
2719  double (*Arho123R)[15] = AB_rho123R;
2720  double (*Arho124F)[15] = AB_rho124F;
2721  double (*Arho124R)[15] = AB_rho124R;
2722  double (*Arho134F)[15] = AB_rho134F;
2723  double (*Arho134R)[15] = AB_rho134R;
2724  double (*Arho234)[15] = AB_rho234;
2725 
2726  double (*Arho51B)[15] = AB_rho51B;
2727  double (*Arho52B)[15] = AB_rho52B;
2728  double (*Arho53B)[15] = AB_rho53B;
2729  double (*Arho512)[15] = AB_rho512;
2730  double (*Arho513)[15] = AB_rho513;
2731  double (*Arho523)[15] = AB_rho523;
2732 
2733  //cout << "iETA = " << iETA
2734  // << " AB_mu51[0][iETA] = " << AB_mu51[0][iETA] << " pointer = " << (*(Amean51+0))[iETA]
2735  // << " AB_mu51[3][iETA] = " << AB_mu51[3][iETA] << " pointer = " << (*(Amean51+3))[iETA]
2736  // << endl;
2737 
2738  switch (type) // type = mode here
2739  {
2740  case 2 : //1-2-3
2741  if(iETA < 2)iETA2 = 2;
2742  if(fr == 1){
2743  if(iETA < 3)iETA1 = 3;
2744  par1[0] = (*(Amean12F+0))[iETA1];
2745  par1[1] = (*(Amean12F+1))[iETA1];
2746  par1[2] = (*(Amean12F+2))[iETA1];
2747  par1[3] = (*(Amean12F+3))[iETA1];
2748  par_sig1[0] = (*(Asig12F+0))[iETA1];
2749  par_sig1[1] = (*(Asig12F+1))[iETA1];
2750  par_sig1[2] = (*(Asig12F+2))[iETA1];
2751  par_sig1[3] = (*(Asig12F+3))[iETA1];
2752  par_rho[0] = (*(Arho123F+0))[iETA2];
2753  par_rho[1] = (*(Arho123F+1))[iETA2];
2754  par_rho[2] = (*(Arho123F+2))[iETA2];
2755  par_rho[3] = (*(Arho123F+3))[iETA2];
2756  par_rho[4] = (*(Arho123F+4))[iETA2];
2757 
2758  }
2759  if(fr == 0){
2760  if(iETA < 1)iETA1 = 1;
2761  par1[0] = (*(Amean12R+0))[iETA1];
2762  par1[1] = (*(Amean12R+1))[iETA1];
2763  par1[2] = (*(Amean12R+2))[iETA1];
2764  par1[3] = (*(Amean12R+3))[iETA1];
2765  par_sig1[0] = (*(Asig12R+0))[iETA1];
2766  par_sig1[1] = (*(Asig12R+1))[iETA1];
2767  par_sig1[2] = (*(Asig12R+2))[iETA1];
2768  par_sig1[3] = (*(Asig12R+3))[iETA1];
2769  par_rho[0] = (*(Arho123R+0))[iETA2];
2770  par_rho[1] = (*(Arho123R+1))[iETA2];
2771  par_rho[2] = (*(Arho123R+2))[iETA2];
2772  par_rho[3] = (*(Arho123R+3))[iETA2];
2773  par_rho[4] = (*(Arho123R+4))[iETA2];
2774  }
2775  par2[0] = (*(Amean23+0))[iETA2];
2776  par2[1] = (*(Amean23+1))[iETA2];
2777  par2[2] = (*(Amean23+2))[iETA2];
2778  par2[3] = (*(Amean23+3))[iETA2];
2779  par_sig2[0] = (*(Asig23+0))[iETA2];
2780  par_sig2[1] = (*(Asig23+1))[iETA2];
2781  par_sig2[2] = (*(Asig23+2))[iETA2];
2782  par_sig2[3] = (*(Asig23+3))[iETA2];
2783 
2784  break;
2785  case 3 : //1-2-4
2786  if(iETA < 3)iETA2 = 3;
2787  if(fr == 1){
2788  if(iETA < 3)iETA1 = 3;
2789  par1[0] = (*(Amean12F+0))[iETA1];
2790  par1[1] = (*(Amean12F+1))[iETA1];
2791  par1[2] = (*(Amean12F+2))[iETA1];
2792  par1[3] = (*(Amean12F+3))[iETA1];
2793  par_sig1[0] = (*(Asig12F+0))[iETA1];
2794  par_sig1[1] = (*(Asig12F+1))[iETA1];
2795  par_sig1[2] = (*(Asig12F+2))[iETA1];
2796  par_sig1[3] = (*(Asig12F+3))[iETA1];
2797  par_rho[0] = (*(Arho124F+0))[iETA2];
2798  par_rho[1] = (*(Arho124F+1))[iETA2];
2799  par_rho[2] = (*(Arho124F+2))[iETA2];
2800  par_rho[3] = (*(Arho124F+3))[iETA2];
2801  par_rho[4] = (*(Arho124F+4))[iETA2];
2802 
2803  }
2804  if(fr == 0){
2805  if(iETA < 1)iETA1 = 1;
2806  par1[0] = (*(Amean12R+0))[iETA1];
2807  par1[1] = (*(Amean12R+1))[iETA1];
2808  par1[2] = (*(Amean12R+2))[iETA1];
2809  par1[3] = (*(Amean12R+3))[iETA1];
2810  par_sig1[0] = (*(Asig12R+0))[iETA1];
2811  par_sig1[1] = (*(Asig12R+1))[iETA1];
2812  par_sig1[2] = (*(Asig12R+2))[iETA1];
2813  par_sig1[3] = (*(Asig12R+3))[iETA1];
2814  par_rho[0] = (*(Arho124R+0))[iETA2];
2815  par_rho[1] = (*(Arho124R+1))[iETA2];
2816  par_rho[2] = (*(Arho124R+2))[iETA2];
2817  par_rho[3] = (*(Arho124R+3))[iETA2];
2818  par_rho[4] = (*(Arho124R+4))[iETA2];
2819  }
2820  par2[0] = (*(Amean24+0))[iETA2];
2821  par2[1] = (*(Amean24+1))[iETA2];
2822  par2[2] = (*(Amean24+2))[iETA2];
2823  par2[3] = (*(Amean24+3))[iETA2];
2824  par_sig2[0] = (*(Asig24+0))[iETA2];
2825  par_sig2[1] = (*(Asig24+1))[iETA2];
2826  par_sig2[2] = (*(Asig24+2))[iETA2];
2827  par_sig2[3] = (*(Asig24+3))[iETA2];
2828  break;
2829  case 4 : //1-3-4
2830  if(iETA < 3)iETA2 = 3;
2831  if(fr == 1){
2832  if(iETA < 3)iETA1 = 3;
2833  par1[0] = (*(Amean13F+0))[iETA1];
2834  par1[1] = (*(Amean13F+1))[iETA1];
2835  par1[2] = (*(Amean13F+2))[iETA1];
2836  par1[3] = (*(Amean13F+3))[iETA1];
2837  par_sig1[0] = (*(Asig13F+0))[iETA1];
2838  par_sig1[1] = (*(Asig13F+1))[iETA1];
2839  par_sig1[2] = (*(Asig13F+2))[iETA1];
2840  par_sig1[3] = (*(Asig13F+3))[iETA1];
2841  par_rho[0] = (*(Arho134F+0))[iETA2];
2842  par_rho[1] = (*(Arho134F+1))[iETA2];
2843  par_rho[2] = (*(Arho134F+2))[iETA2];
2844  par_rho[3] = (*(Arho134F+3))[iETA2];
2845  par_rho[4] = (*(Arho134F+4))[iETA2];
2846 
2847  }
2848  if(fr == 0){
2849  if(iETA < 3)iETA1 = 3;
2850  par1[0] = (*(Amean13R+0))[iETA1];
2851  par1[1] = (*(Amean13R+1))[iETA1];
2852  par1[2] = (*(Amean13R+2))[iETA1];
2853  par1[3] = (*(Amean13R+3))[iETA1];
2854  par_sig1[0] = (*(Asig13R+0))[iETA1];
2855  par_sig1[1] = (*(Asig13R+1))[iETA1];
2856  par_sig1[2] = (*(Asig13R+2))[iETA1];
2857  par_sig1[3] = (*(Asig13R+3))[iETA1];
2858  par_rho[0] = (*(Arho134R+0))[iETA2];
2859  par_rho[1] = (*(Arho134R+1))[iETA2];
2860  par_rho[2] = (*(Arho134R+2))[iETA2];
2861  par_rho[3] = (*(Arho134R+3))[iETA2];
2862  par_rho[4] = (*(Arho134R+4))[iETA2];
2863  }
2864  par2[0] = (*(Amean34+0))[iETA2];
2865  par2[1] = (*(Amean34+1))[iETA2];
2866  par2[2] = (*(Amean34+2))[iETA2];
2867  par2[3] = (*(Amean34+3))[iETA2];
2868  par_sig2[0] = (*(Asig34+0))[iETA2];
2869  par_sig2[1] = (*(Asig34+1))[iETA2];
2870  par_sig2[2] = (*(Asig34+2))[iETA2];
2871  par_sig2[3] = (*(Asig34+3))[iETA2];
2872  break;
2873  case 5 ://2-3-4
2874  if(iETA < 2)iETA1 = 2;
2875  if(iETA < 3)iETA2 = 3;
2876  par1[0] = (*(Amean23+0))[iETA1];
2877  par1[1] = (*(Amean23+1))[iETA1];
2878  par1[2] = (*(Amean23+2))[iETA1];
2879  par1[3] = (*(Amean23+3))[iETA1];
2880  par_sig1[0] = (*(Asig23+0))[iETA1];
2881  par_sig1[1] = (*(Asig23+1))[iETA1];
2882  par_sig1[2] = (*(Asig23+2))[iETA1];
2883  par_sig1[3] = (*(Asig23+3))[iETA1];
2884  par_rho[0] = (*(Arho234+0))[iETA2];
2885  par_rho[1] = (*(Arho234+1))[iETA2];
2886  par_rho[2] = (*(Arho234+2))[iETA2];
2887  par_rho[3] = (*(Arho234+3))[iETA2];
2888  par_rho[4] = (*(Arho234+4))[iETA2];
2889 
2890  par2[0] = (*(Amean34+0))[iETA2];
2891  par2[1] = (*(Amean34+1))[iETA2];
2892  par2[2] = (*(Amean34+2))[iETA2];
2893  par2[3] = (*(Amean34+3))[iETA2];
2894  par_sig2[0] = (*(Asig34+0))[iETA2];
2895  par_sig2[1] = (*(Asig34+1))[iETA2];
2896  par_sig2[2] = (*(Asig34+2))[iETA2];
2897  par_sig2[3] = (*(Asig34+3))[iETA2];
2898  break;
2899  case 11 : // singles for method < 10, for method > 10: fr = 1 -> b1-1-3, fr = 0 -> b1-3-phiBend
2900  if(iETA != 2)iETA1 = 2;
2901  par1[0] = (*(Amean53+0))[iETA1];
2902  par1[1] = (*(Amean53+1))[iETA1];
2903  par1[2] = (*(Amean53+2))[iETA1];
2904  par1[3] = (*(Amean53+3))[iETA1];
2905  par_sig1[0] = (*(Asig53+0))[iETA1];
2906  par_sig1[1] = (*(Asig53+1))[iETA1];
2907  par_sig1[2] = (*(Asig53+2))[iETA1];
2908  par_sig1[3] = (*(Asig53+3))[iETA1];
2909  par_rho[0] = (*(Arho53B+0))[iETA1];
2910  par_rho[1] = (*(Arho53B+1))[iETA1];
2911  par_rho[2] = (*(Arho53B+2))[iETA1];
2912  par_rho[3] = (*(Arho53B+3))[iETA1];
2913  par_rho[4] = (*(Arho53B+4))[iETA1];
2914 
2915  par2[0] = (*(Amean5+0))[iETA1];
2916  par2[1] = (*(Amean5+1))[iETA1];
2917  par2[2] = (*(Amean5+2))[iETA1];
2918  par2[3] = (*(Amean5+3))[iETA1];
2919  par_sig2[0] = (*(Asig5+0))[iETA1];
2920  par_sig2[1] = (*(Asig5+1))[iETA1];
2921  par_sig2[2] = (*(Asig5+2))[iETA1];
2922  par_sig2[3] = (*(Asig5+3))[iETA1];
2923 
2924  if(fr == 1){
2925  par1[0] = (*(Amean51+0))[iETA1];
2926  par1[1] = (*(Amean51+1))[iETA1];
2927  par1[2] = (*(Amean51+2))[iETA1];
2928  par1[3] = (*(Amean51+3))[iETA1];
2929  par_sig1[0] = (*(Asig51+0))[iETA1];
2930  par_sig1[1] = (*(Asig51+1))[iETA1];
2931  par_sig1[2] = (*(Asig51+2))[iETA1];
2932  par_sig1[3] = (*(Asig51+3))[iETA1];
2933  par_rho[0] = (*(Arho513+0))[iETA1];
2934  par_rho[1] = (*(Arho513+1))[iETA1];
2935  par_rho[2] = (*(Arho513+2))[iETA1];
2936  par_rho[3] = (*(Arho513+3))[iETA1];
2937  par_rho[4] = (*(Arho513+4))[iETA1];
2938 
2939  par2[0] = (*(Amean13R+0))[iETA1];
2940  par2[1] = (*(Amean13R+1))[iETA1];
2941  par2[2] = (*(Amean13R+2))[iETA1];
2942  par2[3] = (*(Amean13R+3))[iETA1];
2943  par_sig2[0] = (*(Asig13R+0))[iETA1];
2944  par_sig2[1] = (*(Asig13R+1))[iETA1];
2945  par_sig2[2] = (*(Asig13R+2))[iETA1];
2946  par_sig2[3] = (*(Asig13R+3))[iETA1];
2947  }
2948  break;
2949  case 12 : // b1-1-2 for method < 10; for method > 10: fr = 1 -> b1-2-3, fr = 0 -> b1-2-phiBend
2950  if(iETA < 1)iETA1 = 1;
2951  if(iETA > 2)iETA1 = 2;
2952  par1[0] = (*(Amean52+0))[iETA1];
2953  par1[1] = (*(Amean52+1))[iETA1];
2954  par1[2] = (*(Amean52+2))[iETA1];
2955  par1[3] = (*(Amean52+3))[iETA1];
2956  par_sig1[0] = (*(Asig52+0))[iETA1];
2957  par_sig1[1] = (*(Asig52+1))[iETA1];
2958  par_sig1[2] = (*(Asig52+2))[iETA1];
2959  par_sig1[3] = (*(Asig52+3))[iETA1];
2960  par_rho[0] = (*(Arho52B+0))[iETA1];
2961  par_rho[1] = (*(Arho52B+1))[iETA1];
2962  par_rho[2] = (*(Arho52B+2))[iETA1];
2963  par_rho[3] = (*(Arho52B+3))[iETA1];
2964  par_rho[4] = (*(Arho52B+4))[iETA1];
2965 
2966  par2[0] = (*(Amean5+0))[iETA1];
2967  par2[1] = (*(Amean5+1))[iETA1];
2968  par2[2] = (*(Amean5+2))[iETA1];
2969  par2[3] = (*(Amean5+3))[iETA1];
2970  par_sig2[0] = (*(Asig5+0))[iETA1];
2971  par_sig2[1] = (*(Asig5+1))[iETA1];
2972  par_sig2[2] = (*(Asig5+2))[iETA1];
2973  par_sig2[3] = (*(Asig5+3))[iETA1];
2974 
2975  if(fr == 1){
2976  if(iETA != 2)iETA1 = 2;
2977  par1[0] = (*(Amean52+0))[iETA1];
2978  par1[1] = (*(Amean52+1))[iETA1];
2979  par1[2] = (*(Amean52+2))[iETA1];
2980  par1[3] = (*(Amean52+3))[iETA1];
2981  par_sig1[0] = (*(Asig52+0))[iETA1];
2982  par_sig1[1] = (*(Asig52+1))[iETA1];
2983  par_sig1[2] = (*(Asig52+2))[iETA1];
2984  par_sig1[3] = (*(Asig52+3))[iETA1];
2985  par_rho[0] = (*(Arho523+0))[iETA1];
2986  par_rho[1] = (*(Arho523+1))[iETA1];
2987  par_rho[2] = (*(Arho523+2))[iETA1];
2988  par_rho[3] = (*(Arho523+3))[iETA1];
2989  par_rho[4] = (*(Arho523+4))[iETA1];
2990 
2991  par2[0] = (*(Amean23+0))[iETA1];
2992  par2[1] = (*(Amean23+1))[iETA1];
2993  par2[2] = (*(Amean23+2))[iETA1];
2994  par2[3] = (*(Amean23+3))[iETA1];
2995  par_sig2[0] = (*(Asig23+0))[iETA1];
2996  par_sig2[1] = (*(Asig23+1))[iETA1];
2997  par_sig2[2] = (*(Asig23+2))[iETA1];
2998  par_sig2[3] = (*(Asig23+3))[iETA1];
2999  }
3000  break;
3001  case 14 : // b1-2 for method < 10; for method > 10: fr = 1 -> b1-1-2-(3), fr = 0 -> b1-1-phiBend
3002  if(iETA > 2)iETA1 = 2;
3003  par1[0] = (*(Amean51+0))[iETA1];
3004  par1[1] = (*(Amean51+1))[iETA1];
3005  par1[2] = (*(Amean51+2))[iETA1];
3006  par1[3] = (*(Amean51+3))[iETA1];
3007  par_sig1[0] = (*(Asig51+0))[iETA1];
3008  par_sig1[1] = (*(Asig51+1))[iETA1];
3009  par_sig1[2] = (*(Asig51+2))[iETA1];
3010  par_sig1[3] = (*(Asig51+3))[iETA1];
3011  par_rho[0] = (*(Arho51B+0))[iETA1];
3012  par_rho[1] = (*(Arho51B+1))[iETA1];
3013  par_rho[2] = (*(Arho51B+2))[iETA1];
3014  par_rho[3] = (*(Arho51B+3))[iETA1];
3015  par_rho[4] = (*(Arho51B+4))[iETA1];
3016 
3017  par2[0] = (*(Amean5+0))[iETA1];
3018  par2[1] = (*(Amean5+1))[iETA1];
3019  par2[2] = (*(Amean5+2))[iETA1];
3020  par2[3] = (*(Amean5+3))[iETA1];
3021  par_sig2[0] = (*(Asig5+0))[iETA1];
3022  par_sig2[1] = (*(Asig5+1))[iETA1];
3023  par_sig2[2] = (*(Asig5+2))[iETA1];
3024  par_sig2[3] = (*(Asig5+3))[iETA1];
3025 
3026  if(fr == 1){
3027  if(iETA < 1)iETA1 = 1;
3028  if(iETA > 2)iETA1 = 2;
3029  par1[0] = (*(Amean51+0))[iETA1];
3030  par1[1] = (*(Amean51+1))[iETA1];
3031  par1[2] = (*(Amean51+2))[iETA1];
3032  par1[3] = (*(Amean51+3))[iETA1];
3033  par_sig1[0] = (*(Asig51+0))[iETA1];
3034  par_sig1[1] = (*(Asig51+1))[iETA1];
3035  par_sig1[2] = (*(Asig51+2))[iETA1];
3036  par_sig1[3] = (*(Asig51+3))[iETA1];
3037  par_rho[0] = (*(Arho512+0))[iETA1];
3038  par_rho[1] = (*(Arho512+1))[iETA1];
3039  par_rho[2] = (*(Arho512+2))[iETA1];
3040  par_rho[3] = (*(Arho512+3))[iETA1];
3041  par_rho[4] = (*(Arho512+4))[iETA1];
3042 
3043  par2[0] = (*(Amean12R+0))[iETA1];
3044  par2[1] = (*(Amean12R+1))[iETA1];
3045  par2[2] = (*(Amean12R+2))[iETA1];
3046  par2[3] = (*(Amean12R+3))[iETA1];
3047  par_sig2[0] = (*(Asig12R+0))[iETA1];
3048  par_sig2[1] = (*(Asig12R+1))[iETA1];
3049  par_sig2[2] = (*(Asig12R+2))[iETA1];
3050  par_sig2[3] = (*(Asig12R+3))[iETA1];
3051  }
3052  break;
3053  //default:
3054  //return 0.0;
3055  }
3056 
3057  // Switch to 2-Station measurement if dphi is too small
3058  // box cut around Pt of 10 GeV
3059  if ( (fabs(static_cast<double>(dphi2))<0.004 && type != 12 && method < 25)||
3060  (fabs(static_cast<double>(dphi2))<0.004 && type != 12 && type != 14 && type != 11 && method >= 25) )
3061  {
3062  //if(type == 12 || type == 14 || type == 11) std::cout << "mode = " << type << " dphi23 = " << dphi2 << " method = " << method << std::endl; //test
3063  if(type == 2 || type == 3) type = 6; // 1-2-3(or 4) -> 1-2
3064  if(type == 4) type = 7; // 1-3-4 -> 1-3
3065  if(type == 5) type = 8; // 2-3-4 -> 2-3
3066  if(type == 11) type = 14; // b1-1-3 -> b1-1 for pt_method > 10
3067  //if(type == 14) type = 11;
3068  //phiSign
3069  Pt = Pt2Stn2011(type, eta, dphi1, fr, method,int(2));//in 3 station track there is no information to which ME1/1 or ME1/2 track belong
3070  }
3071  else
3072  {
3073 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
3074  double pt = 140;
3075  double dpt = 0.1;
3076  double step = 5.;
3077  while(pt > 2. ){
3078  double par_phi12[1] = {dphi1};
3079  double par_phi23[1] = {dphi2};
3080  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
3081  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
3082  v[0] = pt;
3083  lpt1_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3084  v[0] = pt + dpt;
3085  lpt1_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3086  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
3087  v[0] = pt - step;
3088  lpt2_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3089  v[0] = pt - step + dpt;
3090  lpt2_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3091  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
3092  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
3093  v[0] = pt - 0.5*step;
3094  double fx = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3095  v[0] = pt - 0.5*step + dpt;
3096  double fxh = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3097  v[0] = pt - 0.5*step + 2*dpt;
3098  double fx2h = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3099 
3100  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
3101 
3102  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolv = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
3103  //double rho = fitfrho(v, par_rho); //rho
3104  if(pt > 25) {dpt = 0.1; step = 5.;}
3105  if(pt <= 25) {dpt = 0.01; step = 0.5;}
3106  pt = pt - step;
3107  }// end while
3108 //*********** end solve equation for muon plus
3109 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
3110 // for one station method we know sing of muon: dphi1 > 0 for muon minus!!! => dphi1 = -dphi1 < 0
3111  dphi1 = - dphi1;
3112  dphi2 = - dphi2;
3113  pt = 140;
3114  dpt = 0.1;
3115  step = 5.;
3116  while(pt > 2. ){
3117  double par_phi12[1] = {dphi1};
3118  double par_phi23[1] = {dphi2};
3119  double v[1], lpt1_1, lpt1_2, lpt2_1, lpt2_2;
3120  v[0] = 0; lpt1_1 = 1.; lpt1_2 = 2.; lpt2_1 = 1.; lpt2_2 = 2.;
3121  v[0] = pt;
3122  lpt1_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3123  v[0] = pt + dpt;
3124  lpt1_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3125  double lpt1 = (lpt1_2-lpt1_1)/dpt; // derivative at point pt1 = pt
3126  v[0] = pt - step;
3127  lpt2_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3128  v[0] = pt - step + dpt;
3129  lpt2_2 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3130  double lpt2 = (lpt2_2-lpt2_1)/dpt; // derivative at point pt1 = pt - step
3131  // calculate 2nd derivative at point pt-0.5*step, it should be > 0 if minimum
3132  v[0] = pt - 0.5*step;
3133  double fx = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3134  v[0] = pt - 0.5*step + dpt;
3135  double fxh = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3136  v[0] = pt - 0.5*step + 2*dpt;
3137  double fx2h = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3138 
3139  double lpt2nd = -(fx2h + fx - 2*fxh)/dpt/dpt;
3140 
3141  if(lpt1*lpt2 <= 0 && lpt2nd > 0){PTsolvMinus = pt - 0.5*step; break;}// lpt = 0 between lpt1 and lpt2 => maximum pt_solv is a solution of the likelihood
3142  //double rho = fitfrho(v, par_rho); //rho
3143  if(pt > 25) {dpt = 0.1; step = 5.;}
3144  if(pt <= 25) {dpt = 0.01; step = 0.5;}
3145  pt = pt - step;
3146  }// end while
3147 //*********** end solve equation for muon minus
3148  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
3149  PTsolv = PTsolv*1.2; // correction to have 90% efficiency for trigger cuts
3150  if(PTsolv > 137.5) PTsolv = 137.5;
3151  //if(fabs(dphi1) < 0.002 && fabs(dphi2) <= CutPhi23){PTsolv = 140;}
3152  dphi1 = - dphi1; //return to correct sing dphi
3153  dphi2 = - dphi2; //return to correct sing dphi
3154  Pt = PTsolv;
3155  } // end 2 or 3 station method
3156  }}
3157  // fix overlap region high pt:
3158  if(method >= 25 && (type == 12 || type == 14 || type == 11) && fabs(dphi1)<0.003 && fabs(dphi2) <2) Pt = 140.;
3159  // if ( fabs(static_cast<double>(dphi2))>0.004 ) std::cout << "Pt = " << Pt << " Mode = " << type << " dphi1 = " << dphi1 << " dphi2 = " << dphi2 << std::endl;
3160 
3161  //float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
3162  //if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
3163  float Pt_min = 2;// 2 GeV
3164 
3165  return (Pt > Pt_min) ? Pt : Pt_min;
3166 }
3167 
3168 
3169 
3170 float CSCTFPtMethods::Pt2Stn2012(int type, float eta, float dphi, int PtbyMLH, float &bestLH, int fr, int method) const
3171 {
3172  int useBestMLH = PtbyMLH;
3173  int useBOXcut = false;
3174  int useDTBOXcut = true;
3175  if(type == 5) useBOXcut = true; // useBOXcut for mode 5 which come from 3 station
