36 #include "HepPDT/ParticleDataTable.hh" 38 #include "G4GeometryManager.hh" 39 #include "G4StateManager.hh" 40 #include "G4ApplicationState.hh" 41 #include "G4MTRunManagerKernel.hh" 42 #include "G4UImanager.hh" 44 #include "G4EventManager.hh" 47 #include "G4TransportationManager.hh" 48 #include "G4ParticleTable.hh" 50 #include "G4FieldManager.hh" 51 #include "G4CascadeInterface.hh" 53 #include "G4GDMLParser.hh" 54 #include "G4SystemOfUnits.hh" 64 m_managerInitialized(
false),
65 m_runTerminated(
false),
66 m_pUseMagneticField(p.getParameter<
bool>(
"UseMagneticField")),
67 m_PhysicsTablesDir(p.getParameter<
std::
string>(
"PhysicsTablesDirectory")),
68 m_StorePhysicsTables(p.getParameter<
bool>(
"StorePhysicsTables")),
69 m_RestorePhysicsTables(p.getParameter<
bool>(
"RestorePhysicsTables")),
74 m_G4Commands(p.getParameter<
std::vector<
std::
string> >(
"G4Commands")),
88 m_kernel =
new G4MTRunManagerKernel();
89 G4StateManager::GetStateManager()->SetExceptionHandler(
new ExceptionHandler());
100 G4StateManager::GetStateManager()->SetNewState(G4State_Quit);
101 G4GeometryManager::GetInstance()->OpenGeometry();
110 <<
"RunManagerMT: start initialisation of geometry";
119 <<
"RunManagerMT: start initialisation of magnetic field";
126 G4TransportationManager * tM =
127 G4TransportationManager::GetTransportationManager();
128 tM->SetFieldManager(fieldManager);
129 fieldBuilder.
build( fieldManager, tM->GetPropagatorInField());
135 <<
"RunManagerMT: create PhysicsList";
137 std::unique_ptr<PhysicsListMakerBase>
140 if (physicsMaker.get()==
nullptr) {
142 <<
"Unable to find the Physics list requested";
150 "Physics list construction failed!");
162 <<
"RunManagerMT: start initialisation of PhysicsList for master";
186 G4CascadeInterface::Initialize();
191 "G4RunManagerKernel initialization failed!");
195 std::ostringstream
dir;
199 G4UImanager::GetUIpointer()->ApplyCommand(cmd);
206 G4cout <<
"RunManagerMT: Requested UI commands: " << G4endl;
209 G4UImanager::GetUIpointer()->ApplyCommand(
m_G4Commands[it]);
218 gdml.SetRegionExport(
true);
219 gdml.SetEnergyCutsExport(
true);
236 G4StateManager::GetStateManager()->SetNewState(G4State_GeomClosed);
255 G4StateManager::GetStateManager()->SetNewState(G4State_Quit);
276 <<
" RunManager WARNING : " 277 <<
"error opening file <" <<
m_FieldFile <<
"> for magnetic field";
279 double rmax = 9000*mm;
280 double zmax = 16000*mm;
285 int nr = (
int)(rmax/dr);
286 int nz = 2*(
int)(zmax/dz);
293 double cosf =
cos(phi);
294 double sinf =
sin(phi);
296 double point[4] = {0.0,0.0,0.0,0.0};
297 double bfield[3] = {0.0,0.0,0.0};
299 fout << std::setprecision(6);
300 for(
int i=0;
i<=nr; ++
i) {
302 for(
int j=0; j<=nz; ++j) {
306 field->GetFieldValue(point, bfield);
307 fout <<
"R(mm)= " << r/mm <<
" phi(deg)= " << phi/degree
308 <<
" Z(mm)= " << z/mm <<
" Bz(tesla)= " << bfield[2]/tesla
309 <<
" Br(tesla)= " << (bfield[0]*cosf + bfield[1]*sinf)/tesla
310 <<
" Bphi(tesla)= " << (bfield[0]*sinf - bfield[1]*cosf)/tesla
void Connect(RunAction *)
const std::string m_PhysicsTablesDir
bool m_managerInitialized
T getParameter(std::string const &) const
T getUntrackedParameter(std::string const &, T const &) const
std::unique_ptr< DDG4ProductionCuts > m_prodCuts
void BeginOfRunAction(const G4Run *aRun) override
G4MTRunManagerKernel * m_kernel
SensitiveDetectorCatalog m_catalog
edm::ParameterSet m_pRunAction
def create(alignables, pedeDump, additionalData, outputFile, config)
HepPDT::ParticleDataTable ParticleDataTable
void initG4(const DDCompactView *pDD, const MagneticField *pMF, const HepPDT::ParticleDataTable *fPDGTable)
Sin< T >::type sin(const T &t)
SimActivityRegistry::EndOfRunSignal m_endOfRunSignal
BeginOfRunSignal beginOfRunSignal_
std::vector< std::string > m_G4Commands
std::unique_ptr< CustomUIsession > m_UIsession
void initializeUserActions()
type of data representation of DDCompactView
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e g
RunManagerMT(edm::ParameterSet const &p)
RunAction
list of unwanted particles (gluons and quarks)
Cos< T >::type cos(const T &t)
EndOfRunSignal endOfRunSignal_
void DumpMagneticField(const G4Field *) const
void connect(Observer< const T * > *iObs)
does not take ownership of memory
void build(CMSFieldManager *fM, G4PropagatorInField *fP)
bool m_StorePhysicsTables
std::unique_ptr< PhysicsList > m_physicsList
edm::ParameterSet m_pField
std::unique_ptr< DDDWorld > m_world
edm::ParameterSet m_pPhysics
DDDWorldSignal dddWorldSignal_
bool m_RestorePhysicsTables
std::unique_ptr< sim::ChordFinderSetter > m_chordFinderSetter
void ReportRegions(const std::string &ss)
SimActivityRegistry::BeginOfRunSignal m_beginOfRunSignal
std::unique_ptr< SimRunInterface > m_runInterface
edm::ParameterSet m_g4overlap
RunAction * m_userRunAction
T get(const Candidate &c)
void EndOfRunAction(const G4Run *aRun) override
*vegas h *****************************************************used in the default bin number in original ***version of VEGAS is ***a higher bin number might help to derive a more precise ***grade subtle point
SimActivityRegistry m_registry