CMS 3D CMS Logo

CSCUpgradeMotherboardLUT.cc
Go to the documentation of this file.
2 
4  : lut_wg_eta_odd(0)
5  , lut_wg_eta_even(0)
6  , lut_pt_vs_dphi_gemcsc(0)
7 
8  , gem_roll_eta_limits_odd_l1(0)
9  , gem_roll_eta_limits_odd_l2(0)
10  , gem_roll_eta_limits_even_l1(0)
11  , gem_roll_eta_limits_even_l2(0)
12 
13  , csc_wg_to_gem_roll_odd_l1(0)
14  , csc_wg_to_gem_roll_odd_l2(0)
15  , csc_wg_to_gem_roll_even_l1(0)
16  , csc_wg_to_gem_roll_even_l2(0)
17 {
18 }
19 
20 std::vector<std::pair<int,int> >
22 {
24  else { return layer==1 ? csc_wg_to_gem_roll_odd_l1 : csc_wg_to_gem_roll_odd_l2; }
25 }
26 
27 std::vector<int>
29 {
31  else { return layer==1 ? gem_roll_to_csc_wg_odd_l1 : gem_roll_to_csc_wg_odd_l2; }
32 }
33 
34 std::vector<int>
36 {
37  if (p==CSCPart::ME1A) { return par==Parity::Even ? gem_pad_to_csc_hs_me1a_even : gem_pad_to_csc_hs_me1a_odd; }
38  else { return par==Parity::Even ? gem_pad_to_csc_hs_me1b_even : gem_pad_to_csc_hs_me1b_odd; }
39 }
40 
41 std::vector<int>
43 {
44  return par==Parity::Even ? gem_pad_to_csc_hs_even : gem_pad_to_csc_hs_odd;
45 }
46 
47 std::vector<std::pair<int,int> >
49 {
50  return par==Parity::Even ? csc_hs_to_gem_pad_even : csc_hs_to_gem_pad_odd;
51 }
52 
53 std::vector<std::pair<int,int> >
55 {
56  if (p==CSCPart::ME1A) { return par==Parity::Even ? csc_hs_to_gem_pad_me1a_even : csc_hs_to_gem_pad_me1a_odd; }
57  else { return par==Parity::Even ? csc_hs_to_gem_pad_me1b_even : csc_hs_to_gem_pad_me1b_odd; }
58 }
59 
60 std::vector<std::vector<double> >
62 {
63  if (p==CSCPart::ME1A) { return lut_wg_vs_hs_me1a; }
64  else if (p==CSCPart::ME1B) { return lut_wg_vs_hs_me1b; }
65  else { return lut_wg_vs_hs_me1ag; }
66 }
67 
69 {
70 }
71 
72 
75 {
76  lut_wg_eta_odd = {
77  {2.4466, 2.45344},
78  {2.33403, 2.43746}, {2.28122, 2.38447}, {2.23122, 2.33427}, {2.18376, 2.2866}, {2.1386, 2.24124},
79  {2.09556, 2.19796}, {2.05444, 2.15662}, {2.01511, 2.11704}, {1.97741, 2.07909}, {1.94124, 2.04266},
80  {1.90649, 2.00764}, {1.87305, 1.97392}, {1.84084, 1.94143}, {1.80978, 1.91008}, {1.77981, 1.87981},
81  {1.75086, 1.85055}, {1.72286, 1.82225}, {1.69577, 1.79484}, {1.66954, 1.76828}, {1.64412, 1.74253},
82  {1.61946, 1.71754}, {1.60584, 1.69328}, {1.60814, 1.6697}
83  };
84 
85  lut_wg_eta_even = {
86  {2.3981, 2.40492},
87  {2.28578, 2.38883}, {2.23311, 2.33595}, {2.18324, 2.28587}, {2.13592, 2.23831}, {2.09091, 2.19306},
88  {2.048, 2.14991}, {2.00704, 2.10868}, {1.96785, 2.06923}, {1.93031, 2.03141}, {1.8943, 1.9951},
89  {1.8597, 1.96021}, {1.82642, 1.92663}, {1.79438, 1.89427}, {1.76349, 1.86306}, {1.73369, 1.83293},
90  {1.70491, 1.80382}, {1.67709, 1.77566}, {1.65018, 1.7484}, {1.62413, 1.72199}, {1.59889, 1.69639},
91  {1.57443, 1.67155}, {1.56088, 1.64745}, {1.5631, 1.62403}
92  };
93 
94  /*
95  98% acceptance cuts of the GEM-CSC bending angle in ME1b
96  for various pT thresholds and for even/odd chambers
97  */
99  {3, 0.03971647, 0.01710244},
100  {5, 0.02123785, 0.00928431},
101  {7, 0.01475524, 0.00650928},
102  {10, 0.01023299, 0.00458796},
103  {15, 0.00689220, 0.00331313},