3176  if(type == 5) type = 8; // 2-3-4 -> 2-3//
3177 
3178  if(fabs(eta) >= 2.4) eta = 2.35;
3179  double PTsolv = 1.; // for muon plus hypothesis
3180  double PTsolvMinus = 1.;//for muon minus hypothesis
3181  for(int iETA = 0; iETA < 15; iETA++){
3182  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
3183 
3184 // calculate curvers of mean and sigma
3185  // calculate phi12 mean
3186  double par1[4] = {0., 0., 0., 0.};
3187  //double phi12mean = fitf5(v, par1); //mu12
3188  double par_sig1[3] = {0., 0., 0.};
3189  int iETA1 = iETA;
3190  switch (type) // type = mode here
3191  {
3192  case 6 : //1-2
3193  if(fr == 1){
3194  if(iETA1 < 3)iETA1 = 3;
3195  //if(iETA1 > 11)iETA1 = 11;
3196  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
3197  par1[0] = A_mu12Front[0][iETA1];
3198  par1[1] = A_mu12Front[1][iETA1];
3199  par1[2] = A_mu12Front[2][iETA1];
3200  par1[3] = A_mu12Front[3][iETA1];
3201  par_sig1[0] = A_sig12Front[0][iETA1];
3202  par_sig1[1] = A_sig12Front[1][iETA1];
3203  par_sig1[2] = A_sig12Front[2][iETA1];
3204  }
3205  if(fr == 0){
3206  if(iETA1 < 1)iETA1 = 1;
3207  //if(iETA1 > 11)iETA1 = 11;
3208  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
3209  par1[0] = A_mu12Rare[0][iETA1];
3210  par1[1] = A_mu12Rare[1][iETA1];
3211  par1[2] = A_mu12Rare[2][iETA1];
3212  par1[3] = A_mu12Rare[3][iETA1];
3213  par_sig1[0] = A_sig12Rare[0][iETA1];
3214  par_sig1[1] = A_sig12Rare[1][iETA1];
3215  par_sig1[2] = A_sig12Rare[2][iETA1];
3216  }
3217  break;
3218  case 7 : //1-3
3219  if(fr == 1){
3220  if(iETA1 < 3)iETA1 = 3;
3221  //if(iETA1 > 11)iETA1 = 11;
3222  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
3223  par1[0] = A_mu13Front[0][iETA1];
3224  par1[1] = A_mu13Front[1][iETA1];
3225  par1[2] = A_mu13Front[2][iETA1];
3226  par1[3] = A_mu13Front[3][iETA1];
3227  par_sig1[0] = A_sig13Front[0][iETA1];
3228  par_sig1[1] = A_sig13Front[1][iETA1];
3229  par_sig1[2] = A_sig13Front[2][iETA1];
3230  }
3231  if(fr == 0){
3232  if(iETA1 < 2)iETA1 = 2;
3233  //if(iETA1 > 11)iETA1 = 11;
3234  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
3235  par1[0] = A_mu13Rare[0][iETA1];
3236  par1[1] = A_mu13Rare[1][iETA1];
3237  par1[2] = A_mu13Rare[2][iETA1];
3238  par1[3] = A_mu13Rare[3][iETA1];
3239  par_sig1[0] = A_sig13Rare[0][iETA1];
3240  par_sig1[1] = A_sig13Rare[1][iETA1];
3241  par_sig1[2] = A_sig13Rare[2][iETA1];
3242  }
3243  break;
3244  case 8 : //2-3
3245  if(iETA1 < 2)iETA1 = 2;
3246  par1[0] = A_mu23[0][iETA1];
3247  par1[1] = A_mu23[1][iETA1];
3248  par1[2] = A_mu23[2][iETA1];
3249  par1[3] = A_mu23[3][iETA1];
3250  par_sig1[0] = A_sig23[0][iETA1];
3251  par_sig1[1] = A_sig23[1][iETA1];
3252  par_sig1[2] = A_sig23[2][iETA1];
3253  break;
3254  case 9 : //2-4
3255  if(iETA1 < 9)iETA1 = 9;
3256  par1[0] = A_mu24[0][iETA1];
3257  par1[1] = A_mu24[1][iETA1];
3258  par1[2] = A_mu24[2][iETA1];
3259  par1[3] = A_mu24[3][iETA1];
3260  par_sig1[0] = A_sig24[0][iETA1];
3261  par_sig1[1] = A_sig24[1][iETA1];
3262  par_sig1[2] = A_sig24[2][iETA1];
3263  break;
3264  case 10 : //3-4
3265  if(iETA1 < 9)iETA1 = 9;
3266  par1[0] = A_mu34[0][iETA1];
3267  par1[1] = A_mu34[1][iETA1];
3268  par1[2] = A_mu34[2][iETA1];
3269  par1[3] = A_mu34[3][iETA1];
3270  par_sig1[0] = A_sig34[0][iETA1];
3271  par_sig1[1] = A_sig34[1][iETA1];
3272  par_sig1[2] = A_sig34[2][iETA1];
3273  break;
3274  case 13 : //1-4
3275  if(iETA1 < 9)iETA1 = 9;
3276  //if(iETA1 > 11)iETA1 = 11;
3277  //if(iETA1 > 12)iETA1 = 12;
3278  if(fr == 1){
3279  par1[0] = A_mu14Front[0][iETA1];
3280  par1[1] = A_mu14Front[1][iETA1];
3281  par1[2] = A_mu14Front[2][iETA1];
3282  par1[3] = A_mu14Front[3][iETA1];
3283  par_sig1[0] = A_sig14Front[0][iETA1];
3284  par_sig1[1] = A_sig14Front[1][iETA1];
3285  par_sig1[2] = A_sig14Front[2][iETA1];
3286  }
3287  if(fr == 0){
3288  par1[0] = A_mu14Rare[0][iETA1];
3289  par1[1] = A_mu14Rare[1][iETA1];
3290  par1[2] = A_mu14Rare[2][iETA1];
3291  par1[3] = A_mu14Rare[3][iETA1];
3292  par_sig1[0] = A_sig14Rare[0][iETA1];
3293  par_sig1[1] = A_sig14Rare[1][iETA1];
3294  par_sig1[2] = A_sig14Rare[2][iETA1];
3295  }
3296  break;
3297  case 11 : // b1-3
3298  if(iETA1 != 2)iETA1 = 2;
3299  par1[0] = A_mu53[0][iETA1];
3300  par1[1] = A_mu53[1][iETA1];
3301  par1[2] = A_mu53[2][iETA1];
3302  par1[3] = A_mu53[3][iETA1];
3303  par_sig1[0] = A_sig53[0][iETA1];
3304  par_sig1[1] = A_sig53[1][iETA1];
3305  par_sig1[2] = A_sig53[2][iETA1];
3306 
3307  break;
3308  case 12 : //1-2-b1 = 2-b1 for pt_method < 10, for pt_method > 10: b1-2
3309  if(iETA1 < 1)iETA1 = 1;
3310  if(iETA1 > 2)iETA1 = 2;
3311  par1[0] = A_mu52[0][iETA1];
3312  par1[1] = A_mu52[1][iETA1];
3313  par1[2] = A_mu52[2][iETA1];
3314  par1[3] = A_mu52[3][iETA1];
3315  par_sig1[0] = A_sig52[0][iETA1];
3316  par_sig1[1] = A_sig52[1][iETA1];
3317  par_sig1[2] = A_sig52[2][iETA1];
3318  break;
3319  case 14 : //2-b1 for pt_method < 10 and b1-1 for pt_method > 10
3320  if(method < 10){
3321  if(iETA1 < 1)iETA1 = 1;
3322  if(iETA1 > 2)iETA1 = 2;
3323  }
3324  par1[0] = A_mu52[0][iETA1];
3325  par1[1] = A_mu52[1][iETA1];
3326  par1[2] = A_mu52[2][iETA1];
3327  par1[3] = A_mu52[3][iETA1];
3328  par_sig1[0] = A_sig52[0][iETA1];
3329  par_sig1[1] = A_sig52[1][iETA1];
3330  par_sig1[2] = A_sig52[2][iETA1];
3331  if(method > 10){
3332  if(iETA1 > 2)iETA1 = 2;
3333  par1[0] = A_mu51[0][iETA1];
3334  par1[1] = A_mu51[1][iETA1];
3335  par1[2] = A_mu51[2][iETA1];
3336  par1[3] = A_mu51[3][iETA1];
3337  par_sig1[0] = A_sig51[0][iETA1];
3338  par_sig1[1] = A_sig51[1][iETA1];
3339  par_sig1[2] = A_sig51[2][iETA1];
3340  }
3341  break;
3342  //default:
3343  //return 0.0;
3344  }
3345 
3346 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
3347  //if(fabs(dphi) >= 0.002)
3348  //if(fabs(dphi) >= 0.00)
3349  //if(fabs(dphi) >= 0.002 || (fabs(dphi) >= 0.01 && (type == 12 || type == 14)))
3350  //{
3351  double muPlusMaxLH = -1e9;
3352  double pt = 140;
3353  double step = 5.;
3354  double maxLH = -1e9;
3355 
3356  while(pt > 2. )
3357  {
3358  double par_phi12[1] = {dphi};
3359  double v[1], lpt1_1;
3360  v[0] = 0; lpt1_1 = 1.;
3361  v[0] = pt;
3362  lpt1_1 = Likelihood2(par_phi12, par1, par_sig1, v);
3363 
3364  if (lpt1_1 > maxLH)
3365  {
3366  maxLH = lpt1_1;
3367  PTsolv = pt;
3368  }
3369 
3370 
3371  if(pt <= 100) {step = 10.0/4.0;}
3372  if(pt <= 50) {step = 5.0/4.0;}
3373  if(pt <= 20) {step = 2.0/4.0;}
3374  if(pt <= 10) {step = 1.0/4.0;}
3375  if(pt <=5) {step = 0.5/4.0;}
3376 
3377  pt = pt - step;
3378  }// end while
3379  muPlusMaxLH = maxLH;
3380 
3381 //*********** end solve equation for muon plus
3382 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
3383 // for one station method we know sing of muon: dphi > 0 for muon minus!!! => dphi = -dphi < 0
3384  double muMinusMaxLH = -1e9;
3385  dphi = - dphi;
3386  pt = 140;
3387  step = 5.;
3388  maxLH = -1e9;
3389  while(pt > 2. )
3390  {
3391  double par_phi12[1] = {dphi};
3392  double v[1], lpt1_1;
3393  v[0] = 0; lpt1_1 = 1.;
3394  v[0] = pt;
3395  lpt1_1 = Likelihood2(par_phi12, par1, par_sig1, v);
3396 
3397  if (lpt1_1 > maxLH)
3398  {
3399  maxLH = lpt1_1;
3400  PTsolvMinus = pt;
3401  }
3402 
3403 
3404  if(pt <= 100) {step = 10.0/4.0;}
3405  if(pt <= 50) {step = 5.0/4.0;}
3406  if(pt <= 20) {step = 2.0/4.0;}
3407  if(pt <= 10) {step = 1.0/4.0;}
3408  if(pt <=5) {step = 0.5/4.0;}
3409 
3410  pt = pt - step;
3411  }// end while
3412  muMinusMaxLH = maxLH;
3413 
3414  // }// if(fabs(dphi) >= 0.002)
3415  // else
3416 // {PTsolv = 137.5;}
3417 
3418 //*********** end solve equation for muon minus
3419  if (useBestMLH)
3420  PTsolv = (muPlusMaxLH > muMinusMaxLH) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
3421  else
3422  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
3423 
3424  bestLH = (muPlusMaxLH > muMinusMaxLH) ? muPlusMaxLH : muMinusMaxLH;
3425 
3426 
3427  PTsolv = PTsolv*1.2;
3428  if(PTsolv > 137.5) PTsolv = 137.5;
3429 
3430  if (useBOXcut)
3431  if(fabs(dphi) <= 0.002 && PTsolv < 120.)PTsolv = 140.;
3432  if (useDTBOXcut)
3433  if( fabs(dphi) <= 0.01 && (type == 11 || type == 12 || type == 14) && PTsolv < 120.)PTsolv = 140.;
3434 
3435  dphi = - dphi; //return to correct sing dphi
3436 
3437  } //if(fabs(eta_TracMy)
3438  } //end "for by iETA"
3439 
3440  float Pt = PTsolv;
3441  if(Pt > 10 && fabs(dphi) >= 0.1 ) std::cout << "iF = 0 for dphi = " << dphi <<" and Pt = " << Pt << std::endl;
3442 
3443  //if(Pt > 100 && (type == 12 || type == 14) && fabs(eta) <= 1.2 && dphi > 0.015 )std::cout << "dphi = " << dphi << " eta = " << eta << std::endl;
3444  //if(Pt < 10 && (type == 12 || type == 14) && fabs(eta) <= 1.2 && dphi < 0.01)std::cout << "dphi = " << dphi << " eta = " << eta << std::endl;
3445  // return (Pt>0.0) ? Pt : 0.0;
3446 
3447  float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
3448  if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
3449 
3450  return (Pt > Pt_min) ? Pt : Pt_min;
3451 }
3452 
3453 
3454 
3455 
3456 float CSCTFPtMethods::Pt3Stn2012(int type, float eta, float dphi1, float dphi2, int PtbyMLH, float &bestLH, int fr, int method) const
3457 {
3458 
3459  int useBestMLH = PtbyMLH;
3460  int use2Stn = false;
3461  int use2StnDT = true;
3462  if(type == 5) use2Stn = true;//switch 2 station assighment for mode = 5
3463 
3464  if(fabs(eta) >= 2.4)eta = 2.35;
3465  float Pt = 0.;
3466  double PTsolv = 1.; // for muon plus hypothesis
3467  double PTsolvMinus = 1.;//for muon minus hypothesis
3468  for(int iETA = 0; iETA < 15; iETA++){
3469  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
3470 
3471 // calculate curvers of mean and sigma
3472  // calculate phi12 mean
3473  double par1[4] = {0., 0., 0., 0.};
3474  //double phi12mean = fitf5(v, par1); //mu12
3475  double par_sig1[3] = {0., 0., 0.};
3476  // calculate phi23 mean
3477  double par2[4] = {0., 0., 0., 0.};
3478  // calculate phi23 sig
3479  double par_sig2[3] = {0., 0., 0.};
3480  // calculate correlation rho
3481  double par_rho[5] = {0., 0., 0., 0., 0.};
3482  int iETA1 = iETA;
3483  int iETA2 = iETA;
3484  switch (type) // type = mode here
3485  {
3486  case 2 : //1-2-3
3487  if(fr == 1){
3488  if(iETA1 < 3)iETA1 = 3;
3489  //if(iETA1 > 11)iETA1 = 11;
3490  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
3491  par1[0] = A_mu12Front[0][iETA1];
3492  par1[1] = A_mu12Front[1][iETA1];
3493  par1[2] = A_mu12Front[2][iETA1];
3494  par1[3] = A_mu12Front[3][iETA1];
3495  par_sig1[0] = A_sig12Front[0][iETA1];
3496  par_sig1[1] = A_sig12Front[1][iETA1];
3497  par_sig1[2] = A_sig12Front[2][iETA1];
3498  par_rho[0] = A_rho123FrontCSCTF[0][iETA1];
3499  par_rho[1] = A_rho123FrontCSCTF[1][iETA1];
3500  par_rho[2] = A_rho123FrontCSCTF[2][iETA1];
3501  par_rho[3] = A_rho123FrontCSCTF[3][iETA1];
3502  par_rho[4] = A_rho123FrontCSCTF[4][iETA1];
3503  }
3504  if(fr == 0){
3505  if(iETA1 < 1)iETA1 = 1;
3506  //if(iETA1 > 11)iETA1 = 11;
3507  //if(fabs(eta)>1.56 && fabs(eta) < 1.6) iETA1 = iETA +1;
3508  par1[0] = A_mu12Rare[0][iETA1];
3509  par1[1] = A_mu12Rare[1][iETA1];
3510  par1[2] = A_mu12Rare[2][iETA1];
3511  par1[3] = A_mu12Rare[3][iETA1];
3512  par_sig1[0] = A_sig12Rare[0][iETA1];
3513  par_sig1[1] = A_sig12Rare[1][iETA1];
3514  par_sig1[2] = A_sig12Rare[2][iETA1];
3515  par_rho[0] = A_rho123RareCSCTF[0][iETA1];
3516  par_rho[1] = A_rho123RareCSCTF[1][iETA1];
3517  par_rho[2] = A_rho123RareCSCTF[2][iETA1];
3518  par_rho[3] = A_rho123RareCSCTF[3][iETA1];
3519  par_rho[4] = A_rho123RareCSCTF[4][iETA1];
3520  }
3521  if(iETA2 < 2)iETA2 = 2;
3522  par2[0] = A_mu23[0][iETA2];
3523  par2[1] = A_mu23[1][iETA2];
3524  par2[2] = A_mu23[2][iETA2];
3525  par2[3] = A_mu23[3][iETA2];
3526  par_sig2[0] = A_sig23[0][iETA2];
3527  par_sig2[1] = A_sig23[1][iETA2];
3528  par_sig2[2] = A_sig23[2][iETA2];
3529 
3530  break;
3531  case 3 : //1-2-4
3532  if(fr == 1){
3533  if(iETA1 < 3)iETA1 = 3;
3534  //if(iETA1 > 11)iETA1 = 11;
3535  par1[0] = A_mu12Front[0][iETA1];
3536  par1[1] = A_mu12Front[1][iETA1];
3537  par1[2] = A_mu12Front[2][iETA1];
3538  par1[3] = A_mu12Front[3][iETA1];
3539  par_sig1[0] = A_sig12Front[0][iETA1];
3540  par_sig1[1] = A_sig12Front[1][iETA1];
3541  par_sig1[2] = A_sig12Front[2][iETA1];
3542  par_rho[0] = A_rho124FrontCSCTF[0][iETA1];
3543  par_rho[1] = A_rho124FrontCSCTF[1][iETA1];
3544  par_rho[2] = A_rho124FrontCSCTF[2][iETA1];
3545  par_rho[3] = A_rho124FrontCSCTF[3][iETA1];
3546  par_rho[4] = A_rho124FrontCSCTF[4][iETA1];
3547  }
3548  if(fr == 0){
3549  if(iETA1 < 1)iETA1 = 1;
3550  //if(iETA1 > 11)iETA1 = 11;
3551  par1[0] = A_mu12Rare[0][iETA1];
3552  par1[1] = A_mu12Rare[1][iETA1];
3553  par1[2] = A_mu12Rare[2][iETA1];
3554  par1[3] = A_mu12Rare[3][iETA1];
3555  par_sig1[0] = A_sig12Rare[0][iETA1];
3556  par_sig1[1] = A_sig12Rare[1][iETA1];
3557  par_sig1[2] = A_sig12Rare[2][iETA1];
3558  par_rho[0] = A_rho124RareCSCTF[0][iETA1];
3559  par_rho[1] = A_rho124RareCSCTF[1][iETA1];
3560  par_rho[2] = A_rho124RareCSCTF[2][iETA1];
3561  par_rho[3] = A_rho124RareCSCTF[3][iETA1];
3562  par_rho[4] = A_rho124RareCSCTF[4][iETA1];
3563  }
3564  if(iETA2 < 9)iETA2 = 9;
3565  par2[0] = A_mu24[0][iETA2];
3566  par2[1] = A_mu24[1][iETA2];
3567  par2[2] = A_mu24[2][iETA2];
3568  par2[3] = A_mu24[3][iETA2];
3569  par_sig2[0] = A_sig24[0][iETA2];
3570  par_sig2[1] = A_sig24[1][iETA2];
3571  par_sig2[2] = A_sig24[2][iETA2];
3572  break;
3573  case 4 : //1-3-4
3574  if(fr == 1){
3575  if(iETA1 < 3)iETA1 = 3;
3576  //if(iETA1 > 11)iETA1 = 11;
3577  par1[0] = A_mu13Front[0][iETA1];
3578  par1[1] = A_mu13Front[1][iETA1];
3579  par1[2] = A_mu13Front[2][iETA1];
3580  par1[3] = A_mu13Front[3][iETA1];
3581  par_sig1[0] = A_sig13Front[0][iETA1];
3582  par_sig1[1] = A_sig13Front[1][iETA1];
3583  par_sig1[2] = A_sig13Front[2][iETA1];
3584  par_rho[0] = A_rho134FrontCSCTF[0][iETA1];
3585  par_rho[1] = A_rho134FrontCSCTF[1][iETA1];
3586  par_rho[2] = A_rho134FrontCSCTF[2][iETA1];
3587  par_rho[3] = A_rho134FrontCSCTF[3][iETA1];
3588  par_rho[4] = A_rho134FrontCSCTF[4][iETA1];
3589  }
3590  if(fr == 0){
3591  if(iETA1 < 2)iETA1 = 2;
3592  //if(iETA1 > 11)iETA1 = 11;
3593  par1[0] = A_mu13Rare[0][iETA1];
3594  par1[1] = A_mu13Rare[1][iETA1];
3595  par1[2] = A_mu13Rare[2][iETA1];
3596  par1[3] = A_mu13Rare[3][iETA1];
3597  par_sig1[0] = A_sig13Rare[0][iETA1];
3598  par_sig1[1] = A_sig13Rare[1][iETA1];
3599  par_sig1[2] = A_sig13Rare[2][iETA1];
3600  par_rho[0] = A_rho134RareCSCTF[0][iETA1];
3601  par_rho[1] = A_rho134RareCSCTF[1][iETA1];
3602  par_rho[2] = A_rho134RareCSCTF[2][iETA1];
3603  par_rho[3] = A_rho134RareCSCTF[3][iETA1];
3604  par_rho[4] = A_rho134RareCSCTF[4][iETA1];
3605  }
3606  if(iETA2 < 9)iETA2 = 9;
3607  par2[0] = A_mu34[0][iETA2];
3608  par2[1] = A_mu34[1][iETA2];
3609  par2[2] = A_mu34[2][iETA2];
3610  par2[3] = A_mu34[3][iETA2];
3611  par_sig2[0] = A_sig34[0][iETA2];
3612  par_sig2[1] = A_sig34[1][iETA2];
3613  par_sig2[2] = A_sig34[2][iETA2];
3614  break;
3615  case 5 ://2-3-4
3616  if(iETA1 < 9)iETA1 = 9;
3617  par1[0] = A_mu23[0][iETA1];
3618  par1[1] = A_mu23[1][iETA1];
3619  par1[2] = A_mu23[2][iETA1];
3620  par1[3] = A_mu23[3][iETA1];
3621  par_sig1[0] = A_sig23[0][iETA1];
3622  par_sig1[1] = A_sig23[1][iETA1];
3623  par_sig1[2] = A_sig23[2][iETA1];
3624  par_rho[0] = A_rho234CSCTF[0][iETA1];
3625  par_rho[1] = A_rho234CSCTF[1][iETA1];
3626  par_rho[2] = A_rho234CSCTF[2][iETA1];
3627  par_rho[3] = A_rho234CSCTF[3][iETA1];
3628  par_rho[4] = A_rho234CSCTF[4][iETA1];
3629 
3630  par2[0] = A_mu34[0][iETA1];
3631  par2[1] = A_mu34[1][iETA1];
3632  par2[2] = A_mu34[2][iETA1];
3633  par2[3] = A_mu34[3][iETA1];
3634  par_sig2[0] = A_sig34[0][iETA1];
3635  par_sig2[1] = A_sig34[1][iETA1];
3636  par_sig2[2] = A_sig34[2][iETA1];
3637  break;
3638  case 11 : // b1-1-3
3639  if(iETA1 != 2)iETA1 = 2;
3640  par1[0] = A_mu51[0][iETA1];
3641  par1[1] = A_mu51[1][iETA1];
3642  par1[2] = A_mu51[2][iETA1];
3643  par1[3] = A_mu51[3][iETA1];
3644  par_sig1[0] = A_sig51[0][iETA1];
3645  par_sig1[1] = A_sig51[1][iETA1];
3646  par_sig1[2] = A_sig51[2][iETA1];
3647  par_rho[0] = A_rho513[0][iETA1];
3648  par_rho[1] = A_rho513[0][iETA1];
3649  par_rho[2] = A_rho513[0][iETA1];
3650  par_rho[3] = A_rho513[0][iETA1];
3651  par_rho[4] = A_rho513[0][iETA1];
3652 
3653  par2[0] = A_mu13Rare[0][iETA1];
3654  par2[1] = A_mu13Rare[1][iETA1];
3655  par2[2] = A_mu13Rare[2][iETA1];
3656  par2[3] = A_mu13Rare[3][iETA1];
3657  par_sig2[0] = A_sig13Rare[0][iETA1];
3658  par_sig2[1] = A_sig13Rare[1][iETA1];
3659  par_sig2[2] = A_sig13Rare[2][iETA1];
3660  break;
3661  case 12 : // b1-2-3
3662  if(iETA1 != 2)iETA1 = 2;
3663  par1[0] = A_mu52[0][iETA1];
3664  par1[1] = A_mu52[1][iETA1];
3665  par1[2] = A_mu52[2][iETA1];
3666  par1[3] = A_mu52[3][iETA1];
3667  par_sig1[0] = A_sig52[0][iETA1];
3668  par_sig1[1] = A_sig52[1][iETA1];
3669  par_sig1[2] = A_sig52[2][iETA1];
3670  par_rho[0] = A_rho523[0][iETA1];
3671  par_rho[1] = A_rho523[0][iETA1];
3672  par_rho[2] = A_rho523[0][iETA1];
3673  par_rho[3] = A_rho523[0][iETA1];
3674  par_rho[4] = A_rho523[0][iETA1];
3675 
3676  par2[0] = A_mu23[0][iETA1];
3677  par2[1] = A_mu23[1][iETA1];
3678  par2[2] = A_mu23[2][iETA1];
3679  par2[3] = A_mu23[3][iETA1];
3680  par_sig2[0] = A_sig23[0][iETA1];
3681  par_sig2[1] = A_sig23[1][iETA1];
3682  par_sig2[2] = A_sig23[2][iETA1];
3683  break;
3684  case 14 : // b1-1-2-(3)
3685  if(iETA1 < 1)iETA1 = 1;
3686  if(iETA1 > 2)iETA1 = 2;
3687  par1[0] = A_mu51[0][iETA1];
3688  par1[1] = A_mu51[1][iETA1];
3689  par1[2] = A_mu51[2][iETA1];
3690  par1[3] = A_mu51[3][iETA1];
3691  par_sig1[0] = A_sig51[0][iETA1];
3692  par_sig1[1] = A_sig51[1][iETA1];
3693  par_sig1[2] = A_sig51[2][iETA1];
3694  par_rho[0] = A_rho512[0][iETA1];
3695  par_rho[1] = A_rho512[0][iETA1];
3696  par_rho[2] = A_rho512[0][iETA1];
3697  par_rho[3] = A_rho512[0][iETA1];
3698  par_rho[4] = A_rho512[0][iETA1];
3699 
3700  par2[0] = A_mu12Rare[0][iETA1];
3701  par2[1] = A_mu12Rare[1][iETA1];
3702  par2[2] = A_mu12Rare[2][iETA1];
3703  par2[3] = A_mu12Rare[3][iETA1];
3704  par_sig2[0] = A_sig12Rare[0][iETA1];
3705  par_sig2[1] = A_sig12Rare[1][iETA1];
3706  par_sig2[2] = A_sig12Rare[2][iETA1];
3707  break;
3708  //default:
3709  //return 0.0;
3710  }
3711 
3712  // Switch to 2-Station measurement if dphi is too small
3713  // box cut around Pt of 10 GeV
3714  if ( fabs(static_cast<double>(dphi2))<0.004 && ((type >= 11 && use2StnDT) || (type>=2 && type<=5 && use2Stn)))
3715  {
3716  if (use2Stn)
3717  {
3718  if(type == 2 || type == 3) type = 6; // 1-2-3(or 4) -> 1-2
3719  if(type == 4) type = 7; // 1-3-4 -> 1-3
3720  Pt = Pt2Stn2012(type, eta, dphi1, useBestMLH, bestLH, fr, method);
3721  }
3722  if (use2StnDT)
3723  {
3724  if(type == 11) type = 14; // b1-1-3 -> b1-1 for pt_method > 10
3725  Pt = Pt2Stn2012(type, eta, dphi1, useBestMLH, bestLH, fr, method);
3726  }
3727  }
3728  else
3729  {
3730 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
3731  double muPlusMaxLH = -1e9;
3732  double pt = 140;
3733  double step = 5.;
3734  double maxLH = -1e9;
3735 
3736  while(pt > 2. )
3737  {
3738  double par_phi12[1] = {dphi1};
3739  double par_phi23[1] = {dphi2};
3740  double v[1], lpt1_1;
3741  v[0] = 0; lpt1_1 = 1.;
3742  v[0] = pt;
3743  lpt1_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3744 
3745  if (lpt1_1 > maxLH)
3746  {
3747  maxLH = lpt1_1;
3748  PTsolv = pt;
3749  }
3750 
3751 
3752  if(pt <= 100) {step = 10.0/4.0;}
3753  if(pt <= 50) {step = 5.0/4.0;}
3754  if(pt <= 20) {step = 2.0/4.0;}
3755  if(pt <= 10) {step = 1.0/4.0;}
3756  if(pt <=5) {step = 0.5/4.0;}
3757 
3758  pt = pt - step;
3759  }// end while
3760  muPlusMaxLH = maxLH;
3761 
3762 //*********** end solve equation for muon plus
3763 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
3764 // for one station method we know sing of muon: dphi1 > 0 for muon minus!!! => dphi1 = -dphi1 < 0
3765  double muMinusMaxLH = -1e9;
3766  dphi1 = - dphi1;
3767  dphi2 = - dphi2;
3768  pt = 140;
3769  step = 5.;
3770  maxLH = -1e9;
3771 
3772  while(pt > 2. )
3773  {
3774  double par_phi12[1] = {dphi1};
3775  double par_phi23[1] = {dphi2};
3776  double v[1], lpt1_1;
3777  v[0] = 0; lpt1_1 = 1.;
3778  v[0] = pt;
3779  lpt1_1 = Likelihood(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
3780 
3781  if (lpt1_1 > maxLH)
3782  {
3783  maxLH = lpt1_1;
3784  PTsolvMinus = pt;
3785  }
3786 
3787  if(pt <= 100) {step = 10.0/4.0;}
3788  if(pt <= 50) {step = 5.0/4.0;}
3789  if(pt <= 20) {step = 2.0/4.0;}
3790  if(pt <= 10) {step = 1.0/4.0;}
3791  if(pt <=5) {step = 0.5/4.0;}
3792 
3793  pt = pt - step;
3794  }// end while
3795  muMinusMaxLH = maxLH;
3796 
3797  if (useBestMLH)
3798  PTsolv = (muPlusMaxLH > muMinusMaxLH) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
3799  else
3800  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
3801 
3802  bestLH = (muPlusMaxLH > muMinusMaxLH) ? muPlusMaxLH : muMinusMaxLH;
3803  //*********** end solve equation for muon minus
3804 
3805  PTsolv = PTsolv*1.2; // correction to have 90% efficiency for trigger cuts
3806  if(PTsolv > 137.5) PTsolv = 137.5;
3807  //if(fabs(dphi1) < 0.002 && fabs(dphi2) <= CutPhi23){PTsolv = 140;}
3808  dphi1 = - dphi1; //return to correct sing dphi
3809  dphi2 = - dphi2; //return to correct sing dphi
3810  Pt = PTsolv;
3811  } // end 2 or 3 station method
3812  }
3813  }
3814  // if ( fabs(static_cast<double>(dphi2))>0.004 ) std::cout << "Pt = " << Pt << " Mode = " << type << " dphi1 = " << dphi1 << " dphi2 = " << dphi2 << std::endl;
3815 
3816  float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
3817  if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
3818 
3819  return (Pt > Pt_min) ? Pt : Pt_min;
3820 }
3821 
3822 
3823 
3824 float CSCTFPtMethods::Pt3Stn2012_DT(int type, float eta, float dphi1, float dphi2, int PtbyMLH, float &bestLH, int fr, int method) const
3825 {
3826  int useBestMLH = PtbyMLH;
3827  int useBOXcutDT = true;
3828  int use2Stn = false;
3829  int use2StnDT = true;
3830 
3831  //if(fabs(eta) >= 2.4)eta = 2.35;
3832  if(fabs(eta) >= 2.2) eta = 2.15;
3833  float Pt = 0.;
3834  double PTsolv = 1.; // for muon plus hypothesis
3835  double PTsolvMinus = 1.;//for muon minus hypothesis
3836  for(int iETA = 0; iETA < 15; iETA++){
3837  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
3838 
3839 // calculate curvers of mean and sigma
3840  // calculate phi12 mean
3841  double par1[4] = {0., 0., 0., 0.};
3842  //double phi12mean = fitf5(v, par1); //mu12
3843  double par_sig1[4] = {0., 0., 0., 0};
3844  // calculate phi23 mean
3845  double par2[4] = {0., 0., 0., 0.};
3846  // calculate phi23 sig
3847  double par_sig2[4] = {0., 0., 0., 0.};
3848  // calculate correlation rho
3849  double par_rho[5] = {0., 0., 0., 0., 0.};
3850  int iETA1 = iETA;
3851  int iETA2 = iETA;
3852 
3853 // defind which parameters will be use
3854  double (*Amean12F)[15] = AB_mu12F;
3855  double (*Asig12F)[15] = AB_sig12F;
3856  double (*Amean12R)[15] = AB_mu12R;
3857  double (*Asig12R)[15] = AB_sig12R;
3858 
3859  double (*Amean13F)[15] = AB_mu13F;
3860  double (*Asig13F)[15] = AB_sig13F;
3861  double (*Amean13R)[15] = AB_mu13R;
3862  double (*Asig13R)[15] = AB_sig13R;
3863 
3864  //double (*Amean14F)[15] = AB_mu14F;
3865  //double (*Asig14F)[15] = AB_sig14F;
3866  //double (*Amean14R)[15] = AB_mu14R;
3867  //double (*Asig14R)[15] = AB_sig14R;
3868 
3869  double (*Amean23)[15] = AB_mu23;
3870  double (*Asig23)[15] = AB_sig23;
3871  double (*Amean24)[15] = AB_mu24;
3872  double (*Asig24)[15] = AB_sig24;
3873  double (*Amean34)[15] = AB_mu34;
3874  double (*Asig34)[15] = AB_sig34;
3875 
3876  double (*Amean5)[15] = AB_mu5;
3877  double (*Asig5)[15] = AB_sig5;
3878  double (*Amean51)[15] = AB_mu51;
3879  double (*Asig51)[15] = AB_sig51;
3880  double (*Amean52)[15] = AB_mu52;
3881  double (*Asig52)[15] = AB_sig52;
3882  double (*Amean53)[15] = AB_mu53;
3883  double (*Asig53)[15] = AB_sig53;
3884 
3885  double (*Arho123F)[15] = AB_rho123F;
3886  double (*Arho123R)[15] = AB_rho123R;
3887  double (*Arho124F)[15] = AB_rho124F;
3888  double (*Arho124R)[15] = AB_rho124R;
3889  double (*Arho134F)[15] = AB_rho134F;
3890  double (*Arho134R)[15] = AB_rho134R;
3891  double (*Arho234)[15] = AB_rho234;
3892 
3893  double (*Arho51B)[15] = AB_rho51B;
3894  double (*Arho52B)[15] = AB_rho52B;
3895  double (*Arho53B)[15] = AB_rho53B;
3896  double (*Arho512)[15] = AB_rho512;
3897  double (*Arho513)[15] = AB_rho513;
3898  double (*Arho523)[15] = AB_rho523;
3899 
3900  //cout << "iETA = " << iETA
3901  // << " AB_mu51[0][iETA] = " << AB_mu51[0][iETA] << " pointer = " << (*(Amean51+0))[iETA]
3902  // << " AB_mu51[3][iETA] = " << AB_mu51[3][iETA] << " pointer = " << (*(Amean51+3))[iETA]
3903  // << endl;
3904 
3905  switch (type) // type = mode here
3906  {
3907  case 2 : //1-2-3
3908  if(iETA < 2)iETA2 = 2;
3909  if(fr == 1){
3910  if(iETA < 3)iETA1 = 3;
3911  par1[0] = (*(Amean12F+0))[iETA1];
3912  par1[1] = (*(Amean12F+1))[iETA1];
3913  par1[2] = (*(Amean12F+2))[iETA1];
3914  par1[3] = (*(Amean12F+3))[iETA1];
3915  par_sig1[0] = (*(Asig12F+0))[iETA1];
3916  par_sig1[1] = (*(Asig12F+1))[iETA1];
3917  par_sig1[2] = (*(Asig12F+2))[iETA1];
3918  par_sig1[3] = (*(Asig12F+3))[iETA1];
3919  par_rho[0] = (*(Arho123F+0))[iETA2];
3920  par_rho[1] = (*(Arho123F+1))[iETA2];
3921  par_rho[2] = (*(Arho123F+2))[iETA2];
3922  par_rho[3] = (*(Arho123F+3))[iETA2];
3923  par_rho[4] = (*(Arho123F+4))[iETA2];
3924 
3925  }
3926  if(fr == 0){
3927  if(iETA < 1)iETA1 = 1;
3928  par1[0] = (*(Amean12R+0))[iETA1];
3929  par1[1] = (*(Amean12R+1))[iETA1];
3930  par1[2] = (*(Amean12R+2))[iETA1];
3931  par1[3] = (*(Amean12R+3))[iETA1];
3932  par_sig1[0] = (*(Asig12R+0))[iETA1];
3933  par_sig1[1] = (*(Asig12R+1))[iETA1];
3934  par_sig1[2] = (*(Asig12R+2))[iETA1];
3935  par_sig1[3] = (*(Asig12R+3))[iETA1];
3936  par_rho[0] = (*(Arho123R+0))[iETA2];
3937  par_rho[1] = (*(Arho123R+1))[iETA2];
3938  par_rho[2] = (*(Arho123R+2))[iETA2];
3939  par_rho[3] = (*(Arho123R+3))[iETA2];
3940  par_rho[4] = (*(Arho123R+4))[iETA2];
3941  }
3942  par2[0] = (*(Amean23+0))[iETA2];
3943  par2[1] = (*(Amean23+1))[iETA2];
3944  par2[2] = (*(Amean23+2))[iETA2];
3945  par2[3] = (*(Amean23+3))[iETA2];
3946  par_sig2[0] = (*(Asig23+0))[iETA2];
3947  par_sig2[1] = (*(Asig23+1))[iETA2];
3948  par_sig2[2] = (*(Asig23+2))[iETA2];
3949  par_sig2[3] = (*(Asig23+3))[iETA2];
3950 
3951  break;
3952  case 3 : //1-2-4
3953  if(iETA < 3)iETA2 = 3;
3954  if(fr == 1){
3955  if(iETA < 3)iETA1 = 3;
3956  par1[0] = (*(Amean12F+0))[iETA1];
3957  par1[1] = (*(Amean12F+1))[iETA1];
3958  par1[2] = (*(Amean12F+2))[iETA1];
3959  par1[3] = (*(Amean12F+3))[iETA1];
3960  par_sig1[0] = (*(Asig12F+0))[iETA1];
3961  par_sig1[1] = (*(Asig12F+1))[iETA1];
3962  par_sig1[2] = (*(Asig12F+2))[iETA1];
3963  par_sig1[3] = (*(Asig12F+3))[iETA1];
3964  par_rho[0] = (*(Arho124F+0))[iETA2];
3965  par_rho[1] = (*(Arho124F+1))[iETA2];
3966  par_rho[2] = (*(Arho124F+2))[iETA2];
3967  par_rho[3] = (*(Arho124F+3))[iETA2];
3968  par_rho[4] = (*(Arho124F+4))[iETA2];
3969 
3970  }
3971  if(fr == 0){
3972  if(iETA < 1)iETA1 = 1;
3973  par1[0] = (*(Amean12R+0))[iETA1];
3974  par1[1] = (*(Amean12R+1))[iETA1];
3975  par1[2] = (*(Amean12R+2))[iETA1];
3976  par1[3] = (*(Amean12R+3))[iETA1];
3977  par_sig1[0] = (*(Asig12R+0))[iETA1];
3978  par_sig1[1] = (*(Asig12R+1))[iETA1];
3979  par_sig1[2] = (*(Asig12R+2))[iETA1];
3980  par_sig1[3] = (*(Asig12R+3))[iETA1];
3981  par_rho[0] = (*(Arho124R+0))[iETA2];
3982  par_rho[1] = (*(Arho124R+1))[iETA2];
3983  par_rho[2] = (*(Arho124R+2))[iETA2];
3984  par_rho[3] = (*(Arho124R+3))[iETA2];
3985  par_rho[4] = (*(Arho124R+4))[iETA2];
3986  }
3987  par2[0] = (*(Amean24+0))[iETA2];
3988  par2[1] = (*(Amean24+1))[iETA2];
3989  par2[2] = (*(Amean24+2))[iETA2];
3990  par2[3] = (*(Amean24+3))[iETA2];
3991  par_sig2[0] = (*(Asig24+0))[iETA2];
3992  par_sig2[1] = (*(Asig24+1))[iETA2];
3993  par_sig2[2] = (*(Asig24+2))[iETA2];
3994  par_sig2[3] = (*(Asig24+3))[iETA2];
3995  break;
3996  case 4 : //1-3-4
3997  if(iETA < 3)iETA2 = 3;
3998  if(fr == 1){
3999  if(iETA < 3)iETA1 = 3;
4000  par1[0] = (*(Amean13F+0))[iETA1];
4001  par1[1] = (*(Amean13F+1))[iETA1];
4002  par1[2] = (*(Amean13F+2))[iETA1];
4003  par1[3] = (*(Amean13F+3))[iETA1];
4004  par_sig1[0] = (*(Asig13F+0))[iETA1];
4005  par_sig1[1] = (*(Asig13F+1))[iETA1];
4006  par_sig1[2] = (*(Asig13F+2))[iETA1];
4007  par_sig1[3] = (*(Asig13F+3))[iETA1];
4008  par_rho[0] = (*(Arho134F+0))[iETA2];
4009  par_rho[1] = (*(Arho134F+1))[iETA2];
4010  par_rho[2] = (*(Arho134F+2))[iETA2];
4011  par_rho[3] = (*(Arho134F+3))[iETA2];
4012  par_rho[4] = (*(Arho134F+4))[iETA2];
4013 
4014  }
4015  if(fr == 0){
4016  if(iETA < 3)iETA1 = 3;
4017  par1[0] = (*(Amean13R+0))[iETA1];
4018  par1[1] = (*(Amean13R+1))[iETA1];
4019  par1[2] = (*(Amean13R+2))[iETA1];
4020  par1[3] = (*(Amean13R+3))[iETA1];
4021  par_sig1[0] = (*(Asig13R+0))[iETA1];
4022  par_sig1[1] = (*(Asig13R+1))[iETA1];
4023  par_sig1[2] = (*(Asig13R+2))[iETA1];
4024  par_sig1[3] = (*(Asig13R+3))[iETA1];
4025  par_rho[0] = (*(Arho134R+0))[iETA2];
4026  par_rho[1] = (*(Arho134R+1))[iETA2];
4027  par_rho[2] = (*(Arho134R+2))[iETA2];
4028  par_rho[3] = (*(Arho134R+3))[iETA2];
4029  par_rho[4] = (*(Arho134R+4))[iETA2];
4030  }
4031  par2[0] = (*(Amean34+0))[iETA2];
4032  par2[1] = (*(Amean34+1))[iETA2];
4033  par2[2] = (*(Amean34+2))[iETA2];
4034  par2[3] = (*(Amean34+3))[iETA2];
4035  par_sig2[0] = (*(Asig34+0))[iETA2];
4036  par_sig2[1] = (*(Asig34+1))[iETA2];
4037  par_sig2[2] = (*(Asig34+2))[iETA2];
4038  par_sig2[3] = (*(Asig34+3))[iETA2];
4039  break;
4040  case 5 ://2-3-4
4041  if(iETA < 2)iETA1 = 2;
4042  if(iETA < 3)iETA2 = 3;
4043  par1[0] = (*(Amean23+0))[iETA1];
4044  par1[1] = (*(Amean23+1))[iETA1];
4045  par1[2] = (*(Amean23+2))[iETA1];
4046  par1[3] = (*(Amean23+3))[iETA1];
4047  par_sig1[0] = (*(Asig23+0))[iETA1];
4048  par_sig1[1] = (*(Asig23+1))[iETA1];
4049  par_sig1[2] = (*(Asig23+2))[iETA1];
4050  par_sig1[3] = (*(Asig23+3))[iETA1];
4051  par_rho[0] = (*(Arho234+0))[iETA2];
4052  par_rho[1] = (*(Arho234+1))[iETA2];
4053  par_rho[2] = (*(Arho234+2))[iETA2];
4054  par_rho[3] = (*(Arho234+3))[iETA2];
4055  par_rho[4] = (*(Arho234+4))[iETA2];
4056 
4057  par2[0] = (*(Amean34+0))[iETA2];
4058  par2[1] = (*(Amean34+1))[iETA2];
4059  par2[2] = (*(Amean34+2))[iETA2];
4060  par2[3] = (*(Amean34+3))[iETA2];
4061  par_sig2[0] = (*(Asig34+0))[iETA2];
4062  par_sig2[1] = (*(Asig34+1))[iETA2];
4063  par_sig2[2] = (*(Asig34+2))[iETA2];
4064  par_sig2[3] = (*(Asig34+3))[iETA2];
4065  break;
4066  case 11 : // singles for method < 10, for method > 10: fr = 1 -> b1-1-3, fr = 0 -> b1-3-phiBend
4067  if(iETA != 2)iETA1 = 2;
4068  par1[0] = (*(Amean53+0))[iETA1];
4069  par1[1] = (*(Amean53+1))[iETA1];
4070  par1[2] = (*(Amean53+2))[iETA1];
4071  par1[3] = (*(Amean53+3))[iETA1];
4072  par_sig1[0] = (*(Asig53+0))[iETA1];
4073  par_sig1[1] = (*(Asig53+1))[iETA1];
4074  par_sig1[2] = (*(Asig53+2))[iETA1];
4075  par_sig1[3] = (*(Asig53+3))[iETA1];
4076  par_rho[0] = (*(Arho53B+0))[iETA1];
4077  par_rho[1] = (*(Arho53B+1))[iETA1];
4078  par_rho[2] = (*(Arho53B+2))[iETA1];
4079  par_rho[3] = (*(Arho53B+3))[iETA1];
4080  par_rho[4] = (*(Arho53B+4))[iETA1];
4081 
4082  par2[0] = (*(Amean5+0))[iETA1];
4083  par2[1] = (*(Amean5+1))[iETA1];
4084  par2[2] = (*(Amean5+2))[iETA1];
4085  par2[3] = (*(Amean5+3))[iETA1];
4086  par_sig2[0] = (*(Asig5+0))[iETA1];
4087  par_sig2[1] = (*(Asig5+1))[iETA1];
4088  par_sig2[2] = (*(Asig5+2))[iETA1];
4089  par_sig2[3] = (*(Asig5+3))[iETA1];
4090 
4091  if(fr == 1){
4092  par1[0] = (*(Amean51+0))[iETA1];
4093  par1[1] = (*(Amean51+1))[iETA1];
4094  par1[2] = (*(Amean51+2))[iETA1];
4095  par1[3] = (*(Amean51+3))[iETA1];
4096  par_sig1[0] = (*(Asig51+0))[iETA1];
4097  par_sig1[1] = (*(Asig51+1))[iETA1];
4098  par_sig1[2] = (*(Asig51+2))[iETA1];
4099  par_sig1[3] = (*(Asig51+3))[iETA1];
4100  par_rho[0] = (*(Arho513+0))[iETA1];
4101  par_rho[1] = (*(Arho513+1))[iETA1];
4102  par_rho[2] = (*(Arho513+2))[iETA1];
4103  par_rho[3] = (*(Arho513+3))[iETA1];
4104  par_rho[4] = (*(Arho513+4))[iETA1];
4105 
4106  par2[0] = (*(Amean13R+0))[iETA1];
4107  par2[1] = (*(Amean13R+1))[iETA1];
4108  par2[2] = (*(Amean13R+2))[iETA1];
4109  par2[3] = (*(Amean13R+3))[iETA1];
4110  par_sig2[0] = (*(Asig13R+0))[iETA1];
4111  par_sig2[1] = (*(Asig13R+1))[iETA1];
4112  par_sig2[2] = (*(Asig13R+2))[iETA1];
4113  par_sig2[3] = (*(Asig13R+3))[iETA1];
4114  }
4115  break;
4116  case 12 : // b1-1-2 for method < 10; for method > 10: fr = 1 -> b1-2-3, fr = 0 -> b1-2-phiBend
4117  if(iETA < 1)iETA1 = 1;
4118  if(iETA > 2)iETA1 = 2;
4119  par1[0] = (*(Amean52+0))[iETA1];
4120  par1[1] = (*(Amean52+1))[iETA1];
4121  par1[2] = (*(Amean52+2))[iETA1];
4122  par1[3] = (*(Amean52+3))[iETA1];
4123  par_sig1[0] = (*(Asig52+0))[iETA1];
4124  par_sig1[1] = (*(Asig52+1))[iETA1];
4125  par_sig1[2] = (*(Asig52+2))[iETA1];
4126  par_sig1[3] = (*(Asig52+3))[iETA1];
4127  par_rho[0] = (*(Arho52B+0))[iETA1];
4128  par_rho[1] = (*(Arho52B+1))[iETA1];
4129  par_rho[2] = (*(Arho52B+2))[iETA1];
4130  par_rho[3] = (*(Arho52B+3))[iETA1];
4131  par_rho[4] = (*(Arho52B+4))[iETA1];
4132 
4133  par2[0] = (*(Amean5+0))[iETA1];
4134  par2[1] = (*(Amean5+1))[iETA1];
4135  par2[2] = (*(Amean5+2))[iETA1];
4136  par2[3] = (*(Amean5+3))[iETA1];
4137  par_sig2[0] = (*(Asig5+0))[iETA1];
4138  par_sig2[1] = (*(Asig5+1))[iETA1];
4139  par_sig2[2] = (*(Asig5+2))[iETA1];
4140  par_sig2[3] = (*(Asig5+3))[iETA1];
4141 
4142  if(fr == 1){
4143  if(iETA != 2)iETA1 = 2;
4144  par1[0] = (*(Amean52+0))[iETA1];
4145  par1[1] = (*(Amean52+1))[iETA1];
4146  par1[2] = (*(Amean52+2))[iETA1];
4147  par1[3] = (*(Amean52+3))[iETA1];
4148  par_sig1[0] = (*(Asig52+0))[iETA1];
4149  par_sig1[1] = (*(Asig52+1))[iETA1];
4150  par_sig1[2] = (*(Asig52+2))[iETA1];
4151  par_sig1[3] = (*(Asig52+3))[iETA1];
4152  par_rho[0] = (*(Arho523+0))[iETA1];
4153  par_rho[1] = (*(Arho523+1))[iETA1];
4154  par_rho[2] = (*(Arho523+2))[iETA1];
4155  par_rho[3] = (*(Arho523+3))[iETA1];
4156  par_rho[4] = (*(Arho523+4))[iETA1];
4157 
4158  par2[0] = (*(Amean23+0))[iETA1];
4159  par2[1] = (*(Amean23+1))[iETA1];
4160  par2[2] = (*(Amean23+2))[iETA1];
4161  par2[3] = (*(Amean23+3))[iETA1];
4162  par_sig2[0] = (*(Asig23+0))[iETA1];
4163  par_sig2[1] = (*(Asig23+1))[iETA1];
4164  par_sig2[2] = (*(Asig23+2))[iETA1];
4165  par_sig2[3] = (*(Asig23+3))[iETA1];
4166  }
4167  break;
4168  case 14 : // b1-2 for method < 10; for method > 10: fr = 1 -> b1-1-2-(3), fr = 0 -> b1-1-phiBend
4169  if(iETA > 2)iETA1 = 2;
4170  par1[0] = (*(Amean51+0))[iETA1];
4171  par1[1] = (*(Amean51+1))[iETA1];
4172  par1[2] = (*(Amean51+2))[iETA1];
4173  par1[3] = (*(Amean51+3))[iETA1];
4174  par_sig1[0] = (*(Asig51+0))[iETA1];
4175  par_sig1[1] = (*(Asig51+1))[iETA1];
4176  par_sig1[2] = (*(Asig51+2))[iETA1];
4177  par_sig1[3] = (*(Asig51+3))[iETA1];
4178  par_rho[0] = (*(Arho51B+0))[iETA1];
4179  par_rho[1] = (*(Arho51B+1))[iETA1];
4180  par_rho[2] = (*(Arho51B+2))[iETA1];
4181  par_rho[3] = (*(Arho51B+3))[iETA1];
4182  par_rho[4] = (*(Arho51B+4))[iETA1];
4183 
4184  par2[0] = (*(Amean5+0))[iETA1];
4185  par2[1] = (*(Amean5+1))[iETA1];
4186  par2[2] = (*(Amean5+2))[iETA1];
4187  par2[3] = (*(Amean5+3))[iETA1];
4188  par_sig2[0] = (*(Asig5+0))[iETA1];
4189  par_sig2[1] = (*(Asig5+1))[iETA1];
4190  par_sig2[2] = (*(Asig5+2))[iETA1];
4191  par_sig2[3] = (*(Asig5+3))[iETA1];
4192 
4193  if(fr == 1){
4194  if(iETA < 1)iETA1 = 1;
4195  if(iETA > 2)iETA1 = 2;
4196  par1[0] = (*(Amean51+0))[iETA1];
4197  par1[1] = (*(Amean51+1))[iETA1];
4198  par1[2] = (*(Amean51+2))[iETA1];
4199  par1[3] = (*(Amean51+3))[iETA1];
4200  par_sig1[0] = (*(Asig51+0))[iETA1];
4201  par_sig1[1] = (*(Asig51+1))[iETA1];
4202  par_sig1[2] = (*(Asig51+2))[iETA1];
4203  par_sig1[3] = (*(Asig51+3))[iETA1];
4204  par_rho[0] = (*(Arho512+0))[iETA1];
4205  par_rho[1] = (*(Arho512+1))[iETA1];
4206  par_rho[2] = (*(Arho512+2))[iETA1];
4207  par_rho[3] = (*(Arho512+3))[iETA1];
4208  par_rho[4] = (*(Arho512+4))[iETA1];
4209 
4210  par2[0] = (*(Amean12R+0))[iETA1];
4211  par2[1] = (*(Amean12R+1))[iETA1];
4212  par2[2] = (*(Amean12R+2))[iETA1];
4213  par2[3] = (*(Amean12R+3))[iETA1];
4214  par_sig2[0] = (*(Asig12R+0))[iETA1];
4215  par_sig2[1] = (*(Asig12R+1))[iETA1];