104  {20, 0.00535176, 0.00276152},
105  {30, 0.00389050, 0.00224959},
106  {40, 0.00329539, 0.00204670}
107  };
108 
110  {0, 95},{0, 95},{0, 95},{0, 95},{0, 95},
111  {0, 95},{0, 95},{0, 95},{0, 95},{0, 95},
112  {0, 95},{0, 95},{0, 77},{0, 61},{0, 39},
113  {0, 22},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
114  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
115  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
116  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
117  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
118  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
119  {-1,-1},{-1,-1},{-1,-1}
120  };
121 
123  {0, 31},{0, 31},{0, 31},{0, 31},{0, 31},
124  {0, 31},{0, 31},{0, 31},{0, 31},{0, 31},
125  {0, 31},{0, 31},{0, 31},{0, 31},{0, 31},
126  {0, 22},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
127  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
128  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
129  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
130  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
131  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
132  {-1,-1},{-1,-1},{-1,-1}
133  };
134 
136  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
137  {-1,-1},{-1,-1},{-1,-1},{-1,-1},{-1,-1},
138  {100, 127},{73, 127},{47, 127},{22, 127},{0, 127},
139  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
140  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
141  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
142  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
143  {0, 127},{0, 127},{0, 127},{0, 127},{0, 127},
144  {0, 127},{0, 127},{0, 127},{0, 127},{0, 105},
145  {0, 93},{0, 78},{0, 63}
146  };
147 
149  {1.61082, 1.67865},
150  {1.67887, 1.7528},
151  {1.75303, 1.82091},
152  {1.82116, 1.89486},
153  {1.89513, 1.96311},
154  {1.9634, 2.037},
155  {2.03732, 2.10527},
156  {2.10562, 2.17903}
157  };
158 
160  {1.61705, 1.68494},
161  {1.68515, 1.75914},
162  {1.75938, 1.8273},
163  {1.82756, 1.9013},
164  {1.90158, 1.96959},
165  {1.96988, 2.04352},
166  {2.04384, 2.11181},
167  {2.11216, 2.1856}
168  };
169 
171  {1.55079, 1.62477},
172  {1.62497, 1.70641},
173  {1.70663, 1.78089},
174  {1.78113, 1.86249},
175  {1.86275, 1.9371},
176  {1.93739, 2.01855},
177  {2.01887, 2.09324},
178  {2.09358, 2.17456}
179  };
180 
182  {1.55698, 1.63103},
183  {1.63123, 1.71275},
184  {1.71297, 1.78728},
185  {1.78752, 1.86894},
186  {1.86921, 1.94359},
187  {1.94388, 2.02509},
188  {2.02541, 2.09981},
189  {2.10015, 2.18115}
190  };
191 
193  {-99, -99},
194  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99},
195  {7, -99}, {7, -99}, {7, 8}, {7, 8}, {6, 8}, {6, 7}, {6, 7}, {6, 7}, {5, 7}, {5, 6},
196  {5, 6}, {4, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 5}, {3, 4}, {3, 4},
197  {2, 4}, {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
198  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
199  };
200 
202  {-99, -99},
203  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99},