4216  par_sig2[2] = (*(Asig12R+2))[iETA1];
4217  par_sig2[3] = (*(Asig12R+3))[iETA1];
4218  }
4219  break;
4220  //default:
4221  //return 0.0;
4222  }
4223 
4224  // Switch to 2-Station measurement if dphi is too small
4225  // box cut around Pt of 10 GeV
4226  if ( ( ( (fabs(static_cast<double>(dphi2))<0.004 && type != 12 && method < 25)||
4227  (fabs(static_cast<double>(dphi2))<0.004 && type != 12 && type != 14 && type != 11 && method >= 25))) &&
4228  ((type>=2 && type<=5 && use2Stn) || (type >= 11 && use2StnDT)))
4229  {
4230  if (use2Stn)
4231  {
4232  //if(type == 12 || type == 14 || type == 11) std::cout << "mode = " << type << " dphi23 = " << dphi2 << " method = " << method << std::endl; //test
4233  if(type == 2 || type == 3) type = 6; // 1-2-3(or 4) -> 1-2
4234  if(type == 4) type = 7; // 1-3-4 -> 1-3
4235  if(type == 5) type = 8; // 2-3-4 -> 2-3
4236  Pt = Pt2Stn2012_DT(type, eta, dphi1, useBestMLH, bestLH, fr, method,int(2));//in 3 station track there is no information to which ME1/1 or ME1/2 track belong
4237  }
4238  if (use2StnDT)
4239  {
4240  if(type == 11) type = 14; // b1-1-3 -> b1-1 for pt_method > 10
4241  //if(type == 14) type = 11;
4242  //phiSign
4243  Pt = Pt2Stn2012_DT(type, eta, dphi1, useBestMLH, bestLH, fr, method,int(2));//in 3 station track there is no information to which ME1/1 or ME1/2 track belong
4244  }
4245  }
4246  else
4247  {
4248  //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
4249  double muPlusMaxLH = -1e9;
4250  double pt = 140;
4251  double step = 5.;
4252  double maxLH = -1e9;
4253  while(pt > 2. )
4254  {
4255  double par_phi12[1] = {dphi1};
4256  double par_phi23[1] = {dphi2};
4257  double v[1], lpt1_1;
4258  v[0] = 0; lpt1_1 = 1.;
4259  v[0] = pt;
4260  lpt1_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
4261 
4262  if (lpt1_1 > maxLH)
4263  {
4264  maxLH = lpt1_1;
4265  PTsolv = pt;
4266  }
4267 
4268  if(pt <= 100) {step = 10.0/4.0;}
4269  if(pt <= 50) {step = 5.0/4.0;}
4270  if(pt <= 20) {step = 2.0/4.0;}
4271  if(pt <= 10) {step = 1.0/4.0;}
4272  if(pt <=5) {step = 0.5/4.0;}
4273 
4274  pt = pt - step;
4275  }// end while
4276  muPlusMaxLH = maxLH;
4277 //*********** end solve equation for muon plus
4278 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
4279 // for one station method we know sing of muon: dphi1 > 0 for muon minus!!! => dphi1 = -dphi1 < 0
4280  double muMinusMaxLH = -1e9;
4281  dphi1 = - dphi1;
4282  dphi2 = - dphi2;
4283  pt = 140;
4284  step = 5.;
4285  maxLH = -1e9;
4286 
4287  while(pt > 2. )
4288  {
4289  double par_phi12[1] = {dphi1};
4290  double par_phi23[1] = {dphi2};
4291  double v[1], lpt1_1;
4292  v[0] = 0; lpt1_1 = 1.;
4293  v[0] = pt;
4294  lpt1_1 = Likelihood2011(par_phi12, par_phi23, par1, par2, par_sig1, par_sig2, par_rho, v);
4295 
4296  if (lpt1_1 > maxLH)
4297  {
4298  maxLH = lpt1_1;
4299  PTsolvMinus = pt;
4300  }
4301 
4302  if(pt <= 100) {step = 10.0/4.0;}
4303  if(pt <= 50) {step = 5.0/4.0;}
4304  if(pt <= 20) {step = 2.0/4.0;}
4305  if(pt <= 10) {step = 1.0/4.0;}
4306  if(pt <=5) {step = 0.5/4.0;}
4307  pt = pt - step;
4308  }// end while
4309  muMinusMaxLH = maxLH;
4310 
4311  if (useBestMLH)
4312  PTsolv = (muPlusMaxLH > muMinusMaxLH) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
4313  else
4314  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
4315 
4316  bestLH = (muPlusMaxLH > muMinusMaxLH) ? muPlusMaxLH : muMinusMaxLH;
4317 
4318  PTsolv = PTsolv*1.2; // correction to have 90% efficiency for trigger cuts
4319  if(PTsolv > 137.5) PTsolv = 137.5;
4320  //if(fabs(dphi1) < 0.002 && fabs(dphi2) <= CutPhi23){PTsolv = 140;}
4321  dphi1 = - dphi1; //return to correct sing dphi
4322  dphi2 = - dphi2; //return to correct sing dphi
4323  Pt = PTsolv;
4324  } // end 2 or 3 station method
4325  }}
4326  // fix overlap region high pt:
4327  if (useBOXcutDT)
4328  if(method >= 25 && (type == 12 || type == 14 || type == 11) && fabs(dphi1)<0.003 && fabs(dphi2) <2) Pt = 140.;
4329  // if ( fabs(static_cast<double>(dphi2))>0.004 ) std::cout << "Pt = " << Pt << " Mode = " << type << " dphi1 = " << dphi1 << " dphi2 = " << dphi2 << std::endl;
4330 
4331  //float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
4332  //if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
4333  float Pt_min = 2;// 2 GeV
4334 
4335  return (Pt > Pt_min) ? Pt : Pt_min;
4336 }
4337 
4338 
4339 float CSCTFPtMethods::Pt2Stn2012_DT(int type, float eta, float dphi, int PtbyMLH, float &bestLH, int fr, int method, int phiSign) const
4340 {
4341  int useBestMLH = PtbyMLH;
4342  int useBOXcut = true;
4343 
4344  //if(fabs(eta) >= 2.4) eta = 2.35;
4345  if(fabs(eta) >= 2.2) eta = 2.15;
4346  double PTsolv = 1.; // for muon plus hypothesis
4347  double PTsolvMinus = 1.;//for muon minus hypothesis
4348  for(int iETA = 0; iETA < 15; iETA++){
4349  if(fabs(eta) >= etabins[iETA] && fabs(eta) < etabins[iETA+1] ){
4350 
4351 // calculate curvers of mean and sigma
4352  // calculate phi12 mean
4353  double par1[4] = {0., 0., 0., 0.};
4354  //double phi12mean = fitf5(v, par1); //mu12
4355  double par_sig1[4] = {0., 0., 0.,0};
4356  int iETA1 = iETA;
4357  int iETA2 = iETA;
4358 
4359  double (*Amean12FnoME11)[15] = AB_mu12FnoME11;
4360  double (*Asig12FnoME11)[15] = AB_sig12FnoME11;
4361  double (*Amean12RnoME11)[15] = AB_mu12RnoME11;
4362  double (*Asig12RnoME11)[15] = AB_sig12RnoME11;
4363 
4364  double (*Amean13FnoME11)[15] = AB_mu13FnoME11;
4365  double (*Asig13FnoME11)[15] = AB_sig13FnoME11;
4366  double (*Amean13RnoME11)[15] = AB_mu13RnoME11;
4367  double (*Asig13RnoME11)[15] = AB_sig13RnoME11;
4368 
4369  double (*Amean14FnoME11)[15] = AB_mu14FnoME11;
4370  double (*Asig14FnoME11)[15] = AB_sig14FnoME11;
4371  double (*Amean14RnoME11)[15] = AB_mu14RnoME11;
4372  double (*Asig14RnoME11)[15] = AB_sig14RnoME11;
4373  //
4374  double (*Amean12FME11)[15] = AB_mu12FME11;
4375  double (*Asig12FME11)[15] = AB_sig12FME11;
4376  double (*Amean12RME11)[15] = AB_mu12RME11;
4377  double (*Asig12RME11)[15] = AB_sig12RME11;
4378 
4379  double (*Amean13FME11)[15] = AB_mu13FME11;
4380  double (*Asig13FME11)[15] = AB_sig13FME11;
4381  double (*Amean13RME11)[15] = AB_mu13RME11;
4382  double (*Asig13RME11)[15] = AB_sig13RME11;
4383 
4384  double (*Amean14FME11)[15] = AB_mu14FME11;
4385  double (*Asig14FME11)[15] = AB_sig14FME11;
4386  double (*Amean14RME11)[15] = AB_mu14RME11;
4387  double (*Asig14RME11)[15] = AB_sig14RME11;
4388  //
4389  double (*Amean12F)[15] = AB_mu12F;
4390  double (*Asig12F)[15] = AB_sig12F;
4391  double (*Amean12R)[15] = AB_mu12R;
4392  double (*Asig12R)[15] = AB_sig12R;
4393 
4394  double (*Amean13F)[15] = AB_mu13F;
4395  double (*Asig13F)[15] = AB_sig13F;
4396  double (*Amean13R)[15] = AB_mu13R;
4397  double (*Asig13R)[15] = AB_sig13R;
4398 
4399  double (*Amean14F)[15] = AB_mu14F;
4400  double (*Asig14F)[15] = AB_sig14F;
4401  double (*Amean14R)[15] = AB_mu14R;
4402  double (*Asig14R)[15] = AB_sig14R;
4403 
4404  double (*Amean23)[15] = AB_mu23;
4405  double (*Asig23)[15] = AB_sig23;
4406  double (*Amean24)[15] = AB_mu24;
4407  double (*Asig24)[15] = AB_sig24;
4408  double (*Amean34)[15] = AB_mu34;
4409  double (*Asig34)[15] = AB_sig34;
4410 
4411  double (*Amean51)[15] = AB_mu51;
4412  double (*Asig51)[15] = AB_sig51;
4413  double (*Amean52)[15] = AB_mu52;
4414  double (*Asig52)[15] = AB_sig52;
4415  double (*Amean53)[15] = AB_mu53;
4416  double (*Asig53)[15] = AB_sig53;
4417 
4418  switch (type) // type = mode here
4419  {
4420  case 6 : //1-2
4421  if(fr == 1){
4422  if(iETA1 < 3)iETA1 = 3;
4423  //if(iETA1 > 11)iETA1 = 11;
4424  par1[0] = (*(Amean12F+0))[iETA1];
4425  par1[1] = (*(Amean12F+1))[iETA1];
4426  par1[2] = (*(Amean12F+2))[iETA1];
4427  par1[3] = (*(Amean12F+3))[iETA1];
4428  par_sig1[0] = (*(Asig12F+0))[iETA1];
4429  par_sig1[1] = (*(Asig12F+1))[iETA1];
4430  par_sig1[2] = (*(Asig12F+2))[iETA1];
4431  par_sig1[3] = (*(Asig12F+3))[iETA1];
4432  }
4433  if(fr == 0){
4434  if(iETA1 < 1)iETA1 = 1;
4435  //if(iETA1 > 11)iETA1 = 11;
4436  par1[0] = (*(Amean12R+0))[iETA1];
4437  par1[1] = (*(Amean12R+1))[iETA1];
4438  par1[2] = (*(Amean12R+2))[iETA1];
4439  par1[3] = (*(Amean12R+3))[iETA1];
4440  par_sig1[0] = (*(Asig12R+0))[iETA1];
4441  par_sig1[1] = (*(Asig12R+1))[iETA1];
4442  par_sig1[2] = (*(Asig12R+2))[iETA1];
4443  par_sig1[3] = (*(Asig12R+3))[iETA1];
4444  }
4445  if(phiSign == 0){ // track belong to ME11 station
4446  if(fr == 1){
4447  if(iETA2 < 7)iETA2 = 7;
4448  par1[0] = (*(Amean12FME11+0))[iETA2];
4449  par1[1] = (*(Amean12FME11+1))[iETA2];
4450  par1[2] = (*(Amean12FME11+2))[iETA2];
4451  par1[3] = (*(Amean12FME11+3))[iETA2];
4452  par_sig1[0] = (*(Asig12FME11+0))[iETA2];
4453  par_sig1[1] = (*(Asig12FME11+1))[iETA2];
4454  par_sig1[2] = (*(Asig12FME11+2))[iETA2];
4455  par_sig1[3] = (*(Asig12FME11+3))[iETA2];
4456  }
4457  if(fr == 0){
4458  if(iETA2 < 7)iETA2 = 7;
4459  par1[0] = (*(Amean12RME11+0))[iETA2];
4460  par1[1] = (*(Amean12RME11+1))[iETA2];
4461  par1[2] = (*(Amean12RME11+2))[iETA2];
4462  par1[3] = (*(Amean12RME11+3))[iETA2];
4463  par_sig1[0] = (*(Asig12RME11+0))[iETA2];
4464  par_sig1[1] = (*(Asig12RME11+1))[iETA2];
4465  par_sig1[2] = (*(Asig12RME11+2))[iETA2];
4466  par_sig1[3] = (*(Asig12RME11+3))[iETA2];
4467  }
4468  }
4469  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
4470  if(fr == 1){
4471  if(iETA2 < 3)iETA2 = 3;
4472  if(iETA2 > 7)iETA2 = 7;
4473  par1[0] = (*(Amean12FnoME11+0))[iETA2];
4474  par1[1] = (*(Amean12FnoME11+1))[iETA2];
4475  par1[2] = (*(Amean12FnoME11+2))[iETA2];
4476  par1[3] = (*(Amean12FnoME11+3))[iETA2];
4477  par_sig1[0] = (*(Asig12FnoME11+0))[iETA2];
4478  par_sig1[1] = (*(Asig12FnoME11+1))[iETA2];
4479  par_sig1[2] = (*(Asig12FnoME11+2))[iETA2];
4480  par_sig1[3] = (*(Asig12FnoME11+3))[iETA2];
4481  }
4482  if(fr == 0){
4483  if(iETA2 < 1)iETA2 = 1;
4484  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
4485  par1[0] = (*(Amean12RnoME11+0))[iETA2];
4486  par1[1] = (*(Amean12RnoME11+1))[iETA2];
4487  par1[2] = (*(Amean12RnoME11+2))[iETA2];
4488  par1[3] = (*(Amean12RnoME11+3))[iETA2];
4489  par_sig1[0] = (*(Asig12RnoME11+0))[iETA2];
4490  par_sig1[1] = (*(Asig12RnoME11+1))[iETA2];
4491  par_sig1[2] = (*(Asig12RnoME11+2))[iETA2];
4492  par_sig1[3] = (*(Asig12RnoME11+3))[iETA2];
4493  }
4494  }
4495 
4496  break;
4497  case 7 : //1-3
4498  if(fr == 1){
4499  if(iETA1 < 3)iETA1 = 3;
4500  //if(iETA1 > 11)iETA1 = 11;
4501  par1[0] = (*(Amean13F+0))[iETA1];
4502  par1[1] = (*(Amean13F+1))[iETA1];
4503  par1[2] = (*(Amean13F+2))[iETA1];
4504  par1[3] = (*(Amean13F+3))[iETA1];
4505  par_sig1[0] = (*(Asig13F+0))[iETA1];
4506  par_sig1[1] = (*(Asig13F+1))[iETA1];
4507  par_sig1[2] = (*(Asig13F+2))[iETA1];
4508  par_sig1[3] = (*(Asig13F+3))[iETA1];
4509  }
4510  if(fr == 0){
4511  if(iETA1 < 3)iETA1 = 3;
4512  //if(iETA1 > 11)iETA1 = 11;
4513  par1[0] = (*(Amean13R+0))[iETA1];
4514  par1[1] = (*(Amean13R+1))[iETA1];
4515  par1[2] = (*(Amean13R+2))[iETA1];
4516  par1[3] = (*(Amean13R+3))[iETA1];
4517  par_sig1[0] = (*(Asig13R+0))[iETA1];
4518  par_sig1[1] = (*(Asig13R+1))[iETA1];
4519  par_sig1[2] = (*(Asig13R+2))[iETA1];
4520  par_sig1[3] = (*(Asig13R+3))[iETA1];
4521  }
4522  if(phiSign == 0){ // track belong to ME11 station
4523  if(fr == 1){
4524  if(iETA2 < 7)iETA2 = 7;
4525  par1[0] = (*(Amean13FME11+0))[iETA2];
4526  par1[1] = (*(Amean13FME11+1))[iETA2];
4527  par1[2] = (*(Amean13FME11+2))[iETA2];
4528  par1[3] = (*(Amean13FME11+3))[iETA2];
4529  par_sig1[0] = (*(Asig13FME11+0))[iETA2];
4530  par_sig1[1] = (*(Asig13FME11+1))[iETA2];
4531  par_sig1[2] = (*(Asig13FME11+2))[iETA2];
4532  par_sig1[3] = (*(Asig13FME11+3))[iETA2];
4533  }
4534  if(fr == 0){
4535  if(iETA2 < 7)iETA2 = 7;
4536  par1[0] = (*(Amean13RME11+0))[iETA2];
4537  par1[1] = (*(Amean13RME11+1))[iETA2];
4538  par1[2] = (*(Amean13RME11+2))[iETA2];
4539  par1[3] = (*(Amean13RME11+3))[iETA2];
4540  par_sig1[0] = (*(Asig13RME11+0))[iETA2];
4541  par_sig1[1] = (*(Asig13RME11+1))[iETA2];
4542  par_sig1[2] = (*(Asig13RME11+2))[iETA2];
4543  par_sig1[3] = (*(Asig13RME11+3))[iETA2];
4544  }
4545  }
4546  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
4547  if(fr == 1){
4548  if(iETA2 < 3)iETA2 = 3;
4549  if(iETA2 > 7)iETA2 = 7;
4550  par1[0] = (*(Amean13FnoME11+0))[iETA2];
4551  par1[1] = (*(Amean13FnoME11+1))[iETA2];
4552  par1[2] = (*(Amean13FnoME11+2))[iETA2];
4553  par1[3] = (*(Amean13FnoME11+3))[iETA2];
4554  par_sig1[0] = (*(Asig13FnoME11+0))[iETA2];
4555  par_sig1[1] = (*(Asig13FnoME11+1))[iETA2];
4556  par_sig1[2] = (*(Asig13FnoME11+2))[iETA2];
4557  par_sig1[3] = (*(Asig13FnoME11+3))[iETA2];
4558  }
4559  if(fr == 0){
4560  if(iETA2 < 3)iETA2 = 3;
4561  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
4562  par1[0] = (*(Amean13RnoME11+0))[iETA2];
4563  par1[1] = (*(Amean13RnoME11+1))[iETA2];
4564  par1[2] = (*(Amean13RnoME11+2))[iETA2];
4565  par1[3] = (*(Amean13RnoME11+3))[iETA2];
4566  par_sig1[0] = (*(Asig13RnoME11+0))[iETA2];
4567  par_sig1[1] = (*(Asig13RnoME11+1))[iETA2];
4568  par_sig1[2] = (*(Asig13RnoME11+2))[iETA2];
4569  par_sig1[3] = (*(Asig13RnoME11+3))[iETA2];
4570  }
4571  }
4572  break;
4573  case 8 : //2-3
4574  if(iETA1 < 2)iETA1 = 2;
4575  par1[0] = (*(Amean23+0))[iETA1];
4576  par1[1] = (*(Amean23+1))[iETA1];
4577  par1[2] = (*(Amean23+2))[iETA1];
4578  par1[3] = (*(Amean23+3))[iETA1];
4579  par_sig1[0] = (*(Asig23+0))[iETA1];
4580  par_sig1[1] = (*(Asig23+1))[iETA1];
4581  par_sig1[2] = (*(Asig23+2))[iETA1];
4582  par_sig1[3] = (*(Asig23+3))[iETA1];
4583 
4584  break;
4585  case 9 : //2-4
4586  if(iETA1 < 3)iETA1 = 3;
4587  par1[0] = (*(Amean24+0))[iETA1];
4588  par1[1] = (*(Amean24+1))[iETA1];
4589  par1[2] = (*(Amean24+2))[iETA1];
4590  par1[3] = (*(Amean24+3))[iETA1];
4591  par_sig1[0] = (*(Asig24+0))[iETA1];
4592  par_sig1[1] = (*(Asig24+1))[iETA1];
4593  par_sig1[2] = (*(Asig24+2))[iETA1];
4594  par_sig1[3] = (*(Asig24+3))[iETA1];
4595  break;
4596  case 10 : //3-4
4597  if(iETA1 < 3)iETA1 = 3;
4598  par1[0] = (*(Amean34+0))[iETA1];
4599  par1[1] = (*(Amean34+1))[iETA1];
4600  par1[2] = (*(Amean34+2))[iETA1];
4601  par1[3] = (*(Amean34+3))[iETA1];
4602  par_sig1[0] = (*(Asig34+0))[iETA1];
4603  par_sig1[1] = (*(Asig34+1))[iETA1];
4604  par_sig1[2] = (*(Asig34+2))[iETA1];
4605  par_sig1[3] = (*(Asig34+3))[iETA1];
4606  break;
4607  case 13 : //1-4
4608  if(fr == 1){
4609  if(iETA1 < 3)iETA1 = 3;
4610  //if(iETA1 > 11)iETA1 = 11;
4611  par1[0] = (*(Amean14F+0))[iETA1];
4612  par1[1] = (*(Amean14F+1))[iETA1];
4613  par1[2] = (*(Amean14F+2))[iETA1];
4614  par1[3] = (*(Amean14F+3))[iETA1];
4615  par_sig1[0] = (*(Asig14F+0))[iETA1];
4616  par_sig1[1] = (*(Asig14F+1))[iETA1];
4617  par_sig1[2] = (*(Asig14F+2))[iETA1];
4618  par_sig1[3] = (*(Asig14F+3))[iETA1];
4619  }
4620  if(fr == 0){
4621  if(iETA1 < 2)iETA1 = 2;
4622  //if(iETA1 > 11)iETA1 = 11;
4623  par1[0] = (*(Amean14R+0))[iETA1];
4624  par1[1] = (*(Amean14R+1))[iETA1];
4625  par1[2] = (*(Amean14R+2))[iETA1];
4626  par1[3] = (*(Amean14R+3))[iETA1];
4627  par_sig1[0] = (*(Asig14R+0))[iETA1];
4628  par_sig1[1] = (*(Asig14R+1))[iETA1];
4629  par_sig1[2] = (*(Asig14R+2))[iETA1];
4630  par_sig1[3] = (*(Asig14R+3))[iETA1];
4631  }
4632  if(phiSign == 0){ // track belong to ME11 station
4633  if(fr == 1){
4634  if(iETA2 < 9)iETA2 = 9;
4635  par1[0] = (*(Amean14FME11+0))[iETA2];
4636  par1[1] = (*(Amean14FME11+1))[iETA2];
4637  par1[2] = (*(Amean14FME11+2))[iETA2];
4638  par1[3] = (*(Amean14FME11+3))[iETA2];
4639  par_sig1[0] = (*(Asig14FME11+0))[iETA2];
4640  par_sig1[1] = (*(Asig14FME11+1))[iETA2];
4641  par_sig1[2] = (*(Asig14FME11+2))[iETA2];
4642  par_sig1[3] = (*(Asig14FME11+3))[iETA2];
4643  }
4644  if(fr == 0){
4645  if(iETA2 < 9)iETA2 = 9;
4646  par1[0] = (*(Amean14RME11+0))[iETA2];
4647  par1[1] = (*(Amean14RME11+1))[iETA2];
4648  par1[2] = (*(Amean14RME11+2))[iETA2];
4649  par1[3] = (*(Amean14RME11+3))[iETA2];
4650  par_sig1[0] = (*(Asig14RME11+0))[iETA2];
4651  par_sig1[1] = (*(Asig14RME11+1))[iETA2];
4652  par_sig1[2] = (*(Asig14RME11+2))[iETA2];
4653  par_sig1[3] = (*(Asig14RME11+3))[iETA2];
4654  }
4655  }
4656  if(phiSign == 1){ // track belong to ME1/2 or ME1/3 station
4657  if(fr == 1){
4658  if(iETA2 < 4)iETA2 = 4;
4659  if(iETA2 > 7)iETA2 = 7;
4660  par1[0] = (*(Amean14FnoME11+0))[iETA2];
4661  par1[1] = (*(Amean14FnoME11+1))[iETA2];
4662  par1[2] = (*(Amean14FnoME11+2))[iETA2];
4663  par1[3] = (*(Amean14FnoME11+3))[iETA2];
4664  par_sig1[0] = (*(Asig14FnoME11+0))[iETA2];
4665  par_sig1[1] = (*(Asig14FnoME11+1))[iETA2];
4666  par_sig1[2] = (*(Asig14FnoME11+2))[iETA2];
4667  par_sig1[3] = (*(Asig14FnoME11+3))[iETA2];
4668  }
4669  if(fr == 0){
4670  if(iETA2 < 4)iETA2 = 4;
4671  if(iETA2 > 6)iETA2 = 6;// rare ME1/2 only till 1.6
4672  par1[0] = (*(Amean14RnoME11+0))[iETA2];
4673  par1[1] = (*(Amean14RnoME11+1))[iETA2];
4674  par1[2] = (*(Amean14RnoME11+2))[iETA2];
4675  par1[3] = (*(Amean14RnoME11+3))[iETA2];
4676  par_sig1[0] = (*(Asig14RnoME11+0))[iETA2];
4677  par_sig1[1] = (*(Asig14RnoME11+1))[iETA2];
4678  par_sig1[2] = (*(Asig14RnoME11+2))[iETA2];
4679  par_sig1[3] = (*(Asig14RnoME11+3))[iETA2];
4680  }
4681  }
4682 
4683  break;
4684  case 11 : // b1-3 for pt_method > 10 & fr = 0, singles for pt_method < 10
4685  if(iETA1 != 2)iETA1 = 2;
4686  par1[0] = (*(Amean53+0))[iETA1];
4687  par1[1] = (*(Amean53+1))[iETA1];
4688  par1[2] = (*(Amean53+2))[iETA1];
4689  par1[3] = (*(Amean53+3))[iETA1];
4690  par_sig1[0] = (*(Asig53+0))[iETA1];
4691  par_sig1[1] = (*(Asig53+1))[iETA1];
4692  par_sig1[2] = (*(Asig53+2))[iETA1];
4693  par_sig1[3] = (*(Asig53+3))[iETA1];
4694  break;
4695 
4696  case 12 : //1-2-b1 = 2-b1 for pt_method < 10, for pt_method > 10 & fr = 0: b1-2
4697  if(iETA1 < 1)iETA1 = 1;
4698  if(iETA1 > 2)iETA1 = 2;
4699 
4700  par1[0] = (*(Amean52+0))[iETA1];
4701  par1[1] = (*(Amean52+1))[iETA1];
4702  par1[2] = (*(Amean52+2))[iETA1];
4703  par1[3] = (*(Amean52+3))[iETA1];
4704  par_sig1[0] = (*(Asig52+0))[iETA1];
4705  par_sig1[1] = (*(Asig52+1))[iETA1];
4706  par_sig1[2] = (*(Asig52+2))[iETA1];
4707  par_sig1[3] = (*(Asig52+3))[iETA1];
4708 
4709  break;
4710  case 14 : //2-b1 for pt_method < 10 and b1-1 for pt_method > 10 & fr = 0
4711  if(method < 10){
4712  if(iETA1 < 1)iETA1 = 1;
4713  if(iETA1 > 2)iETA1 = 2;
4714  }
4715  par1[0] = (*(Amean52+0))[iETA1];
4716  par1[1] = (*(Amean52+1))[iETA1];
4717  par1[2] = (*(Amean52+2))[iETA1];
4718  par1[3] = (*(Amean52+3))[iETA1];
4719  par_sig1[0] = (*(Asig52+0))[iETA1];
4720  par_sig1[1] = (*(Asig52+1))[iETA1];
4721  par_sig1[2] = (*(Asig52+2))[iETA1];
4722  par_sig1[3] = (*(Asig52+3))[iETA1];
4723 
4724  if(method > 10){
4725  if(iETA1 > 2)iETA1 = 2;
4726  par1[0] = (*(Amean51+0))[iETA1];
4727  par1[1] = (*(Amean51+1))[iETA1];
4728  par1[2] = (*(Amean51+2))[iETA1];
4729  par1[3] = (*(Amean51+3))[iETA1];
4730  par_sig1[0] = (*(Asig51+0))[iETA1];
4731  par_sig1[1] = (*(Asig51+1))[iETA1];
4732  par_sig1[2] = (*(Asig51+2))[iETA1];
4733  par_sig1[3] = (*(Asig51+3))[iETA1];
4734  }
4735  break;
4736  //default:
4737  //return 0.0;
4738  }
4739 
4740 //************* solve equation dLog(Likelihood)/dpt = 0 for muon + ;
4741  //if(fabs(dphi) >= 0.002)
4742  //if(fabs(dphi) >= 0.00)
4743  //if(fabs(dphi) >= 0.002 || (fabs(dphi) >= 0.01 && (type == 12 || type == 14)))
4744  //{
4745  double muPlusMaxLH = -1e9;
4746  double pt = 140;
4747  double step = 5.;
4748  double maxLH = -1e9;
4749  while(pt > 2. )
4750  {
4751  double par_phi12[1] = {dphi};
4752  double v[1], lpt1_1;
4753  v[0] = 0; lpt1_1 = 1.;
4754  v[0] = pt;
4755  lpt1_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
4756 
4757  if (lpt1_1 > maxLH)
4758  {
4759  maxLH = lpt1_1;
4760  PTsolv = pt;
4761  }
4762 
4763  if(pt <= 100) {step = 10.0/4.0;}
4764  if(pt <= 50) {step = 5.0/4.0;}
4765  if(pt <= 20) {step = 2.0/4.0;}
4766  if(pt <= 10) {step = 1.0/4.0;}
4767  if(pt <=5) {step = 0.5/4.0;}
4768 
4769 
4770  pt = pt - step;
4771  }// end while
4772  muPlusMaxLH = maxLH;
4773 
4774 //*********** end solve equation for muon plus
4775 //************* solve equation dLog(Likelihood)/dpt = 0 for muon minus ;
4776 // for one station method we know sing of muon: dphi > 0 for muon minus!!! => dphi = -dphi < 0
4777  double muMinusMaxLH = -1e9;
4778  dphi = - dphi;
4779  pt = 140;
4780  step = 5.;
4781  maxLH = -1e9;
4782  while(pt > 2. )
4783  {
4784  double par_phi12[1] = {dphi};
4785  double v[1], lpt1_1;
4786  v[0] = 0; lpt1_1 = 1.;
4787  v[0] = pt;
4788  lpt1_1 = Likelihood2_2011(par_phi12, par1, par_sig1, v);
4789 
4790  if (lpt1_1 > maxLH)
4791  {
4792  maxLH = lpt1_1;
4793  PTsolvMinus = pt;
4794  }
4795 
4796  if(pt <= 100) {step = 10.0/4.0;}
4797  if(pt <= 50) {step = 5.0/4.0;}
4798  if(pt <= 20) {step = 2.0/4.0;}
4799  if(pt <= 10) {step = 1.0/4.0;}
4800  if(pt <=5) {step = 0.5/4.0;}
4801 
4802 
4803 
4804  pt = pt - step;
4805  }// end while
4806  muMinusMaxLH = maxLH;
4807 
4808 // }// if(fabs(dphi) >= 0.002)
4809 // else
4810 // {PTsolv = 137.5;}
4811 
4812 //*********** end solve equation for muon minus
4813  if (useBestMLH)
4814  PTsolv = (muPlusMaxLH > muMinusMaxLH) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
4815  else
4816  PTsolv = (PTsolv > PTsolvMinus) ? PTsolv: PTsolvMinus; // select Maximum solution from muon plus and moun minus hypotesis
4817 
4818  bestLH = (muPlusMaxLH > muMinusMaxLH) ? muPlusMaxLH : muMinusMaxLH;
4819 
4820 
4821 
4822  PTsolv = PTsolv*1.2;
4823  if(PTsolv > 137.5) PTsolv = 137.5;
4824 
4825  if (useBOXcut)
4826  if(fabs(dphi) <= 0.002 && PTsolv < 120.)PTsolv = 140.;
4827  //if( fabs(dphi) <= 0.01 && (type == 11 || type == 12 || type == 14) && PTsolv < 120.)PTsolv = 140.;
4828  dphi = - dphi; //return to correct sing dphi
4829 
4830  } //if(fabs(eta_TracMy)
4831  } //end "for by iETA"
4832 
4833  float Pt = PTsolv;
4834 
4835  //float Pt_min = trigger_scale->getPtScale()->getLowEdge(1);// 0 GeV
4836  //if(method > 10) Pt_min = trigger_scale->getPtScale()->getLowEdge(3);// 2 GeV
4837  float Pt_min = 2;// 0 GeV
4838 
4839  return (Pt > Pt_min) ? Pt : Pt_min;
4840 }
4841 
4842 
4843 
4844 
4845 
4846 
4847 
4848 
4849 // These arrays contain mean dphi values for each pt and eta bin.
4850 // They are split into fr=0 and fr=1.
4851 
4852 const float CSCTFPtMethods::dphifr0[4][15][28] =
4853  {
4854  {
4855  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4856  {-1, -1, 1253.47, -174.543, -90.845, -36.8835, -13.2793, 3.28278, 11.1568, 12.9352, 12.8576, 12.322, 11.7342, 10.5244, 10.0687, 8.32785, 7.13888, 6.20492, 5.85733, 4.75137, 4.77209, 4.02553, 3.69785, 3.28493, 2.99132, 2.55496, 2.22965, 1.98868},
4857  {-1, -1, -158.232, -135.974, -59.1458, -5.19565, 12.8464, 23.5714, 24.0722, 24.6097, 21.0736, 19.6627, 17.2412, 15.6857, 14.308, 12.6231, 10.4509, 9.9933, 8.24835, 6.92309, 6.57742, 5.69463, 4.74087, 3.78364, 4.21154, 3.27273, 3.10333, 2.60822},
4858  {-1, -1, -187.544, -42.1843, 40.6221, 54.483, 56.7803, 53.5989, 48.8252, 41.8441, 35.5835, 30.7605, 26.9772, 24.2051, 21.5163, 18.7697, 15.6471, 12.8676, 10.9852, 9.93952, 9.17785, 7.91962, 6.87614, 5.85018, 5.10393, 4.67222, 4.02645, 3.547},
4859  {-1, -93.4379, -64.9443, 70.5053, 85.4571, 85.2642, 77.1782, 67.8264, 59.6792, 50.1799, 41.1682, 35.1241, 30.6299, 27.1403, 24.6307, 20.6204, 17.277, 14.4064, 12.6264, 11.5938, 10.0659, 8.76273, 7.54754, 6.535, 5.69304, 5.44025, 4.61045, 3.87704},
4860  {-1, 65.2747, 120.239, 129.902, 115.172, 108.511, 92.9557, 77.3499, 66.5613, 56.856, 45.7164, 39.0012, 33.7201, 30.13, 26.8649, 22.9335, 18.2273, 16.5989, 13.9109, 12.3409, 10.9531, 9.90102, 8.25129, 7.1479, 6.71622, 5.77461, 5.05741, 4.38687},
4861  {1292.54, 139.196, 169.261, 134.554, 129.417, 118.125, 97.2182, 80.5974, 70.3365, 58.7809, 48.6667, 40.7918, 34.917, 30.8781, 28.1953, 23.2852, 19.1667, 14.6401, 14.0676, 12.5932, 11.4459, 9.67685, 8.55686, 7.49359, 6.3961, 6.02812, 5.26887, 4.55128},
4862  {396.903, 408.642, 331.11, 291.154, 244.6, 225.93, 191.418, 159.273, 137.156, 113.559, 92.3122, 77.8488, 67.4872, 57.885, 53.6376, 45.4894, 37.1931, 30.9091, 26.9629, 22.8523, 20.6881, 17.8588, 16.0515, 14.2847, 11.9988, 10.9918, 9.58895, 8.28621},
4863  {634.157, 376.909, 303.487, 269.928, 237.553, 221.337, 183.49, 151.95, 128.961, 108.078, 88.4642, 74.0832, 64.4987, 56.8622, 51.0964, 43.2635, 34.8376, 30.0291, 25.2508, 22.9892, 20.3061, 17.1065, 15.08, 13.1487, 11.3403, 9.8765, 8.67395, 7.70727},
4864  {370.029, 334.631, 284.161, 247.876, 220.082, 190.31, 160.042, 139.043, 119.323, 96.8377, 79.0452, 67.6644, 58.5129, 51.8932, 46.4433, 38.2747, 32.5855, 28.1408, 23.2895, 20.8651, 18.3079, 16.0197, 13.33, 10.7823, 10.5876, 9.3446, 8.18957, 7.13109},
4865  {336.807, 315.636, 263.106, 227.678, 196.301, 172.476, 144.296, 122.167, 107.034, 88.4252, 71.6369, 61.0729, 53.1695, 47.213, 42.3058, 36.058, 27.7351, 25.8168, 21.0509, 19.0587, 16.2367, 14.7198, 12.368, 10.5611, 9.43783, 8.64059, 7.30456, 6.50177},
4866  {562.84, 281.367, 231.744, 197.26, 175.838, 154, 132.991, 112.797, 97.7521, 80.0722, 66.1777, 53.8695, 47.5855, 42.4901, 36.5583, 31.8172, 24.5935, 22.6, 19.9488, 17.8189, 15.1107, 13.2519, 10.8772, 10.1643, 8.80709, 8.00448, 6.02758, 5.14123},
4867  {289.896, 258.601, 215.353, 187.786, 154.972, 143.654, 120.207, 106.698, 88.6531, 75.9, 59.003, 52.4794, 41.7089, 38.3974, 35.4884, 28.7295, 17.5001, 31.3222, 18.7727, 15.4322, 11.8692, 10.5938, 8.97935, 9.22087, 9.05559, 6.60579, 6.4547, 2.855},
4868  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4869  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
4870  },
4871  {
4872  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4873  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4874  {-1, -1, -1, -158, -149.043, -92.0094, -28.6132, 27.8399, 27.5444, 27.5802, 37.07, 24.0291, 24.9195, 20.9748, 18.7762, 22.7466, 14.5682, 28.4577, 11.0263, 29.5137, 7.04546, 7.38512, 7.724, 6.71233, 27.4036, 4.52113, 4.33911, 4.07762},
4875  {-1, -1, -265.6, -144.969, -56.137, -4.4, 30.8879, 44.1075, 45.163, 42.5274, 38.7436, 34.8538, 31.1479, 28.8793, 25.3394, 22.5102, 19.0281, 15.6608, 13.3702, 12.0331, 11.1189, 10.2568, 8.57414, 7.45946, 6.29798, 6.15319, 5.30089, 4.56149},
4876  {-1, -79.5241, -105.242, -29.2478, 33.9726, 60.1505, 67.6247, 67.8742, 63.3538, 55.8014, 47.6468, 41.3991, 36.6279, 32.9551, 29.9351, 25.5988, 21.3793, 17.7866, 15.8878, 14.6346, 12.5951, 11.084, 9.73607, 8.64701, 7.50803, 6.97295, 5.98046, 5.18782},
4877  {-1, -40.3713, 42.1945, 92.9089, 114.43, 113.72, 100.286, 89.219, 77.4508, 66.7699, 55.0464, 47.6297, 41.3828, 36.4328, 33.2834, 28.5722, 23.0725, 21.5406, 18.1268, 16.2328, 13.9065, 12.2744, 10.5509, 9.47753, 8.48564, 7.63124, 6.41131, 5.79205},
4878  {-34.9, 73.3963, 142.631, 145.951, 142.318, 129.656, 111.93, 94.6978, 85.5312, 71.8926, 60.7711, 50.9572, 44.9347, 39.6302, 36.0288, 30.04, 24.3307, 21.7811, 18.3903, 16.2716, 14.7719, 12.8338, 11.2943, 9.72188, 8.62582, 7.73165, 6.73526, 5.93205},
4879  {7368.83, 502.793, 291.618, 282.933, 244.114, 233.502, 201.302, 172.276, 148.921, 125.128, 102.477, 86.3142, 75.3546, 64.468, 60.2395, 50.8744, 42.101, 35.6805, 30.7703, 26.6287, 23.2273, 20.6701, 17.2109, 15.2909, 13.682, 12.3394, 11.0076, 9.19048},
4880  {82.7323, 379.23, 270.613, 264.088, 246.284, 233.18, 190.228, 162.832, 141.282, 119.001, 96.1594, 81.5045, 71.5023, 63.5261, 57.4827, 48.7483, 38.0439, 34.4778, 29.625, 25.2903, 23.1887, 20.6185, 17.7059, 14.7975, 12.9311, 11.9939, 11.016, 9.50148},
4881  {185.843, 294.953, 268.259, 250.028, 232.276, 209.138, 174.647, 153.029, 132.233, 109.333, 91.0324, 76.9822, 67.8374, 59.8954, 53.4497, 43.553, 37.6139, 32.7444, 27.023, 23.9679, 20.9309, 19.1485, 16.0294, 13.8003, 12.3176, 11.3441, 9.55937, 8.54497},
4882  {348.282, 310.699, 268.381, 243.254, 217.179, 187.212, 162.957, 136.969, 124.132, 101.48, 81.8314, 71.5882, 61.3147, 54.9158, 49.5517, 42.7537, 33.5, 29.7412, 26.1131, 23.1024, 19.7197, 17.708, 14.0364, 12.8054, 11.8375, 10.4924, 9.04095, 8.33528},
4883  {324.513, 290.628, 251.147, 216.936, 198.177, 176.297, 151.909, 129.606, 113.817, 94.3377, 76.6785, 64.382, 56.4567, 51.125, 43.4356, 37.6896, 30.338, 26.5577, 23.1858, 20.4549, 18.0182, 16.0098, 13.1211, 11.8445, 11.3616, 9.25812, 8.4992, 7.35148},
4884  {244.009, 279.89, 230.644, 231.457, 172.803, 163.804, 140.071, 126.029, 107.683, 91.6615, 72.0354, 64.4556, 50.6761, 46.5068, 41.6472, 35.4661, 21.2969, 38.4268, 19.632, 18.4574, 12.839, 14.213, 12.4018, 12.0424, 9.6145, 8.22918, 9.88007, 6.12946},
4885  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4886  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
4887  },
4888  {
4889  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4890  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4891  {-1, -1, -251.167, -157.188, -100.839, -70.7716, -31.9278, -14.7414, -6.46332, -1.43471, 1.10161, 1.95823, 2.6771, 2.52718, 2.67548, 2.75908, 2.87331, 2.61814, 1.92056, 2.16773, 1.70225, 1.70877, 1.55219, 1.43065, 1.53014, 1.69851, 1.40267, 1.46639},
4892  {-1, -1, -243.237, -145.933, -87.2068, -48.5578, -21.9141, -7.68402, -2.83933, 1.21596, 2.94545, 4.083, 3.97067, 4.12142, 3.78849, 3.83645, 3.07738, 2.90695, 2.53516, 2.51623, 2.31173, 2.2246, 1.85357, 1.78656, 1.65385, 1.57375, 1.40617, 1.35693},
4893  {-1, -110, -141.651, -118.596, -52.606, -23.472, -8.09735, 0.683589, 3.57165, 5.25367, 5.8348, 5.67137, 5.26599, 5.1816, 4.84428, 4.6964, 4.06178, 3.27554, 3, 2.92343, 2.56487, 2.47989, 2.32236, 1.83586, 1.84201, 1.97658, 1.64081, 1.56958},
4894  {-1, -106.053, -87.5398, -49.1882, -11.1091, -0.606904, 6.08278, 8.18373, 9.14269, 8.82061, 8.39517, 7.5095, 6.66552, 6.06293, 5.79917, 5.11953, 4.08928, 3.87, 3.71985, 3.4277, 2.925, 2.47762, 2.49134, 2.1793, 2.11341, 1.8709, 1.68674, 1.69234},
4895  {-116.854, -103.914, -48.6067, -7.80512, 4.11674, 8.14952, 11.6643, 11.178, 11.3862, 10.0188, 9.46565, 8.32955, 7.58777, 6.63929, 6.08499, 5.66225, 4.70548, 4.09773, 4.0294, 3.23529, 2.62532, 2.89612, 2.52651, 2.27649, 1.99773, 1.96176, 2.06313, 2.12814},
4896  {-146.18, -59.7282, -12.5, 3.08192, 8.34909, 11.1753, 15.2845, 14.8204, 14.3607, 12.9987, 11.1043, 9.964, 8.90504, 8.31783, 7.36251, 6.6915, 6.24035, 4.98582, 4.03066, 5.83789, 3.10856, 2.96333, 3.06171, 2.23047, 2.32792, 2.18535, 2.38165, 2.42884},
4897  {-233.643, -96.4333, -30.9536, -2.51866, 5.30801, 7.45312, 14.238, 12.5321, 12.7695, 11.741, 10.4656, 8.62541, 7.93922, 7.51216, 6.53463, 5.50929, 4.6268, 4.64697, 4.30481, 3.52426, 3.45212, 3.73824, 4.07812, 2.33724, 2.51972, 2.21704, 3.41317, 2.55682},
4898  {-211.848, -67.9261, -9.6179, 2.65525, 11.0301, 16.4831, 16.0704, 15.4027, 15.1086, 13.5929, 11.7898, 9.90025, 9.13345, 8.25683, 7.21617, 6.25572, 5.43346, 4.54866, 3.83221, 3.4237, 3.65898, 3.65808, 3.18498, 2.75829, 2.37531, 2.88444, 1.95099, 1.89066},
4899  {-143.833, -12.2832, 7.8963, 16.4622, 19.9538, 17.4053, 18.3962, 16.7577, 15.9486, 14.1232, 11.1662, 10.5826, 9.11908, 8.38156, 7.65503, 6.84281, 5.95331, 4.69263, 4.88752, 3.84843, 3.79038, 3.24503, 2.73708, 2.6645, 2.5017, 2.13435, 1.87916, 2.1749},
4900  {-37.4431, 11.3047, 18.5, 23.1562, 22.8984, 22.1124, 20.1964, 19.4342, 17.2078, 15.1252, 12.2962, 10.5784, 9.23938, 8.73254, 7.106, 6.7301, 5.53248, 4.62478, 3.82739, 3.07251, 2.79682, 2.8214, 2.92242, 2.47091, 2.63102, 1.94484, 2.30322, 2.64068},
4901  {4.24623, 23.1041, 27.5407, 28, 23.0684, 24.1685, 21.3723, 19.4634, 16.9631, 14.3876, 12.3701, 10.1272, 9.12229, 7.9875, 7.06019, 5.96169, 5.53393, 4.32105, 3.66794, 3.70074, 3.20382, 3.47729, 3.06609, 2.26191, 2.48768, 2.01323, 2.73772, 2.66561},
4902  {33.3344, 32.716, 30.0851, 30.6933, 29.2431, 25.6295, 21.674, 19.3741, 17.7184, 14.8413, 12.1543, 10.4758, 9.33113, 7.79187, 7.39106, 5.8376, 6.08377, 4.85748, 4.16908, 3.88557, 3.14086, 3.11306, 2.98297, 3.33859, 2.04182, 2.32861, 2.75164, 2.29621},
4903  {46.1357, 38.8426, 36.6976, 32.0038, 29.6956, 23.4889, 22.725, 19.779, 17.5173, 14.7043, 11.9171, 10.7871, 9.06671, 8.23658, 7.41977, 6.46988, 4.93792, 4.55465, 4.20588, 3.82236, 3.62993, 2.83949, 2.95902, 1.99063, 2.37545, 2.28563, 2.49407, 2.52411}
4904  },
4905  {
4906  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4907  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4908  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4909  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4910  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4911  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4912  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4913  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4914  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4915  {-417.629, -218.804, -63.1122, -34.5828, -10.68, 2.75084, 8.65719, 11.6155, 13.6253, 12.1802, 12.5535, 10.8028, 9.48349, 9.38468, 7.83699, 6.99092, 5.30562, 4.20316, 4.41177, 4.52123, 3.31882, 3.91104, 3.77374, 4.04567, 2.35974, 2.35145, 2.96747, 1.98381},
4916  {-311.688, -93.8205, -32.57, -6.85071, 6.45113, 7.97528, 13.5012, 15.2368, 16.5485, 14.4764, 12.181, 11.4092, 10.3418, 9.29414, 9.04287, 7.72862, 7.46558, 5.20657, 5.19399, 5.61358, 3.9523, 3.20885, 3.29034, 2.82267, 2.91734, 2.38053, 2.44655, 2.36229},
4917  {-161.948, -37.0248, -4.60393, 8.56983, 13.4828, 19.0043, 18.3378, 20.0726, 18.3394, 16.8149, 14.4702, 12.2298, 10.8159, 10.422, 8.29546, 7.70715, 6.26524, 5.70706, 5.26374, 4.44881, 4.80797, 3.24519, 3.09801, 2.73461, 3.34774, 2.88844, 2.34626, 2.76387},
4918  {-72.1648, -12.5057, 16.9112, 23.5819, 20.6731, 21.814, 22.9407, 19.6563, 19.1021, 16.9339, 15.2842, 12.4743, 11.0013, 10.0748, 8.91402, 7.27224, 6.15542, 5.23092, 4.49629, 4.25791, 3.79059, 3.70681, 3.31756, 2.62265, 3.45895, 2.19926, 2.15639, 2.7466},
4919  {2.3118, 20.9883, 24.9015, 32.366, 32.2839, 29.3505, 24.8013, 23.3821, 21.1815, 18.3139, 15.0436, 13.3637, 11.4887, 9.84427, 9.51972, 8.22026, 6.8517, 5.85862, 4.95269, 4.5885, 3.45462, 4.03355, 3.70984, 4.04694, 2.46266, 2.50179, 3.23813, 2.46999},
4920  {30.7084, 40.046, 40.956, 39.7092, 36.4134, 28.415, 28.5543, 24.9346, 23.1865, 19.4968, 15.3536, 14.0231, 12.0163, 10.7639, 9.82125, 8.36598, 6.4058, 5.88361, 5.13249, 4.51457, 4.9171, 3.87165, 3.58904, 2.85879, 2.53645, 2.81466, 2.72057, 3.18122}
4921  }
4922  };
4923 
4924 const float CSCTFPtMethods::dphifr1[4][15][28] =
4925  {
4926  {
4927  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4928  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4929  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4930  {-1, -1, -174.092, -53.9867, 10.2441, 27.4286, 36.9822, 37.5167, 34.3051, 31.8195, 27.8286, 24.1206, 21.161, 19.0382, 17.1718, 14.6208, 12.2432, 10.7876, 9.69835, 8.08848, 7.13485, 6.60187, 5.18874, 5.13839, 4.41612, 4.14069, 3.58335, 3.01529},
4931  {-1, 1138.05, -49.183, 2.6568, 58.5809, 57.9481, 56.8007, 51.1911, 44.5243, 37.806, 32.1175, 27.5585, 24.3955, 21.7533, 19.3667, 17.0463, 13.9365, 11.8102, 10.2398, 9.1678, 8.26393, 7.18307, 6.13392, 5.533, 4.8865, 4.11951, 3.87238, 3.48248},
4932  {-1, 9.64577, 56.9057, 81.944, 82.4872, 78.3198, 68.8015, 60.7978, 52.6542, 44.3584, 37.3611, 31.2648, 27.235, 24.5, 22.04, 18.5, 15.75, 12.9557, 11.2655, 10.2491, 9.21672, 8.30474, 6.64511, 6.13513, 5.34219, 4.95, 4.23425, 3.6963},
4933  {97.5, 87.4578, 120.684, 105.38, 98.3177, 87.4048, 75.9, 65.9142, 56.1879, 47.6314, 39.6183, 33.2005, 28.7316, 25.4495, 22.9327, 19.4612, 15.7254, 13.8618, 11.9249, 10.0859, 9.444, 8.11458, 6.95662, 6.25641, 5.44159, 5.19583, 4.35396, 3.83333},
4934  {693.205, 454.942, 655.428, 360.329, 323.261, 275.945, 234.843, 196.055, 167.247, 139.873, 113.932, 95.6506, 82.789, 72.2128, 64.9871, 53.997, 43.4461, 39.0238, 33.6322, 28.8622, 25.6006, 21.9322, 18.5028, 16.0912, 14.2918, 12.4941, 10.5138, 9.05925},
4935  {9146.66, 471.958, 387.082, 340.914, 286.893, 262.777, 224.112, 184.982, 155.447, 133.684, 107.642, 91.5521, 78.135, 69.0562, 61.4634, 52.4394, 42.1881, 36.5169, 30.0318, 27.9321, 24.4145, 21.0881, 17.9552, 14.6189, 13.2301, 12.9111, 10.8691, 8.35492},
4936  {540.281, 410.901, 354.276, 301.779, 253.803, 238.881, 199.465, 167.136, 145.674, 119.585, 97.0842, 82.3805, 70.6386, 62.154, 55.8136, 46.3101, 37.2817, 33.507, 28.8241, 25.774, 22.4889, 19.8697, 16.1007, 13.3432, 12.4647, 11.9955, 9.6895, 8.46321},