204  {7, -99}, {7, -99}, {7, 8}, {7, 8}, {6, 8}, {6, 7}, {6, 7}, {6, 7}, {5, 7}, {5, 6},
205  {5, 6}, {4, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 5}, {3, 4}, {3, 4},
206  {2, 4}, {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
207  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
208  };
209 
211  {-99, -99},
212  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99}, {8, -99}, {7, -99},
213  {7, 8}, {7, 8}, {6, 8}, {6, 8}, {6, 7}, {6, 7}, {5, 7}, {5, 6}, {5, 6}, {5, 6},
214  {5, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 4}, {3, 4}, {3, 4},
215  {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
216  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
217  };
218 
220  {-99, -99},
221  {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {-99, -99}, {8, -99}, {8, -99}, {8, -99}, {8, -99}, {7, -99},
222  {7, 8}, {7, 8}, {6, 8}, {6, 8}, {6, 7}, {6, 7}, {5, 7}, {5, 6}, {5, 6}, {5, 6},
223  {5, 6}, {4, 6}, {4, 5}, {4, 5}, {4, 5}, {4, 5}, {3, 5}, {3, 4}, {3, 4}, {3, 4},
224  {2, 4}, {2, 4}, {2, 3}, {2, 3}, {2, 3}, {2, 3}, {1, 3}, {1, 3}, {1, 2}, {1, 2},
225  {1, 2}, {1, 2}, {1, 2}, {1, 2}, {1, 1}, {1, 1}, {1, 1}
226  };
227 
232 
234  93,
235  92, 92, 92, 91, 91, 90, 90, 89, 89, 88,
236  88, 87, 87, 86, 86, 85, 85, 84, 84, 83,
237  83, 83, 82, 82, 81, 81, 80, 80, 79, 79,
238  78, 78, 77, 77, 76, 76, 75, 75, 74, 74,
239  73, 73, 73, 72, 72, 71, 71, 70, 70, 69,
240  69, 68, 68, 67, 67, 66, 66, 65, 65, 64,
241  64, 63, 63, 63, 62, 62, 61, 61, 60, 60,
242  59, 59, 58, 58, 57, 57, 56, 56, 55, 55,
243  54, 54, 53, 53, 53, 52, 52, 51, 51, 50,
244  50, 49, 49, 48, 48, 47, 47, 46, 46, 45,
245  45, 44, 44, 43, 43, 43, 42, 42, 41, 41,
246  40, 40, 39, 39, 38, 38, 37, 37, 36, 36,
247  35, 35, 34, 34, 33, 33, 33, 32, 32, 31,
248  31, 30, 30, 29, 29, 28, 28, 27, 27, 26,
249  26, 25, 25, 24, 24, 23, 23, 23, 22, 22,
250  21, 21, 20, 20, 19, 19, 18, 18, 17, 17,
251  16, 16, 15, 15, 14, 14, 13, 13, 13, 12,
252  12, 11, 11, 10, 10, 9, 9, 8, 8, 7,
253  7, 6, 6, 5, 5, 4, 4, 4, 3, 3,
254  2
255  };
256 
258  123,
259  123, 122, 121, 121, 120, 119, 119, 118, 118, 117,
260  116, 116, 115, 114, 114, 113, 113, 112, 111, 111,
261  110, 110, 109, 108, 108, 107, 106, 106, 105, 105,
262  104, 103, 103, 102, 101, 101, 100, 100, 99, 98,
263  98, 97, 96, 96, 95, 95, 94, 93, 93, 92,
264  91, 91, 90, 90, 89, 88, 88, 87, 86, 86,
265  85, 85, 84, 83, 83, 82, 81, 81, 80, 80,
266  79, 78, 78, 77, 76, 76, 75, 75, 74, 73,
267  73, 72, 71, 71, 70, 70, 69, 68, 68, 67,
268  66, 66, 65, 65, 64, 63, 63, 62, 61, 61,
269  60, 60, 59, 58, 58, 57, 56, 56, 55, 55,
270  54, 53, 53, 52, 51, 51, 50, 50, 49, 48,
271  48, 47, 46, 46, 45, 45, 44, 43, 43, 42,
272  41, 41, 40, 40, 39, 38, 38, 37, 36, 36,
273  35, 35, 34, 33, 33, 32, 31, 31, 30, 30,
274  29, 28, 28, 27, 26, 26, 25, 25, 24, 23,
275  23, 22, 21, 21, 20, 20, 19, 18, 18, 17,
276  16, 16, 15, 15, 14, 13, 13, 12, 11, 11,
277  10, 10, 9, 8, 8, 7, 7, 6, 5, 5,
278  4
279  };
280 
282  2,
283  3, 3, 3, 4, 4, 5, 5, 6, 6, 7,
284  7, 8, 8, 9, 9, 10, 10, 11, 11, 12,
285  12, 12, 13, 13, 14, 14, 15, 15, 16, 16,
286  17, 17, 18, 18, 19, 19, 20, 20, 21, 21,