4937  {419.005, 377.428, 314.861, 270.658, 240.487, 213.074, 182.994, 151.52, 129.287, 108.487, 87.9791, 74.8889, 64.8147, 56.7597, 50.5058, 42.6958, 35.6277, 29.9064, 26.1033, 22.5358, 20.6119, 17.9656, 15.3201, 13.1018, 11.7756, 10.129, 8.86099, 7.58348},
4938  {2783.23, 334.238, 275.818, 240.947, 205.026, 186.945, 163.992, 138.569, 117.64, 100.381, 81.1057, 68.0913, 58.8849, 52.6374, 45.2179, 38.059, 32.6702, 26.3298, 23.0484, 18.3201, 18.1814, 16.0936, 12.7571, 12.2673, 9.95479, 8.37502, 7.42398, 6.72237},
4939  {-1, -1, -1, -1, -1, 143.654, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 9.23717, 9.05559, -1, -1, 338.089},
4940  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4941  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
4942  },
4943  {
4944  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4945  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4946  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4947  {-1, -1, -293.3, -150.312, -41.3547, -4.93182, 20.0224, 31.2313, 31.0566, 33.3205, 30.2863, 27.2634, 24.2872, 22.0512, 19.596, 17.3902, 14.2112, 12.6609, 11.407, 10.2093, 8.85659, 7.85742, 6.4135, 6.23362, 5.41945, 4.95306, 4.41755, 3.82303},
4948  {-1, -143.627, -143.826, -62.3445, 23.7381, 51.7379, 55.9747, 54.5144, 47.9348, 42.2055, 37.0868, 31.9699, 28.8453, 26.0344, 23.1051, 20.5071, 17.1946, 14.1772, 12.4708, 11.3144, 9.88063, 8.86923, 7.67165, 6.4322, 5.96624, 5.18282, 4.81762, 4.28301},
4949  {-1, -13.3855, 5.16716, 64.1898, 72.3294, 76.3905, 73.7962, 67.3364, 59.9099, 51.4343, 43.5279, 37.1873, 31.7994, 29.0358, 26.5368, 22.0615, 19.1543, 15.4385, 14.2599, 12.3375, 10.9493, 9.73496, 8.26995, 7.45197, 6.60214, 6.08206, 5.15337, 4.66445},
4950  {-42.7682, 47.3889, 103.482, 107.735, 107.75, 94.9291, 87.763, 75.9543, 65.4694, 56.7377, 47.3143, 39.9327, 34.7819, 31.2361, 27.8932, 24.1076, 19.6767, 17.1081, 15.427, 12.8984, 11.4228, 10.0318, 8.49021, 7.90816, 6.72917, 6.39571, 5.45637, 4.61281},
4951  {541.234, 465.806, 429.209, 372.183, 331.067, 285.903, 258.37, 216.269, 181.991, 154.204, 125.987, 107.564, 91.8176, 81.5452, 73.1247, 59.1412, 51, 43.3898, 37.9118, 33.2887, 28.8381, 25.3079, 21.6463, 17.6858, 16.9908, 14.841, 11.8149, 10.9434},
4952  {255.594, 371.519, 358.173, 343.459, 285.798, 262.664, 238.913, 194.777, 163.618, 142.465, 116.934, 98.3012, 84.7328, 73.9315, 66.1496, 57.1145, 45.7455, 39.2169, 33.571, 28.7347, 27.0902, 22.7753, 19.8191, 16.4045, 15.2075, 14.0935, 12.3427, 9.36143},
4953  {275.796, 423.747, 347.249, 303.803, 270.357, 254.279, 217.372, 182.151, 161.833, 132.635, 108.221, 91.6597, 79.5534, 69.683, 62.6926, 52.9109, 42.95, 36.9714, 31.6704, 28.9253, 25.7569, 22.4706, 18.5914, 16.0164, 14.43, 14.6449, 11.4458, 9.78841},
4954  {378.542, 349.351, 319.333, 285.503, 261.452, 233.428, 201.215, 165.997, 145.442, 121.289, 98.8432, 84.1681, 72.9111, 64.2952, 58.4893, 48.2012, 41.2393, 34.1303, 29.9633, 26.1572, 23.1371, 20.5019, 17.2906, 15.0458, 14.0115, 11.7586, 10.045, 9.31029},
4955  {557.927, 338.049, 301.204, 265.456, 232.807, 212.31, 185.76, 158.503, 132.332, 113.382, 91.8123, 76.8816, 67.1968, 60.2717, 52.0559, 44.363, 36.5282, 29.777, 25.6156, 22.1842, 20.2098, 18.3932, 15.1911, 14.1691, 12.6889, 10.8789, 10.4976, 7.84804},
4956  {-1, -1, -1, -1, -1, 2154.03, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 12.2722, 8.95391, -1, -1, 337.608},
4957  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4958  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1}
4959  },
4960  {
4961  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4962  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4963  {-1, -1, -251.167, -157.188, -100.839, -70.7716, -31.9278, -14.7414, -6.46332, -1.43471, 1.10161, 1.95823, 2.6771, 2.52718, 2.67548, 2.75908, 2.87331, 2.61814, 1.92056, 2.16773, 1.70225, 1.70877, 1.55219, 1.43065, 1.53014, 1.69851, 1.40267, 1.46639},
4964  {-1, -1, -243.237, -145.933, -87.2068, -48.5578, -21.9141, -7.68402, -2.83933, 1.21596, 2.94545, 4.083, 3.97067, 4.12142, 3.78849, 3.83645, 3.07738, 2.90695, 2.53516, 2.51623, 2.31173, 2.2246, 1.85357, 1.78656, 1.65385, 1.57375, 1.40617, 1.35693},
4965  {-1, -110, -141.651, -118.596, -52.606, -23.472, -8.09735, 0.683589, 3.57165, 5.25367, 5.8348, 5.67137, 5.26599, 5.1816, 4.84428, 4.6964, 4.06178, 3.27554, 3, 2.92343, 2.56487, 2.47989, 2.32236, 1.83586, 1.84201, 1.97658, 1.64081, 1.56958},
4966  {-1, -106.053, -87.5398, -49.1882, -11.1091, -0.606904, 6.08278, 8.18373, 9.14269, 8.82061, 8.39517, 7.5095, 6.66552, 6.06293, 5.79917, 5.11953, 4.08928, 3.87, 3.71985, 3.4277, 2.925, 2.47762, 2.49134, 2.1793, 2.11341, 1.8709, 1.68674, 1.69234},
4967  {-116.854, -103.914, -48.6067, -7.80512, 4.11674, 8.14952, 11.6643, 11.178, 11.3862, 10.0188, 9.46565, 8.32955, 7.58777, 6.63929, 6.08499, 5.66225, 4.70548, 4.09773, 4.0294, 3.23529, 2.62532, 2.89612, 2.52651, 2.27649, 1.99773, 1.96176, 2.06313, 2.12814},
4968  {-146.18, -59.7282, -12.5, 3.08192, 8.34909, 11.1753, 15.2845, 14.8204, 14.3607, 12.9987, 11.1043, 9.964, 8.90504, 8.31783, 7.36251, 6.6915, 6.24035, 4.98582, 4.03066, 5.83789, 3.10856, 2.96333, 3.06171, 2.23047, 2.32792, 2.18535, 2.38165, 2.42884},
4969  {-233.643, -96.4333, -30.9536, -2.51866, 5.30801, 7.45312, 14.238, 12.5321, 12.7695, 11.741, 10.4656, 8.62541, 7.93922, 7.51216, 6.53463, 5.50929, 4.6268, 4.64697, 4.30481, 3.52426, 3.45212, 3.73824, 4.07812, 2.33724, 2.51972, 2.21704, 3.41317, 2.55682},
4970  {-211.848, -67.9261, -9.6179, 2.65525, 11.0301, 16.4831, 16.0704, 15.4027, 15.1086, 13.5929, 11.7898, 9.90025, 9.13345, 8.25683, 7.21617, 6.25572, 5.43346, 4.54866, 3.83221, 3.4237, 3.65898, 3.65808, 3.18498, 2.75829, 2.37531, 2.88444, 1.95099, 1.89066},
4971  {-143.833, -12.2832, 7.8963, 16.4622, 19.9538, 17.4053, 18.3962, 16.7577, 15.9486, 14.1232, 11.1662, 10.5826, 9.11908, 8.38156, 7.65503, 6.84281, 5.95331, 4.69263, 4.88752, 3.84843, 3.79038, 3.24503, 2.73708, 2.6645, 2.5017, 2.13435, 1.87916, 2.1749},
4972  {-37.4431, 11.3047, 18.5, 23.1562, 22.8984, 22.1124, 20.1964, 19.4342, 17.2078, 15.1252, 12.2962, 10.5784, 9.23938, 8.73254, 7.106, 6.7301, 5.53248, 4.62478, 3.82739, 3.07251, 2.79682, 2.8214, 2.92242, 2.47091, 2.63102, 1.94484, 2.30322, 2.64068},
4973  {4.24623, 23.1041, 27.5407, 28, 23.0684, 24.1685, 21.3723, 19.4634, 16.9631, 14.3876, 12.3701, 10.1272, 9.12229, 7.9875, 7.06019, 5.96169, 5.53393, 4.32105, 3.66794, 3.70074, 3.20382, 3.47729, 3.06609, 2.26191, 2.48768, 2.01323, 2.73772, 2.66561},
4974  {33.3344, 32.716, 30.0851, 30.6933, 29.2431, 25.6295, 21.674, 19.3741, 17.7184, 14.8413, 12.1543, 10.4758, 9.33113, 7.79187, 7.39106, 5.8376, 6.08377, 4.85748, 4.16908, 3.88557, 3.14086, 3.11306, 2.98297, 3.33859, 2.04182, 2.32861, 2.75164, 2.29621},
4975  {46.1357, 38.8426, 36.6976, 32.0038, 29.6956, 23.4889, 22.725, 19.779, 17.5173, 14.7043, 11.9171, 10.7871, 9.06671, 8.23658, 7.41977, 6.46988, 4.93792, 4.55465, 4.20588, 3.82236, 3.62993, 2.83949, 2.95902, 1.99063, 2.37545, 2.28563, 2.49407, 2.52411}
4976  },
4977  {
4978  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4979  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4980  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4981  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4982  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4983  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4984  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4985  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4986  {-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1},
4987  {-417.629, -218.804, -63.1122, -34.5828, -10.68, 2.75084, 8.65719, 11.6155, 13.6253, 12.1802, 12.5535, 10.8028, 9.48349, 9.38468, 7.83699, 6.99092, 5.30562, 4.20316, 4.41177, 4.52123, 3.31882, 3.91104, 3.77374, 4.04567, 2.35974, 2.35145, 2.96747, 1.98381},
4988  {-311.688, -93.8205, -32.57, -6.85071, 6.45113, 7.97528, 13.5012, 15.2368, 16.5485, 14.4764, 12.181, 11.4092, 10.3418, 9.29414, 9.04287, 7.72862, 7.46558, 5.20657, 5.19399, 5.61358, 3.9523, 3.20885, 3.29034, 2.82267, 2.91734, 2.38053, 2.44655, 2.36229},
4989  {-161.948, -37.0248, -4.60393, 8.56983, 13.4828, 19.0043, 18.3378, 20.0726, 18.3394, 16.8149, 14.4702, 12.2298, 10.8159, 10.422, 8.29546, 7.70715, 6.26524, 5.70706, 5.26374, 4.44881, 4.80797, 3.24519, 3.09801, 2.73461, 3.34774, 2.88844, 2.34626, 2.76387},
4990  {-72.1648, -12.5057, 16.9112, 23.5819, 20.6731, 21.814, 22.9407, 19.6563, 19.1021, 16.9339, 15.2842, 12.4743, 11.0013, 10.0748, 8.91402, 7.27224, 6.15542, 5.23092, 4.49629, 4.25791, 3.79059, 3.70681, 3.31756, 2.62265, 3.45895, 2.19926, 2.15639, 2.7466},
4991  {2.3118, 20.9883, 24.9015, 32.366, 32.2839, 29.3505, 24.8013, 23.3821, 21.1815, 18.3139, 15.0436, 13.3637, 11.4887, 9.84427, 9.51972, 8.22026, 6.8517, 5.85862, 4.95269, 4.5885, 3.45462, 4.03355, 3.70984, 4.04694, 2.46266, 2.50179, 3.23813, 2.46999},
4992  {30.7084, 40.046, 40.956, 39.7092, 36.4134, 28.415, 28.5543, 24.9346, 23.1865, 19.4968, 15.3536, 14.0231, 12.0163, 10.7639, 9.82125, 8.36598, 6.4058, 5.88361, 5.13249, 4.51457, 4.9171, 3.87165, 3.58904, 2.85879, 2.53645, 2.81466, 2.72057, 3.18122}
4993  }
4994  };
4995 
4996 
4997 const float CSCTFPtMethods::sigmafr0[4][15][28] =
4998  {
4999  {
5000  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5001  {1, 1, 68.1251, 119.334, 71.9663, 47.2033, 34.4095, 24.1757, 16.9244, 14.21, 10.0848, 8.28308, 7.49682, 7.5252, 5.7771, 5.67435, 5.05335, 4.03134, 3.38787, 3.49897, 3.27399, 4.38102, 3.45241, 3.57641, 2.74292, 2.58754, 2.82597, 3.02336},
5002  {1, 1, 11.2171, 180.376, 95.0863, 45.7334, 36.6456, 24.597, 16.4907, 15.2826, 12.8201, 10.0379, 9.45291, 8.26339, 6.8289, 6.16693, 4.85849, 12.1669, 4.04481, 3.76596, 3.33028, 3.0602, 2.82333, 6.10153, 3.8862, 4.83151, 2.99154, 2.87868},
5003  {1, 1, 214.489, 145.179, 39.8377, 32.3612, 24.983, 17.3205, 14.5435, 11.4038, 8.99103, 7.65653, 7.03634, 6.16057, 5.35274, 6.44559, 4.63289, 3.48617, 3.32857, 3.25099, 3.28055, 3.0714, 2.58432, 2.61066, 2.99103, 2.85844, 3.29465, 3.06768},
5004  {1, 2.17804, 246.204, 73.5985, 34.3397, 27.9956, 21.2206, 15.6835, 13.173, 11.1528, 9.00959, 7.51184, 6.55643, 5.56576, 5.47, 5.43772, 4.62926, 3.37312, 3.33237, 3.59496, 2.67392, 2.79043, 3.0637, 2.60009, 3.12616, 3.22084, 3.22784, 3.62183},
5005  {1, 178.428, 54.0668, 50.639, 30.0806, 26.6723, 18.1088, 16.2946, 12.3097, 11.9197, 9.76022, 7.47657, 6.44478, 6.32831, 5.64725, 4.21032, 3.63872, 4.3096, 3.11977, 3.49313, 2.69508, 3.80622, 2.76555, 2.70835, 3.1522, 2.74832, 2.77429, 2.80946},
5006  {33.7724, 127.162, 36.813, 83.7352, 41.0058, 28.8809, 20.1964, 14.9477, 14.2195, 11.9145, 11.2838, 7.30775, 8.05355, 7.12897, 7.13998, 4.44287, 3.82913, 15.6533, 3.1924, 3.68782, 2.97145, 3.00122, 2.60565, 2.86444, 2.25535, 2.47471, 2.46453, 2.92709},
5007  {63.4126, 78.9729, 63.6832, 49.5751, 46.9535, 42.779, 36.3592, 31.1099, 23.5997, 21.204, 16.8426, 16.7998, 13.9811, 12.5411, 10.5253, 13.362, 8.63362, 6.77557, 6.6511, 14.3978, 8.47154, 10.8782, 7.15581, 5.88536, 8.01652, 12.0409, 6.80079, 9.92202},
5008  {323.587, 130.398, 76.2136, 54.71, 44.2662, 43.958, 40.2353, 30.8886, 26.9603, 24.2783, 17.5786, 15.1457, 15.3706, 13.0387, 11.2397, 11.2636, 7.87718, 10.9021, 7.53715, 8.17749, 6.93261, 17.4198, 4.87206, 5.71908, 6.3438, 9.25595, 11.7572, 6.81276},
5009  {125.501, 86.1114, 78.0846, 56.6407, 42.2517, 43.9773, 35.4223, 31.0062, 26.3755, 22.5857, 20.9842, 17.2539, 14.0029, 12.3455, 11.3132, 13.3154, 8.60381, 8.35366, 6.2164, 6.76689, 6.09496, 5.59811, 8.17196, 13.4268, 6.02764, 5.67951, 6.71677, 8.7109},
5010  {95.8611, 75.3004, 65.2466, 53.2109, 47.9975, 40.0404, 31.958, 30.4257, 27.7305, 25.0529, 17.6693, 15.6535, 14.5663, 11.3021, 11.7363, 9.1677, 11.1228, 7.84579, 6.95689, 7.39175, 8.02251, 6.36251, 6.64162, 7.60716, 5.71819, 8.15284, 6.63158, 6.81248},
5011  {274.776, 85.1791, 62.5779, 52.2624, 45.0418, 38.0133, 33.6947, 28.865, 27.5922, 23.043, 19.7818, 17.272, 15.9374, 13.4469, 11.8057, 11.5461, 10.9067, 11.0404, 8.0732, 10.2156, 10.7966, 8.75473, 8.18003, 20.2431, 14.1253, 10.6056, 14.0389, 18.7348},
5012  {81.1599, 81.4479, 69.629, 57.8942, 56.9895, 32.849, 30.7188, 31.1175, 24.4425, 21.2399, 15.3807, 20.083, 15.6961, 11.7551, 15.4998, 10.336, 95.0491, 69.3807, 9.18389, 8.17367, 17.986, 10.1523, 12.8713, 12.5117, 13.3384, 6.82039, 12.7359, 26.3342},
5013  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5014  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
5015  },
5016  {
5017  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5018  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5019  {1, 1, 1, 0.213802, 110.043, 85.1732, 83.1862, 87.3043, 33.7737, 23.0747, 63.8276, 15.2175, 27.868, 12.6669, 17.1469, 50.731, 9.70449, 64.2886, 5.70197, 81.6955, 9.51219, 7.0649, 8.84973, 5.99795, 83.4597, 4.3645, 5.86517, 5.28726},
5020  {1, 1, 89.5159, 113.68, 91.6962, 77.6377, 52.0035, 33.9964, 28.4368, 21.664, 16.7158, 14.0169, 11.7753, 10.7078, 10.2129, 8.69455, 6.96017, 5.68121, 5.38927, 4.89401, 4.95697, 4.9322, 3.65117, 3.25201, 3.55802, 4.72346, 3.40616, 3.19724},
5021  {1, 3.65071, 167.809, 118.577, 79.2131, 62.7322, 46.6568, 31.0416, 24.7606, 20.1139, 16.3567, 13.9311, 12.4083, 10.2061, 9.70802, 8.58308, 7.39169, 5.60975, 6.81223, 4.72617, 4.29868, 4.44951, 4.15795, 3.71309, 3.85244, 3.71955, 3.6068, 4.61138},
5022  {1, 143.017, 114.974, 80.9475, 65.7978, 58.7383, 33.663, 40.7059, 22.9966, 20.6734, 16.5455, 13.8755, 12.3398, 12.2325, 10.2504, 7.705, 7.19971, 9.05019, 6.72006, 5.09801, 5.65375, 4.89251, 3.85383, 5.25096, 3.76551, 3.68784, 3.63877, 3.53497},
5023  {70.5084, 123.26, 74.5829, 51.9644, 47.7945, 42.5259, 34.1665, 27.4405, 24.5782, 19.7956, 16.2276, 12.4019, 11.9461, 10.1038, 9.26924, 8.81221, 6.45554, 6.13044, 6.01564, 5.92054, 5.00283, 3.79784, 4.43493, 3.38759, 3.06995, 3.1821, 3.37826, 3.39659},
5024  {1217.05, 201.975, 85.5261, 68.5927, 66.6012, 60.9998, 53.6427, 48.6075, 31.7341, 27.728, 24.6024, 22.4018, 15.7743, 17.3198, 13.7922, 11.3731, 10.1716, 9.0544, 8.50262, 14.2347, 6.81764, 8.60334, 9.55753, 7.02884, 6.94412, 5.80156, 7.08978, 8.2179},
5025  {236.657, 244.966, 112.373, 78.8199, 67.8974, 66.5142, 55.7426, 43.4698, 42.7562, 31.9949, 26.366, 19.1138, 19.3944, 20.4525, 14.6857, 12.3677, 10.7261, 12.6794, 8.76137, 12.16, 6.75415, 10.3045, 7.91157, 7.42901, 6.80211, 6.86062, 12.349, 10.4941},
5026  {256.896, 159.681, 100.055, 84.1373, 62.7979, 61.6566, 48.3574, 40.4226, 36.0741, 31.4883, 25.5559, 23.7784, 17.1684, 15.61, 16.1722, 15.1145, 10.1943, 10.9007, 10.3402, 7.54424, 7.313, 7.46722, 7.17864, 7.46414, 6.75702, 5.89486, 6.40948, 8.48163},
5027  {257.504, 109.282, 103.033, 75.7751, 76.7721, 58.9241, 48.3108, 41.4407, 39.4679, 33.6439, 24.8537, 21.3699, 18.0898, 16.9161, 15.6342, 14.1586, 12.3244, 9.18785, 10.0318, 9.4986, 8.91357, 11.6174, 18.6761, 9.52487, 6.88319, 13.6627, 9.81258, 14.6774},
5028  {169.185, 113.197, 93.9858, 75.5571, 65.2782, 52.2785, 48.0109, 40.0461, 36.6626, 30.353, 25.1063, 20.7361, 18.792, 16.958, 14.6701, 13.3799, 13.4912, 9.98326, 9.89502, 12.4285, 10.494, 11.2434, 8.54232, 16.3106, 14.0824, 8.59128, 9.7086, 12.0069},
5029  {101.76, 119.944, 74.5477, 78.6374, 68.0419, 54.84, 40.7916, 44.7959, 40.9335, 33.4932, 22.5979, 24.5248, 18.5872, 15.2081, 15.6492, 10.4524, 103.653, 66.9111, 17.5435, 8.81236, 15.4697, 9.49944, 13.4211, 9.33341, 11.9129, 8.46251, 14.9693, 10.4711},
5030  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5031  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
5032  },
5033  {
5034  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5035  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5036  {1, 1, 0.0011042, 86.9352, 75.2624, 52.2464, 32.6091, 20.4476, 13.4983, 11.2587, 8.80378, 7.11921, 7.0583, 5.68815, 6.20848, 4.34774, 5.45062, 5.4936, 3.43077, 3.33174, 3.04659, 3.8793, 3.11545, 2.97137, 3.92529, 4.57437, 3.88033, 3.82278},
5037  {1, 1, 94.2962, 87.2608, 63.6413, 44.4619, 27.8601, 17.1249, 14.5496, 10.6136, 8.1779, 7.43897, 6.44223, 6.07491, 5.71576, 5.80677, 4.30508, 3.71754, 3.50651, 3.11441, 4.01509, 3.70184, 3.27363, 3.07401, 3.82936, 3.74439, 2.99869, 3.56942},
5038  {1, 0.263982, 119.77, 91.7619, 57.8566, 34.9019, 22.023, 15.941, 12.22, 10.1212, 8.34203, 7.32761, 6.13686, 5.47659, 5.31636, 4.7639, 4.16051, 3.54105, 4.07639, 3.09476, 3.04313, 3.29353, 3.70995, 2.79947, 3.94107, 3.99605, 3.96949, 4.88657},
5039  {1, 113.045, 93.6573, 70.568, 31.0566, 20.7173, 16.8019, 14.8641, 11.9429, 9.96161, 7.87523, 6.7396, 6.18326, 6.16374, 5.35523, 3.95939, 4.04783, 4.28055, 3.89598, 3.4252, 3.42753, 3.48459, 3.23155, 3.19143, 4.02432, 3.06929, 3.42948, 4.04161},
5040  {0.447397, 105.302, 76.6619, 31.9851, 22.4774, 19.276, 17.7676, 14.1965, 10.8272, 10.1416, 7.62459, 6.60822, 7.21393, 6.00029, 5.10027, 4.89418, 4.42892, 3.707, 6.06502, 3.37472, 3.49089, 3.46185, 6.33915, 3.3654, 3.30022, 3.36655, 4.87842, 8.07411},
5041  {152.08, 112.801, 47.3659, 30.5674, 29.0316, 22.3914, 19.0157, 16.3471, 15.5554, 12.4982, 10.4935, 8.23282, 7.40488, 9.06651, 6.97499, 9.66855, 8.35921, 5.45921, 5.68328, 10.6461, 4.65396, 7.5477, 7.11417, 6.02132, 6.79497, 8.21492, 10.5221, 11.7369},
5042  {177.146, 109.73, 53.3379, 32.4922, 30.5016, 25.9712, 22.9064, 19.6453, 17.4685, 14.9279, 10.9822, 10.9065, 9.22264, 9.52341, 9.23665, 6.50148, 6.20737, 8.19635, 7.38019, 9.07186, 9.22787, 11.9975, 15.4328, 12.1685, 11.2679, 11.0456, 16.8556, 15.203},
5043  {175.465, 100.985, 56.7871, 37.5513, 26.3367, 23.6775, 19.3572, 17.3464, 16.3425, 14.2809, 11.4196, 10.1502, 9.45509, 8.55837, 7.929, 7.75422, 6.25516, 6.98075, 7.95726, 5.58602, 8.52811, 8.94976, 8.61675, 7.52203, 5.86654, 9.30841, 7.95983, 9.16498},
5044  {161.557, 60.9083, 42.7418, 32.6681, 28.4483, 23.0831, 20.1852, 16.6503, 14.3982, 12.9469, 10.4914, 10.6759, 9.05724, 8.21126, 8.46837, 9.92698, 7.71569, 6.7965, 8.87549, 6.0765, 7.88892, 7.22201, 8.13346, 8.88474, 11.2008, 10.4921, 8.34342, 10.0337},
5045  {91.718, 50.2739, 37.883, 32.7472, 24.9764, 23.3509, 19.3552, 17.9669, 15.5899, 13.3535, 11.3664, 9.74592, 9.19961, 7.76436, 7.74193, 7.18929, 6.40388, 8.6005, 6.88462, 10.8404, 8.72774, 7.46032, 9.74493, 9.06091, 8.81877, 8.50823, 11.0295, 15.2753},