287  22, 22, 22, 23, 23, 24, 24, 25, 25, 26,
288  26, 27, 27, 28, 28, 29, 29, 30, 30, 31,
289  31, 32, 32, 32, 33, 33, 34, 34, 35, 35,
290  36, 36, 37, 37, 38, 38, 39, 39, 40, 40,
291  41, 41, 42, 42, 42, 43, 43, 44, 44, 45,
292  45, 46, 46, 47, 47, 48, 48, 49, 49, 50,
293  50, 51, 51, 52, 52, 52, 53, 53, 54, 54,
294  55, 55, 56, 56, 57, 57, 58, 58, 59, 59,
295  60, 60, 61, 61, 62, 62, 63, 63, 63, 64,
296  64, 65, 65, 66, 66, 67, 67, 68, 68, 69,
297  69, 70, 70, 71, 71, 72, 72, 73, 73, 73,
298  74, 74, 75, 75, 76, 76, 77, 77, 78, 78,
299  79, 79, 80, 80, 81, 81, 82, 82, 82, 83,
300  83, 84, 84, 85, 85, 86, 86, 87, 87, 88,
301  88, 89, 89, 90, 90, 91, 91, 91, 92, 92,
302  93
303  };
304 
306  4,
307  4, 5, 6, 6, 7, 7, 8, 9, 9, 10,
308  11, 11, 12, 12, 13, 14, 14, 15, 16, 16,
309  17, 17, 18, 19, 19, 20, 20, 21, 22, 22,
310  23, 24, 24, 25, 25, 26, 27, 27, 28, 29,
311  29, 30, 30, 31, 32, 32, 33, 34, 34, 35,
312  35, 36, 37, 37, 38, 39, 39, 40, 40, 41,
313  42, 42, 43, 44, 44, 45, 45, 46, 47, 47,
314  48, 49, 49, 50, 50, 51, 52, 52, 53, 54,
315  54, 55, 55, 56, 57, 57, 58, 59, 59, 60,
316  60, 61, 62, 62, 63, 64, 64, 65, 65, 66,
317  67, 67, 68, 69, 69, 70, 70, 71, 72, 72,
318  73, 74, 74, 75, 75, 76, 77, 77, 78, 79,
319  79, 80, 80, 81, 82, 82, 83, 84, 84, 85,
320  85, 86, 87, 87, 88, 89, 89, 90, 90, 91,
321  92, 92, 93, 94, 94, 95, 95, 96, 97, 97,
322  98, 99, 99, 100, 100, 101, 102, 102, 103, 104,
323  104, 105, 105, 106, 107, 107, 108, 109, 109, 110,
324  110, 111, 112, 112, 113, 114, 114, 115, 115, 116,
325  117, 117, 118, 119, 119, 120, 120, 121, 122, 122,
326  123
327  };
328 
330  {192, 192},
331  {192, 192}, {192, 192}, {190, 191}, {188, 188}, {185, 186}, {183, 184}, {181, 182}, {179, 180}, {177, 178}, {175, 176},
332  {173, 174}, {171, 172}, {169, 169}, {166, 167}, {164, 165}, {162, 163}, {160, 161}, {158, 159}, {156, 157}, {154, 155},
333  {152, 153}, {150, 151}, {148, 148}, {145, 146}, {143, 144}, {141, 142}, {139, 140}, {137, 138}, {135, 136}, {133, 134},
334  {131, 132}, {129, 130}, {127, 127}, {124, 125}, {122, 123}, {120, 121}, {118, 119}, {116, 117}, {114, 115}, {112, 113},
335  {110, 111}, {108, 109}, {106, 106}, {103, 104}, {101, 102}, {99, 100}, {97, 98}, {95, 96}, {93, 94}, {91, 92},
336  {89, 90}, {87, 88}, {85, 85}, {82, 83}, {80, 81}, {78, 79}, {76, 77}, {74, 75}, {72, 73}, {70, 71},
337  {68, 69}, {66, 67}, {64, 64}, {61, 62}, {59, 60}, {57, 58}, {55, 56}, {53, 54}, {51, 52}, {49, 50},
338  {47, 48}, {45, 46}, {43, 43}, {40, 41}, {38, 39}, {36, 37}, {34, 35}, {32, 33}, {30, 31}, {28, 29},
339  {26, 27}, {24, 25}, {22, 22}, {19, 20}, {17, 18}, {15, 16}, {13, 14}, {11, 12}, {9, 10}, {7, 8},
340  {5, 6}, {3, 3}, {1, 1}, {1, 1}, {1, 1}
341  };
342 
344  {1, 1},
345  {1, 1}, {1, 1}, {2, 3}, {4, 5}, {7, 7}, {9, 10}, {11, 12}, {13, 14}, {15, 16}, {17, 18},
346  {19, 20}, {21, 22}, {23, 24}, {26, 26}, {28, 29}, {30, 31}, {32, 33}, {34, 35}, {36, 37}, {38, 39},
347  {40, 41}, {42, 43}, {44, 45}, {47, 47}, {49, 50}, {51, 52}, {53, 54}, {55, 56}, {57, 58}, {59, 60},