5046  {72.4631, 47.222, 36.2746, 28.8782, 23.553, 24.7348, 18.7544, 18.437, 15.7064, 12.729, 11.0992, 10.1026, 8.40556, 7.96116, 8.09745, 6.41375, 6.51981, 6.63771, 8.47843, 7.66306, 8.95359, 10.2608, 8.83699, 8.72077, 10.7087, 7.27377, 13.6, 14.2494},
5047  {60.2763, 42.7498, 34.6623, 26.385, 25.4651, 21.7019, 19.0647, 15.8816, 14.2646, 12.5554, 10.8672, 9.43677, 8.44181, 7.59876, 7.81844, 6.11722, 8.516, 8.94197, 6.97098, 7.17371, 6.68615, 7.24368, 6.23672, 11.2857, 8.77067, 8.43604, 11.2313, 10.0775},
5048  {57.866, 41.2832, 33.3179, 27.3557, 23.8832, 20.5696, 17.8125, 15.5961, 14.4456, 12.0961, 9.76464, 9.34033, 7.73885, 7.76005, 7.44823, 7.55132, 7.13281, 5.57387, 6.08408, 6.99443, 6.28186, 6.48654, 6.99549, 5.28173, 7.53539, 6.92374, 8.62903, 12.2492}
5049  },
5050  {
5051  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5052  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5053  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5054  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5055  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5056  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5057  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5058  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5059  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5060  {269.647, 190.711, 88.8938, 70.894, 47.3717, 44.6289, 33.3552, 28.7616, 25.0309, 21.272, 17.9555, 14.7229, 14.5419, 11.7788, 13.5958, 10.8726, 7.98782, 10.1873, 8.92189, 9.84992, 7.93519, 10.66, 9.14665, 13.8959, 8.38381, 7.987, 15.2538, 11.2857},
5061  {235.853, 115.945, 85.6699, 62.6811, 48.3218, 46.3742, 32.8133, 27.8045, 23.4159, 20.5056, 16.0387, 15.324, 13.2206, 11.3368, 10.4307, 9.27748, 11.3733, 8.87551, 8.35207, 11.7778, 8.82057, 8.90268, 8.28021, 8.06991, 12.7847, 7.80538, 8.15497, 8.97099},
5062  {181.416, 96.6442, 73.0719, 54.7106, 42.9821, 37.438, 32.203, 27.5413, 22.6414, 19.4503, 17.7779, 14.5369, 13.0979, 13.7771, 10.4079, 9.45385, 13.0227, 8.50182, 7.17865, 10.9919, 15.7864, 8.76431, 8.51823, 5.92961, 9.18247, 10.5971, 9.3721, 15.4988},
5063  {139.491, 86.7362, 64.8339, 51.7932, 40.4078, 39.1071, 30.9617, 26.4873, 25.263, 20.3243, 16.5092, 14.4393, 12.175, 11.956, 10.8174, 9.08607, 7.18855, 10.0054, 11.1779, 7.12204, 9.47445, 6.93119, 8.93181, 8.61144, 11.0501, 6.27241, 9.95825, 14.4856},
5064  {106.141, 75.9413, 58.0517, 48.534, 42.3919, 33.3155, 31.0908, 25.4912, 22.6406, 19.3109, 16.0106, 14.2606, 12.5963, 11.0191, 11.1065, 9.09784, 9.07922, 8.92264, 7.34917, 7.71939, 7.41573, 8.73107, 6.43358, 17.2136, 9.26347, 8.55656, 10.9458, 12.6821},
5065  {100.082, 76.8702, 55.0846, 48.6279, 40.6142, 34.3238, 29.3724, 26.3273, 25.1794, 19.6749, 16.3483, 14.3196, 12.3469, 11.8695, 11.738, 9.54169, 10.3128, 8.97389, 7.22238, 8.43618, 9.03957, 7.8851, 9.20503, 8.0428, 8.81155, 10.3738, 10.7343, 18.0864}
5066  }
5067  };
5068 
5069 const float CSCTFPtMethods::sigmafr1[4][15][28] =
5070  {
5071  {
5072  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5073  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5074  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5075  {1, 1, 146.093, 91.0022, 59.1524, 33.1605, 28.0477, 17.4744, 15.5721, 11.7519, 9.35168, 7.7485, 7.04861, 6.47423, 5.73763, 5.09473, 4.08489, 3.39595, 4.04544, 2.96401, 3.63584, 3.1557, 3.00004, 3.18668, 3.41738, 2.71614, 2.82526, 3.70189},
5076  {1, 218.776, 145.244, 104.935, 64.8144, 29.6568, 23.4613, 19.0926, 14.8407, 10.6044, 9.43501, 7.74741, 6.91137, 6.22613, 5.72544, 5.2123, 4.24476, 3.74203, 3.31965, 3.40162, 3.74122, 2.96814, 3.12356, 2.69131, 3.2702, 3.08497, 3.38834, 2.81568},
5077  {1, 216.291, 89.0598, 61.8382, 26.9505, 21.5635, 19.7094, 17.3911, 12.8349, 12.6624, 9.67599, 7.38235, 6.67213, 6.85975, 5.63519, 4.96333, 5.1828, 3.76683, 3.47407, 3.5603, 4.18003, 2.75393, 3.24872, 2.69483, 3.18626, 3.0917, 2.9064, 3.49336},
5078  {74.8743, 114.685, 34.9506, 32.6917, 21.6367, 20.6803, 22.2436, 14.6578, 12.8293, 10.8414, 8.62706, 7.16602, 6.62353, 6.20931, 5.41574, 4.63619, 4.12341, 3.53772, 5.40106, 3.54274, 3.04711, 2.82168, 2.97043, 2.56215, 2.63581, 2.72855, 3.475, 2.40102},
5079  {171.647, 40.3668, 170.531, 57.8944, 49.7425, 45.0042, 40.4664, 35.8242, 31.2455, 28.1189, 21.2241, 17.9434, 14.4424, 15.5375, 14.4543, 11.4451, 11.2267, 9.18004, 8.39402, 12.0792, 5.76609, 6.72775, 8.85565, 8.75935, 6.70541, 6.8381, 9.55174, 8.56415},
5080  {1303.1, 108.27, 69.3932, 63.777, 57.8401, 52.0202, 42.5951, 33.2084, 28.6304, 27.9733, 20.1268, 18.8158, 17.0162, 13.475, 12.6629, 12.7418, 8.99252, 8.94672, 7.8758, 8.3772, 10.6977, 8.00381, 8.8381, 14.3496, 11.113, 8.4152, 9.00849, 13.7466},
5081  {160.859, 94.3386, 65.0202, 60.3475, 75.2043, 44.8816, 41.5634, 37.5275, 27.7923, 26.4016, 21.5374, 15.8813, 15.8779, 13.9959, 13.7772, 19.727, 11.742, 8.67518, 9.28799, 8.13627, 7.15515, 8.97133, 6.80429, 10.5999, 5.91254, 9.1128, 10.6201, 10.5506},
5082  {107.553, 88.8958, 66.3069, 65.4056, 48.5765, 45.1286, 40.6105, 32.3372, 26.121, 24.6533, 21.1985, 17.5026, 16.0065, 14.2815, 14.0509, 11.6923, 10.0067, 10.5004, 9.65113, 8.2566, 9.49279, 7.25941, 9.84551, 9.10625, 13.5828, 7.42791, 9.7761, 13.2592},
5083  {621.575, 81.157, 78.9902, 50.6043, 51.6995, 55.1314, 40.8115, 35.0876, 26.3547, 27.1407, 22.0774, 18.4421, 15.9584, 16.8535, 14.1161, 12.7641, 15.5263, 11.1729, 9.03555, 12.459, 19.0917, 9.49799, 18.3356, 11.5246, 14.7979, 11.849, 14.7263, 17.7757},
5084  {1, 1, 1, 1, 1, 32.849, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.0542444, 13.3384, 1, 1, 0.248621},
5085  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5086  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
5087  },
5088  {
5089  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5090  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5091  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5092  {1, 1, 0.296438, 118.62, 89.405, 52.2476, 45.2939, 28.7616, 25.5548, 18.0656, 13.6928, 11.9697, 10.3611, 10.2854, 7.90347, 6.39297, 5.44473, 5.61793, 5.27675, 4.76144, 3.86958, 3.78657, 3.56005, 3.94048, 3.79113, 3.08763, 3.15283, 3.15847},
5093  {1, 0.14452, 190.349, 154.279, 86.5965, 82.5413, 34.8556, 31.0941, 21.5582, 16.6576, 14.6587, 11.7976, 10.7251, 8.74257, 8.03431, 6.05178, 6.15984, 5.17494, 4.89723, 4.20602, 4.38072, 3.50678, 3.58872, 3.36111, 4.08605, 3.61866, 3.4662, 3.78235},
5094  {1, 152.929, 136.244, 73.4085, 45.9132, 36.7447, 30.241, 27.8179, 20.674, 19.6962, 14.1128, 12.5882, 9.73802, 10.7205, 7.71969, 7.51919, 7.77108, 5.55116, 5.33028, 4.40788, 4.93005, 3.668, 3.55749, 3.69614, 3.82949, 5.04436, 3.26159, 4.26046},
5095  {140.472, 85.4204, 71.8176, 59.7741, 41.1711, 31.8045, 29.5324, 23.9129, 19.9144, 18.3415, 13.8572, 10.9475, 10.3783, 8.29955, 7.48321, 7.171, 7.00912, 5.36884, 6.52747, 3.98305, 4.04028, 3.61817, 3.21717, 3.59865, 3.14602, 3.12143, 3.07281, 2.69386},
5096  {237.788, 96.2055, 102.507, 72.5626, 75.5721, 55.7517, 51.4652, 44.584, 37.268, 33.9088, 25.8814, 21.9077, 17.3586, 14.6234, 14.7653, 11.7539, 12.3716, 11.6726, 8.48135, 6.99178, 7.1455, 8.09071, 7.52601, 8.58121, 6.96213, 7.95596, 6.81041, 5.66795},
5097  {294.913, 161.347, 102.319, 90.1594, 81.3222, 70.8996, 53.4479, 45.6466, 42.2802, 37.0224, 24.8388, 24.4679, 21.1667, 17.9857, 17.5664, 18.9734, 11.9997, 12.9781, 8.93737, 8.43556, 9.32775, 10.8702, 8.67542, 7.73195, 8.2574, 8.75741, 7.36091, 13.6306},
5098  {180.057, 184.24, 82.2473, 86.6705, 77.8282, 62.6743, 52.5831, 46.0168, 37.4869, 33.5461, 26.8174, 20.3363, 20.252, 18.0727, 15.3164, 12.4784, 11.096, 9.67415, 10.3632, 9.03916, 9.16117, 10.5277, 8.66486, 7.16234, 6.57559, 10.5885, 9.67653, 10.1513},
5099  {251.671, 111.919, 94.9753, 90.3654, 68.4575, 62.0251, 55.3331, 45.2581, 34.2676, 33.7628, 26.9416, 23.3815, 19.7758, 18.5239, 19.3473, 18.9695, 12.0358, 12.3383, 10.8987, 8.83571, 10.1066, 9.69945, 10.316, 9.06576, 11.4875, 9.98941, 9.84754, 11.6985},
5100  {232.68, 109.947, 100.398, 74.9348, 66.4849, 60.1203, 51.4264, 44.3605, 37.0279, 34.0509, 27.488, 23.3947, 20.7529, 19.3877, 17.5345, 14.8416, 13.6832, 16.4535, 10.019, 13.0386, 10.8694, 9.31296, 10.1387, 9.91914, 10.8276, 8.53285, 12.0437, 13.6714},
5101  {1, 1, 1, 1, 1, 54.84, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0.0233561, 0.0280901, 1, 1, 0.226361},
5102  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5103  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}
5104  },
5105  {
5106  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5107  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5108  {1, 1, 0.0011042, 86.9352, 75.2624, 52.2464, 32.6091, 20.4476, 13.4983, 11.2587, 8.80378, 7.11921, 7.0583, 5.68815, 6.20848, 4.34774, 5.45062, 5.4936, 3.43077, 3.33174, 3.04659, 3.8793, 3.11545, 2.97137, 3.92529, 4.57437, 3.88033, 3.82278},
5109  {1, 1, 94.2962, 87.2608, 63.6413, 44.4619, 27.8601, 17.1249, 14.5496, 10.6136, 8.1779, 7.43897, 6.44223, 6.07491, 5.71576, 5.80677, 4.30508, 3.71754, 3.50651, 3.11441, 4.01509, 3.70184, 3.27363, 3.07401, 3.82936, 3.74439, 2.99869, 3.56942},
5110  {1, 0.263982, 119.77, 91.7619, 57.8566, 34.9019, 22.023, 15.941, 12.22, 10.1212, 8.34203, 7.32761, 6.13686, 5.47659, 5.31636, 4.7639, 4.16051, 3.54105, 4.07639, 3.09476, 3.04313, 3.29353, 3.70995, 2.79947, 3.94107, 3.99605, 3.96949, 4.88657},
5111  {1, 113.045, 93.6573, 70.568, 31.0566, 20.7173, 16.8019, 14.8641, 11.9429, 9.96161, 7.87523, 6.7396, 6.18326, 6.16374, 5.35523, 3.95939, 4.04783, 4.28055, 3.89598, 3.4252, 3.42753, 3.48459, 3.23155, 3.19143, 4.02432, 3.06929, 3.42948, 4.04161},
5112  {0.447397, 105.302, 76.6619, 31.9851, 22.4774, 19.276, 17.7676, 14.1965, 10.8272, 10.1416, 7.62459, 6.60822, 7.21393, 6.00029, 5.10027, 4.89418, 4.42892, 3.707, 6.06502, 3.37472, 3.49089, 3.46185, 6.33915, 3.3654, 3.30022, 3.36655, 4.87842, 8.07411},
5113  {152.08, 112.801, 47.3659, 30.5674, 29.0316, 22.3914, 19.0157, 16.3471, 15.5554, 12.4982, 10.4935, 8.23282, 7.40488, 9.06651, 6.97499, 9.66855, 8.35921, 5.45921, 5.68328, 10.6461, 4.65396, 7.5477, 7.11417, 6.02132, 6.79497, 8.21492, 10.5221, 11.7369},
5114  {177.146, 109.73, 53.3379, 32.4922, 30.5016, 25.9712, 22.9064, 19.6453, 17.4685, 14.9279, 10.9822, 10.9065, 9.22264, 9.52341, 9.23665, 6.50148, 6.20737, 8.19635, 7.38019, 9.07186, 9.22787, 11.9975, 15.4328, 12.1685, 11.2679, 11.0456, 16.8556, 15.203},
5115  {175.465, 100.985, 56.7871, 37.5513, 26.3367, 23.6775, 19.3572, 17.3464, 16.3425, 14.2809, 11.4196, 10.1502, 9.45509, 8.55837, 7.929, 7.75422, 6.25516, 6.98075, 7.95726, 5.58602, 8.52811, 8.94976, 8.61675, 7.52203, 5.86654, 9.30841, 7.95983, 9.16498},
5116  {161.557, 60.9083, 42.7418, 32.6681, 28.4483, 23.0831, 20.1852, 16.6503, 14.3982, 12.9469, 10.4914, 10.6759, 9.05724, 8.21126, 8.46837, 9.92698, 7.71569, 6.7965, 8.87549, 6.0765, 7.88892, 7.22201, 8.13346, 8.88474, 11.2008, 10.4921, 8.34342, 10.0337},
5117  {91.718, 50.2739, 37.883, 32.7472, 24.9764, 23.3509, 19.3552, 17.9669, 15.5899, 13.3535, 11.3664, 9.74592, 9.19961, 7.76436, 7.74193, 7.18929, 6.40388, 8.6005, 6.88462, 10.8404, 8.72774, 7.46032, 9.74493, 9.06091, 8.81877, 8.50823, 11.0295, 15.2753},
5118  {72.4631, 47.222, 36.2746, 28.8782, 23.553, 24.7348, 18.7544, 18.437, 15.7064, 12.729, 11.0992, 10.1026, 8.40556, 7.96116, 8.09745, 6.41375, 6.51981, 6.63771, 8.47843, 7.66306, 8.95359, 10.2608, 8.83699, 8.72077, 10.7087, 7.27377, 13.6, 14.2494},
5119  {60.2763, 42.7498, 34.6623, 26.385, 25.4651, 21.7019, 19.0647, 15.8816, 14.2646, 12.5554, 10.8672, 9.43677, 8.44181, 7.59876, 7.81844, 6.11722, 8.516, 8.94197, 6.97098, 7.17371, 6.68615, 7.24368, 6.23672, 11.2857, 8.77067, 8.43604, 11.2313, 10.0775},
5120  {57.866, 41.2832, 33.3179, 27.3557, 23.8832, 20.5696, 17.8125, 15.5961, 14.4456, 12.0961, 9.76464, 9.34033, 7.73885, 7.76005, 7.44823, 7.55132, 7.13281, 5.57387, 6.08408, 6.99443, 6.28186, 6.48654, 6.99549, 5.28173, 7.53539, 6.92374, 8.62903, 12.2492}
5121  },
5122  {
5123  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5124  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5125  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5126  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5127  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5128  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5129  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5130  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5131  {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1},
5132  {269.647, 190.711, 88.8938, 70.894, 47.3717, 44.6289, 33.3552, 28.7616, 25.0309, 21.272, 17.9555, 14.7229, 14.5419, 11.7788, 13.5958, 10.8726, 7.98782, 10.1873, 8.92189, 9.84992, 7.93519, 10.66, 9.14665, 13.8959, 8.38381, 7.987, 15.2538, 11.2857},
5133  {235.853, 115.945, 85.6699, 62.6811, 48.3218, 46.3742, 32.8133, 27.8045, 23.4159, 20.5056, 16.0387, 15.324, 13.2206, 11.3368, 10.4307, 9.27748, 11.3733, 8.87551, 8.35207, 11.7778, 8.82057, 8.90268, 8.28021, 8.06991, 12.7847, 7.80538, 8.15497, 8.97099},
5134  {181.416, 96.6442, 73.0719, 54.7106, 42.9821, 37.438, 32.203, 27.5413, 22.6414, 19.4503, 17.7779, 14.5369, 13.0979, 13.7771, 10.4079, 9.45385, 13.0227, 8.50182, 7.17865, 10.9919, 15.7864, 8.76431, 8.51823, 5.92961, 9.18247, 10.5971, 9.3721, 15.4988},
5135  {139.491, 86.7362, 64.8339, 51.7932, 40.4078, 39.1071, 30.9617, 26.4873, 25.263, 20.3243, 16.5092, 14.4393, 12.175, 11.956, 10.8174, 9.08607, 7.18855, 10.0054, 11.1779, 7.12204, 9.47445, 6.93119, 8.93181, 8.61144, 11.0501, 6.27241, 9.95825, 14.4856},
5136  {106.141, 75.9413, 58.0517, 48.534, 42.3919, 33.3155, 31.0908, 25.4912, 22.6406, 19.3109, 16.0106, 14.2606, 12.5963, 11.0191, 11.1065, 9.09784, 9.07922, 8.92264, 7.34917, 7.71939, 7.41573, 8.73107, 6.43358, 17.2136, 9.26347, 8.55656, 10.9458, 12.6821},
5137  {100.082, 76.8702, 55.0846, 48.6279, 40.6142, 34.3238, 29.3724, 26.3273, 25.1794, 19.6749, 16.3483, 14.3196, 12.3469, 11.8695, 11.738, 9.54169, 10.3128, 8.97389, 7.22238, 8.43618, 9.03957, 7.8851, 9.20503, 8.0428, 8.81155, 10.3738, 10.7343, 18.0864}
5138  }
5139  };
5140 
5141 float CSCTFPtMethods::Pt2StnChiSq(int type, float eta, int dphi, int fr) const
5142 {
5143 
5144  float diff, min, ptmin, ptmax;
5145  float mypt = 0.0;
5146 
5147  int dphicopy = dphi;
5148 
5149  if (type<0 || type>3)
5150  {
5151 // std::cout << "CSCTFPtMethods: illegal track type for Chi-square method" << std::endl;
5152  edm::LogError("CSCTFPtMethods::Pt2StnChiSq()")<<"Illegal track type for Chi-square method";
5153  return 0.;
5154  }
5155 
5156  // flip sign
5157  //dphi = -dphi;
5158 
5159  // force positive
5160  eta = fabs(eta);
5161 
5162  //determine which eta bin muon falls into
5163  int i = 0;
5164  for(i = 0; i < 15; i++)
5165  {
5166  if (eta >= etabins[i] && eta < etabins[i+1]) break;
5167  }
5168  if ( i == 15 )
5169  {
5170 // std::cout<<" CSCTFPtMethods: muon not within any eta range"<< std::endl;
5171  edm::LogWarning("CSCTFPtMethods::Pt2StnChiSq()")<<"Muon not within any eta range";
5172  if (eta<etabins[0])
5173  {
5174  eta = etabins[0];
5175  i = 0;
5176  }
5177  else if (eta>=etabins[15])
5178  {
5179  eta = etabins[15];
5180  i = 15;
5181  }
5182  else
5183  exit(0);
5184  }
5185 
5186  bool bCallOldMethod = false;
5187 
5188  if (fr == 0)
5189  {
5190  //advance past bins in array w/ default values
5191  //default is: dphifr0[x][y][z] = -1, sigmafr0[x][y][z] = 1
5192  int j = 0; //start from 1st column, j=0
5193  while (dphifr0[type][i][j] == -1 && sigmafr0[type][i][j] == 1 && j != 28) j++;
5194  if ( j == 28 )
5195  {
5196 // std::cout <<" CSCTFPtMethods: every entry in row is default"<< std::endl;
5197  edm::LogInfo("CSCTFPtMethods::Pt2StnChiSq()")<<"Every entry in row is default";
5198  // exit(0); //normal termination
5199  bCallOldMethod = true;
5200  }
5201 
5202  if (!bCallOldMethod)
5203  {
5204  //set min, ptmin, ptmax to first bin
5205  //in row that is not default
5206  min = fabs(dphi - dphifr0[type][i][j]) / sigmafr0[type][i][j];
5207  ptmin = ptbins[j];
5208  ptmax = ptbins[j+1];
5209 
5210  //loop through all pt bins. assign pt of bin w/ least diff
5211  //do not include default bins in calculation
5212  for ( int k = j; k < 28; k++ )
5213  {
5214  if(dphifr0[type][i][k] != -1 || sigmafr0[type][i][k] != 1)
5215  {
5216  diff = fabs(dphi - dphifr0[type][i][k]) / sigmafr0[type][i][k];
5217  if (diff < min)
5218  {
5219  min = diff;
5220  ptmin = ptbins[k];
5221  ptmax = ptbins[k+1];
5222  }
5223  }
5224  }
5225  mypt = (ptmin + ptmax)/2;
5226  }
5227  }
5228 
5229  if (fr == 1)
5230  {
5231  //advance past bins in array w/ default values
5232  //default is: dphifr1[x][y][z] = -1, sigmafr1[x][y][z] = 1
5233  int j = 0; //start from 1st column, j=0
5234 
5235  while (dphifr1[type][i][j] == -1 && sigmafr1[type][i][j] == 1 && j != 28) j++;
5236 
5237  if ( j == 28 )
5238  {
5239 // std::cout <<" CSCTFPtMethods: every entry in row is default"<< std::endl;
5240  edm::LogInfo("CSCTFPtMethods::Pt2StnChiSq()")<<"Every entry in row is default";
5241  // exit(0); //normal termination
5242  bCallOldMethod = true;
5243  }
5244 
5245  if (!bCallOldMethod)
5246  {
5247  //set min, ptmin, ptmax to first bin
5248  //in row that is not default
5249  min = fabs(dphi - dphifr1[type][i][j]) / sigmafr1[type][i][j];
5250  ptmin = ptbins[j];
5251  ptmax = ptbins[j+1];
5252 
5253  //loop through all pt bins. assign pt of bin w/ least diff
5254  //do not include default bins in calculation
5255  for ( int k = j; k < 28; k++ )
5256  {
5257  if(dphifr1[type][i][k] != -1 || sigmafr1[type][i][k] != 1)
5258  {
5259  diff = fabs(dphi - dphifr1[type][i][k]) / sigmafr1[type][i][k];
5260  if (diff < min)
5261  {
5262  min = diff;
5263  ptmin = ptbins[k];
5264  ptmax = ptbins[k+1];
5265  }
5266  }
5267  }
5268  mypt = (ptmin + ptmax)/2;
5269  }
5270  }
5271 
5272  // hybrid approach:
5273  if (bCallOldMethod)
5274  {
5275  float dphiR = static_cast<float>(dphicopy) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
5276  // must change type definition, just add one
5277  mypt = Pt2Stn(type+1, eta, dphiR, fr);
5278  }
5279 
5280  return mypt;
5281 }
5282 
5283 
5284 float CSCTFPtMethods::Pt3StnChiSq(int type, float eta, int dphi1, int dphi2, int fr) const
5285 {
5286 
5287  float diff, min, ptmin, ptmax;
5288  float mypt = 0.0;
5289 
5290  int dphi1copy = dphi1, dphi2copy = dphi2;
5291 
5292  if (type<4 || type>5)
5293  {
5294 // std::cout << "PtParams: illegal track type for Chi-square method" << std::endl;
5295  edm::LogError("CSCTFPtMethods::Pt3StnChiSq()")<<"Illegal track type for Chi-square method";
5296  return 0.;
5297  }
5298 
5299  // flip sign
5300  //dphi1 = -dphi1;
5301  //dphi2 = -dphi2;
5302 
5303 
5304  //determine which eta bin muon falls into
5305  int i = 0;
5306  for( i = 0; i < 15; i++ )
5307  {
5308  if ( eta >= etabins[i] && eta < etabins[i + 1] ) break;
5309  }
5310  if ( i == 15 )
5311  {
5312  //std::cout<<"muon not within any eta range";
5313  edm::LogWarning("CSCTFPtMethods::Pt3StnChiSq()")<<"Muon not within any eta range";
5314  if (eta<etabins[0])
5315  {
5316  eta = etabins[0];
5317  i = 0;
5318  }
5319  else if (eta>=etabins[15])
5320  {
5321  eta = etabins[15];
5322  i = 15;
5323  }
5324  else
5325  exit(0);
5326  }
5327 
5328  bool bCallOldMethod = false;
5329 
5330  if(abs(dphi2) < 32) dphi2 = 0; //dphi2=dphi23 or dphi24
5331 
5332  //sta1-2-3, dphi1=dphi12, dphi2=dphi23
5333  if (type == 4)
5334  {
5335  if (fr == 0)
5336  {
5337  //advance past bins in array w/ default values
5338  //default is: dphifr0[x][y][z] = -1, sigmafr0[x][y][z] = 1
5339  int j = 0; //start from 1st column, j = 0
5340  while ( ((dphifr0[0][i][j] == -1 && sigmafr0[0][i][j] == 1) || (dphifr0[2][i][j] == -1 && sigmafr0[2][i][j] == 1)) && j != 28 ) j++;
5341  if ( j == 28 )
5342  {
5343 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
5344  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
5345  // exit(0); //normal termination
5346  bCallOldMethod = true;
5347  }
5348 
5349  if (!bCallOldMethod)
5350  {
5351  //set min, ptmin, ptmax to first bin
5352  //in row that is not default
5353  min = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][j]),2) / pow(sigmafr0[0][i][j],2)) + (pow((dphi2 - dphifr0[2][i][j]),2) / pow(sigmafr0[2][i][j],2)) - (1.2 * (dphi1 - dphifr0[0][i][j]) * (dphi2 - dphifr0[2][i][j]) / (sigmafr0[0][i][j] * sigmafr0[2][i][j])) ); //calculate chi square
5354  ptmin = ptbins[j];
5355  ptmax = ptbins[j + 1];
5356 
5357  //loop through all pt bins. assign pt of bin w/ least diff
5358  //do not include default bins in calculation
5359  for ( int k = j; k < 28; k++ )
5360  {
5361  if( (dphifr0[0][i][k] != -1 || sigmafr0[0][i][k] != 1) && (dphifr0[2][i][k] != -1 || sigmafr0[2][i][k] != 1) )
5362  {
5363  diff = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][k]),2) / pow(sigmafr0[0][i][k],2)) + (pow((dphi2 - dphifr0[2][i][k]),2) / pow(sigmafr0[2][i][k],2)) - (1.2 * (dphi1 - dphifr0[0][i][k]) * (dphi2 - dphifr0[2][i][k]) / (sigmafr0[0][i][k] * sigmafr0[2][i][k])) );
5364  if (diff < min)
5365  {
5366  min = diff;
5367  ptmin = ptbins[k];
5368  ptmax = ptbins[k + 1];
5369  }
5370  }
5371  }
5372  mypt = (ptmin + ptmax) / 2;
5373  }
5374  }
5375 
5376  if (fr == 1)
5377  {
5378  //advance past bins in array w/ default values
5379  //default is: dphifr1[x][y][z] = -1, sigmafr1[x][y][z] = 1
5380  int j = 0; //start from 1st column, j = 0
5381  while ( ((dphifr1[0][i][j] == -1 && sigmafr1[0][i][j] == 1) || (dphifr1[2][i][j] == -1 && sigmafr1[2][i][j] == 1)) && j != 28 ) j++;
5382  if ( j == 28 )
5383  {
5384 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
5385  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
5386  // exit(0); //normal termination
5387  bCallOldMethod = true;
5388  }
5389 
5390  if (!bCallOldMethod)
5391  {
5392  //set min, ptmin, ptmax to first bin
5393  //in row that is not default
5394  min = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][j]),2) / pow(sigmafr1[0][i][j],2)) + (pow((dphi2 - dphifr1[2][i][j]),2) / pow(sigmafr1[2][i][j],2)) - (1.2 * (dphi1 - dphifr1[0][i][j]) * (dphi2 - dphifr1[2][i][j]) / (sigmafr1[0][i][j] * sigmafr1[2][i][j])) ); //calculate chi square
5395  ptmin = ptbins[j];
5396  ptmax = ptbins[j + 1];
5397 
5398  //loop through all pt bins. assign pt of bin w/ least diff
5399  //do not include default bins in calculation
5400  for ( int k = j; k < 28; k++ )
5401  {
5402  if( (dphifr1[0][i][k] != -1 || sigmafr1[0][i][k] != 1) && (dphifr1[2][i][k] != -1 || sigmafr1[2][i][k] != 1) )
5403  {
5404  diff = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][k]),2) / pow(sigmafr1[0][i][k],2)) + (pow((dphi2 - dphifr1[2][i][k]),2) / pow(sigmafr1[2][i][k],2)) - (1.2 * (dphi1 - dphifr1[0][i][k]) * (dphi2 - dphifr1[2][i][k]) / (sigmafr1[0][i][k] * sigmafr1[2][i][k])) );
5405  if (diff < min)
5406  {
5407  min = diff;
5408  ptmin = ptbins[k];
5409  ptmax = ptbins[k + 1];
5410  }
5411  }
5412  mypt = (ptmin + ptmax) / 2;
5413  }
5414  }
5415  }
5416  }
5417 
5418  //sta1-2-4, dphi1=dphi12, dphi2=dphi24
5419  if (type == 5)
5420  {
5421 
5422  if (fr == 0)
5423  {
5424  //advance past bins in array w/ default values
5425  //default is: dphifr0[x][y][z] = -1, sigmafr0[x][y][z] = 1
5426  int j = 0; //start from 1st column, j = 0
5427  while ( ((dphifr0[0][i][j] == -1 && sigmafr0[0][i][j] == 1) || (dphifr0[3][i][j] == -1 && sigmafr0[3][i][j] == 1)) && j != 28 ) j++;
5428  if ( j == 28 )
5429  {
5430 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
5431  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
5432  // exit(0); //normal termination
5433  bCallOldMethod = true;
5434  }
5435 
5436  if (!bCallOldMethod)
5437  {
5438  //set min, ptmin, ptmax to first bin
5439  //in row that is not default
5440  min = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][j]),2) / pow(sigmafr0[0][i][j],2)) + (pow((dphi2 - dphifr0[3][i][j]),2) / pow(sigmafr0[3][i][j],2)) - (1.2 * (dphi1 - dphifr0[0][i][j]) * (dphi2 - dphifr0[3][i][j]) / (sigmafr0[0][i][j] * sigmafr0[3][i][j])) ); //calculate chi square
5441  ptmin = ptbins[j];
5442  ptmax = ptbins[j + 1];
5443 
5444  //loop through all pt bins. assign pt of bin w/ least diff
5445  //do not include default bins in calculation
5446  for ( int k = j; k < 28; k++ )
5447  {
5448  if( (dphifr0[0][i][k] != -1 || sigmafr0[0][i][k] != 1) && (dphifr0[3][i][k] != -1 || sigmafr0[3][i][k] != 1) )
5449  {
5450  diff = 1.5625 * ( (pow((dphi1 - dphifr0[0][i][k]),2) / pow(sigmafr0[0][i][k],2)) + (pow((dphi2 - dphifr0[3][i][k]),2) / pow(sigmafr0[3][i][k],2)) - (1.2 * (dphi1 - dphifr0[0][i][k]) * (dphi2 - dphifr0[3][i][k]) / (sigmafr0[0][i][k] * sigmafr0[3][i][k])) );
5451  if (diff < min)
5452  {
5453  min = diff;
5454  ptmin = ptbins[k];
5455  ptmax = ptbins[k + 1];
5456  }
5457  }
5458  }
5459  mypt = (ptmin + ptmax) / 2;
5460  }
5461  }
5462 
5463  if (fr == 1)
5464  {
5465  //advance past bins in array w/ default values
5466  //default is: dphifr1[x][y][z] = -1, sigmafr1[x][y][z] = 1
5467  int j = 0; //start from 1st column, j = 0
5468  while ( ((dphifr1[0][i][j] == -1 && sigmafr1[0][i][j] == 1) || (dphifr1[3][i][j] == -1 && sigmafr1[3][i][j] == 1)) && j != 28 ) j++;
5469  if ( j == 28 )
5470  {
5471 // std::cout<<" L1MuCSCPtParams: every entry in row is default"<<std::endl;
5472  edm::LogInfo("CSCTFPtMethods::Pt3StnChiSq()")<<"Every entry in row is default";
5473  // exit(0); //normal termination
5474  bCallOldMethod = true;
5475  }
5476 
5477  if (!bCallOldMethod)
5478  {
5479  //set min, ptmin, ptmax to first bin
5480  //in row that is not default
5481  min = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][j]),2) / pow(sigmafr1[0][i][j],2)) + (pow((dphi2 - dphifr1[3][i][j]),2) / pow(sigmafr1[3][i][j],2)) - (1.2 * (dphi1 - dphifr1[0][i][j]) * (dphi2 - dphifr1[3][i][j]) / (sigmafr1[0][i][j] * sigmafr1[3][i][j])) ); //calculate chi square
5482  ptmin = ptbins[j];
5483  ptmax = ptbins[j + 1];
5484 
5485  //loop through all pt bins. assign pt of bin w/ least diff
5486  //do not include default bins in calculation
5487  for ( int k = j; k < 28; k++ )
5488  {
5489  if( (dphifr1[0][i][k] != -1 || sigmafr1[0][i][k] != 1) && (dphifr1[3][i][k] != -1 || sigmafr1[3][i][k] != 1) )
5490  {
5491  diff = 1.5625 * ( (pow((dphi1 - dphifr1[0][i][k]),2) / pow(sigmafr1[0][i][k],2)) + (pow((dphi2 - dphifr1[3][i][k]),2) / pow(sigmafr1[3][i][k],2)) - (1.2 * (dphi1 - dphifr1[0][i][k]) * (dphi2 - dphifr1[3][i][k]) / (sigmafr1[0][i][k] * sigmafr1[3][i][k])) );
5492  if (diff < min)
5493  {
5494  min = diff;
5495  ptmin = ptbins[k];
5496  ptmax = ptbins[k + 1];
5497  }
5498  }
5499  }
5500  mypt = (ptmin + ptmax) / 2;
5501  }
5502  }
5503  }
5504 
5505  if (bCallOldMethod)
5506  {
5507  float dphi12R = (static_cast<float>(dphi1copy)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
5508  float dphi23R = (static_cast<float>(dphi2copy)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
5509  // change defintion of track type to old method
5510  mypt = Pt3Stn(type-3, eta, dphi12R, dphi23R, fr);
5511  }
5512  return mypt;
5513 
5514 }
5515 
5516 float CSCTFPtMethods::Pt2StnHybrid(int type, float eta, int dphi, int fr) const
5517 {
5518  float mypt = 0.0;
5519 
5520  mypt = Pt2StnChiSq(type, eta, dphi, fr);
5521  if(mypt >= 8.0)
5522  {
5523  float dphiR = static_cast<float>(dphi) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
5524  mypt = Pt2Stn(type+1, eta, dphiR, fr);
5525  }
5526 
5527  return mypt;
5528 }
5529 
5530 float CSCTFPtMethods::Pt3StnHybrid(int type, float eta, int dphi1, int dphi2, int fr) const
5531 {
5532  float mypt = 0.0;
5533 
5534  mypt = Pt3StnChiSq(type, eta, dphi1, dphi2, fr);
5535  if(mypt >= 8.0)
5536  {
5537  float dphi12R = (static_cast<float>(dphi1)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
5538  float dphi23R = (static_cast<float>(dphi2)) / static_cast<float>(1<<12) * CSCTFConstants::SECTOR_RAD;
5539  // change defintion of track type to old method
5540  mypt = Pt3Stn(type-3, eta, dphi12R, dphi23R, fr);
5541  }
5542 
5543  return mypt;
5544 }
5545 
5546 bool CSCTFPtMethods::chargeValid(unsigned pT, unsigned quality, unsigned eta, unsigned method) const
5547 {
5548  bool result = false;
5549 
5550  switch(method)
5551  {
5552  case 1:
5553  break;
5554  case 2:
5555  break;
5556  case 3:
5557  if(quality != 1)
5558  {
5559  if(pT <= 19)
5560  {
5561  if(eta >=4 && eta <=9)
5562  result = true;
5563  }
5564  if(pT <= 18 && pT >= 10)
5565  {
5566  if(eta > 0 && eta < 4)
5567  result = true;
5568  }
5569  }
5570  };
5571 
5572  return result;
5573 }
5574 
5575 float CSCTFPtMethods::PtEff90(float pt, float eta, int mode) const
5576 {
5577  // set pT resolution
5578  float c;
5579  switch (mode)
5580  {
5581  // 3-stn with ME1
5582  case 2:
5583  case 3:
5584  case 4:
5585  // leave as 2 Stn for now:
5586  // if (eta < 2.0)
5587  // c = 0.2;
5588  // else
5589  // c = 0.2 + (eta-2.0)*0.5;
5590  // break;
5591  // 2-stn with ME1
5592  case 6:
5593  case 7:
5594  // c=(-.2999 * (eta*eta*eta) + 2.030 * (eta*eta) - 4.235 * eta + 3.024)+0.02;
5595  // Try just fixed value from fits to Pt turn-on curves
5596  c=0.3;
5597  break;
5598  // 2 or 3 stn without ME1
5599  case 5:
5600  case 8:
5601  case 9:
5602  c=(-2.484 * (eta*eta*eta) + 14.43 * (eta*eta) - 27.66 * eta + 18.47)*.72;
5603  break;
5604  case 10:
5605  c=2.0;
5606  break;
5607  // MB1 tracks
5608  case 11:
5609  case 12:
5610  case 13:
5611  case 14:
5612  case 15:
5613  c=0.3;
5614  break;
5615  default:
5616  c = 0.0;
5617  };
5618  // Calculation of 90% threshold from 50% one, assuming Gaussian resolution
5619  // 90% of Gaussian area extends to 1.28*sigma
5620  if (c>0.78) c = 0.78;
5621  // return pt/(1.0 - 1.28*c);
5622  // Let's go back to old empirical method:
5623  return pt*(1.0 + 1.28*c);
5624 }
5625 
static const double A_sig14Front[3][15]
float Pt3Stn2012_DT(int type, float eta, float dphi1, float dphi2, int PtbyMLH, float &theLH, int fr=-1, int method=11) const
const double Pi
type
Definition: HCALResponse.h:21
static double AB_mu12F[4][15]
bool chargeValid(unsigned Pt, unsigned Quality, unsigned Eta, unsigned method) const
static double AB_mu14FME11[4][15]
static double AB_mu12FME11[4][15]
static const float AkHighEta_Fit2[kME2andMB2][kMaxParameters]
float Pt2Stn2012_DT(int type, float eta, float dphi, int PtbyMLH, float &theLH, int fr=-1, int method=11, int phiSign=2) const
static const double A_rho123RareCSCTF[5][15]
static double AB_mu51[4][15]
static double AB_sig14FnoME11[4][15]
static const double A_sig13Rare[3][15]
static double AB_sig12F[4][15]
static double AB_rho52B[5][15]
static double AB_rho134R[5][15]
float Pt3StnHybrid(int type, float eta, int dphi1, int dphi2, int fr) const
const L1MuScale * getPtScale() const
get the Pt scale
static double AB_mu14R[4][15]
static double AB_mu34[4][15]
static double AB_sig14F[4][15]
static double AB_sig52[4][15]
static const double A_sig12Front[3][15]
static const float FRCorrHighEta[kME2andMB2][2]
static double AB_mu13F[4][15]
static double AB_sig12FnoME11[4][15]
static double AB_mu24[4][15]
float Pt2Stn2010(int type, float eta, float dphi, int fr=-1, int method=11) const
static const float dphifr1[4][15][28]
static double AB_sig14RME11[4][15]
float Pt2StnChiSq(int type, float eta, int dphi, int fr) const
float Pt2Stn2011(int type, float eta, float dphi, int fr=-1, int method=11, int phiSign=2) const
static double AB_mu12RME11[4][15]
float Pt3Stn2011(int type, float eta, float dphi1, float dphi2, int fr=-1, int method=11) const
static const float AkLowEta_Fit1[kME2andMB2][kMaxParameters]
static double AB_sig53[4][15]
static double AB_mu23[4][15]
static double AB_mu13FnoME11[4][15]
float Pt3StnChiSq(int type, float eta, int dphi1, int dphi2, int fr) const
static double AB_mu13RME11[4][15]
static const float BkLowEta_Fit2[kME2andMB2][kMaxParameters]
const L1MuTriggerPtScale * trigger_scale
static const float dphifr0[4][15][28]
static double AB_mu14RME11[4][15]
static double AB_sig13F[4][15]
static double AB_sig14RnoME11[4][15]
static const double A_sig34[3][15]
static const double A_sig53[3][15]
static double AB_mu13R[4][15]
static double AB_rho123F[5][15]
static const double A_mu53[4][15]
double Likelihood2_2011(double *phi12, double *par_m12, double *par_sig12, double *v) const
static const double A_mu24[4][15]
static const float AkHighEta_Fit1[kME2andMB2][kMaxParameters]
float Pt3Stn(int type, float eta, float dphi1, float dphi2, int fr=-1) const
static const float sigmafr0[4][15][28]
static double AB_mu52[4][15]
static double AB_mu12FnoME11[4][15]
static double AB_sig13FME11[4][15]
static const double A_sig23[3][15]
double Likelihood(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
static const double A_rho134RareCSCTF[5][15]
static double AB_sig51[4][15]
static double AB_mu5[4][15]
static double AB_mu13FME11[4][15]
T sqrt(T t)
Definition: SSEVec.h:18
static const float BkHighEta_Fit2[kME2andMB2][kMaxParameters]
float Pt2StnHybrid(int type, float eta, int dphi, int fr) const
static double AB_rho53B[5][15]
static const float kGlobalScaleFactor
static const double A_mu14Front[4][15]
float PtEff90(float pt, float eta, int mode) const
static double AB_rho234[5][15]
Abs< T >::type abs(const T &t)
Definition: Abs.h:22
static double AB_mu12RnoME11[4][15]
static const double A_mu23[4][15]
static const double A_rho512[5][15]
DT correlation.
static double AB_sig12RnoME11[4][15]
static double AB_mu13RnoME11[4][15]
static double AB_sig34[4][15]
static const double A_sig14Rare[3][15]
T min(T a, T b)
Definition: MathUtil.h:58
static const std::string B
static const double A_sig12Rare[3][15]
static double AB_rho124R[5][15]
float Pt3Stn2010(int type, float eta, float dphi1, float dphi2, int fr=-1, int method=11) const
static const double A_sig51[3][15]
static double AB_rho523[5][15]
static double AB_rho124F[5][15]
static double AB_sig5[4][15]
static const double A_rho523[5][15]
static const double A_mu52[4][15]
static double AB_sig24[4][15]
static double AB_sig12FME11[4][15]
int k[5][pyjets_maxn]
static const double A_mu13Front[4][15]
float Pt3Stn2012(int type, float eta, float dphi1, float dphi2, int PtbyMLH, float &theLH, int fr=-1, int method=11) const
CSCTFPtMethods(const L1MuTriggerPtScale *ptScale=0)
static const double A_rho134FrontCSCTF[5][15]
double Likelihood2(double *phi12, double *par_m12, double *par_sig12, double *v) const
static double AB_sig14R[4][15]
static double AB_mu14F[4][15]
static double AB_sig12R[4][15]
static const double A_mu12Rare[4][15]
double Likelihood2011(double *phi12, double *phi23, double *par_m12, double *par_m23, double *par_sig12, double *par_sig23, double *par_rho, double *v) const
static const double A_mu13Rare[4][15]
static const double A_mu12Front[4][15]
static double AB_mu53[4][15]
static const double A_sig24[3][15]
static double AB_sig12RME11[4][15]
const std::vector< double > ptScale
Definition: Utilities.cc:35
static const float AkLowEta_Fit2[kME2andMB2][kMaxParameters]
static double AB_rho512[5][15]
static double AB_sig23[4][15]
static double AB_rho513[5][15]
static double AB_mu12R[4][15]
double ptmin
Definition: HydjetWrapper.h:90
static const double A_mu14Rare[4][15]
static const double A_rho234CSCTF[5][15]
static double AB_sig13FnoME11[4][15]
static const float FRCorrLowEta[kME2andMB2][2]
virtual float getLowEdge(unsigned packed) const =0
get the low edge of bin represented by packed
float Pt2Stn2012(int type, float eta, float dphi, int PtbyMLH, float &theLH, int fr=-1, int method=11) const
static const double A_sig13Front[3][15]
static const double A_mu51[4][15]
static double AB_mu14RnoME11[4][15]
static const double SECTOR_RAD
static const float ptbins[29]
static double AB_sig13RnoME11[4][15]
static const double A_rho123FrontCSCTF[5][15]
static double AB_rho51B[5][15]
static double AB_sig14FME11[4][15]
Definition: mypt.h:6
step
static double AB_sig13RME11[4][15]
static const double A_rho124FrontCSCTF[5][15]
static const double A_sig52[3][15]
static const double A_rho513[5][15]
static const double A_rho124RareCSCTF[5][15]
float Pt2Stn(int type, float eta, float dphi, int fr=-1) const
static double AB_mu14FnoME11[4][15]
static double AB_rho134F[5][15]
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40
static const double A_mu34[4][15]
static double AB_rho123R[5][15]
static double AB_sig13R[4][15]
static const float sigmafr1[4][15][28]
static const float etabins[16]