348  {61, 62}, {63, 64}, {65, 66}, {68, 68}, {70, 71}, {72, 73}, {74, 75}, {76, 77}, {78, 79}, {80, 81},
349  {82, 83}, {84, 85}, {86, 87}, {88, 89}, {91, 91}, {93, 94}, {95, 96}, {97, 98}, {99, 100}, {101, 102},
350  {103, 104}, {105, 106}, {107, 108}, {109, 110}, {112, 112}, {114, 115}, {116, 117}, {118, 119}, {120, 121}, {122, 123},
351  {124, 125}, {126, 127}, {128, 129}, {130, 131}, {133, 133}, {135, 136}, {137, 138}, {139, 140}, {141, 142}, {143, 144},
352  {145, 146}, {147, 148}, {149, 150}, {151, 152}, {154, 154}, {156, 157}, {158, 159}, {160, 161}, {162, 163}, {164, 165},
353  {166, 167}, {168, 169}, {170, 171}, {172, 173}, {175, 175}, {177, 178}, {179, 180}, {181, 182}, {183, 184}, {185, 186},
354  {187, 188}, {189, 190}, {191, 192}, {192, 192}, {192, 192}
355  };
356 
358  {192, 192},
359  {192, 192}, {192, 192}, {192, 192}, {192, 192}, {190, 191}, {189, 189}, {187, 188}, {185, 186}, {184, 184}, {182, 183},
360  {180, 181}, {179, 179}, {177, 178}, {176, 176}, {174, 175}, {172, 173}, {171, 171}, {169, 170}, {168, 168}, {166, 167},
361  {164, 165}, {163, 163}, {161, 162}, {160, 160}, {158, 159}, {156, 157}, {155, 155}, {153, 154}, {152, 152}, {150, 151},
362  {148, 149}, {147, 147}, {145, 146}, {144, 144}, {142, 143}, {140, 141}, {139, 139}, {137, 138}, {136, 136}, {134, 135},
363  {132, 133}, {131, 131}, {129, 130}, {128, 128}, {126, 127}, {124, 125}, {123, 123}, {121, 122}, {120, 120}, {118, 119},
364  {116, 117}, {115, 115}, {113, 114}, {112, 112}, {110, 111}, {108, 109}, {107, 107}, {105, 106}, {104, 104}, {102, 103},
365  {100, 101}, {99, 99}, {97, 98}, {96, 96}, {94, 95}, {92, 93}, {91, 91}, {89, 90}, {88, 88}, {86, 87},
366  {84, 85}, {83, 83}, {81, 82}, {80, 80}, {78, 79}, {76, 77}, {75, 75}, {73, 74}, {72, 72}, {70, 71},
367  {68, 69}, {67, 67}, {65, 66}, {64, 64}, {62, 63}, {60, 61}, {59, 59}, {57, 58}, {56, 56}, {54, 55},
368  {52, 53}, {51, 51}, {49, 50}, {48, 48}, {46, 47}, {44, 45}, {43, 43}, {41, 42}, {40, 40}, {38, 39},
369  {36, 37}, {35, 35}, {33, 34}, {32, 32}, {30, 31}, {28, 29}, {27, 27}, {25, 26}, {24, 24}, {22, 23},
370  {20, 21}, {19, 19}, {17, 18}, {15, 16}, {14, 14}, {12, 13}, {11, 11}, {9, 10}, {7, 8}, {6, 6},
371  {4, 5}, {3, 3}, {1, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}
372  };
373 
375  {1, 1},
376  {1, 1}, {1, 1}, {1, 1}, {1, 2}, {3, 4}, {5, 5}, {6, 7}, {8, 8}, {9, 10}, {11, 12},
377  {13, 13}, {14, 15}, {16, 16}, {17, 18}, {19, 20}, {21, 21}, {22, 23}, {24, 24}, {25, 26}, {27, 28},
378  {29, 29}, {30, 31}, {32, 32}, {33, 34}, {35, 36}, {37, 37}, {38, 39}, {40, 40}, {41, 42}, {43, 44},
379  {45, 45}, {46, 47}, {48, 48}, {49, 50}, {51, 52}, {53, 53}, {54, 55}, {56, 56}, {57, 58}, {59, 60},
380  {61, 61}, {62, 63}, {64, 64}, {65, 66}, {67, 68}, {69, 69}, {70, 71}, {72, 72}, {73, 74}, {75, 76},
381  {77, 77}, {78, 79}, {80, 80}, {81, 82}, {83, 84}, {85, 85}, {86, 87}, {88, 88}, {89, 90}, {91, 92},
382  {93, 93}, {94, 95}, {96, 96}, {97, 98}, {99, 100}, {101, 101}, {102, 103}, {104, 104}, {105, 106}, {107, 108},
383  {109, 109}, {110, 111}, {112, 112}, {113, 114}, {115, 116}, {117, 117}, {118, 119}, {120, 120}, {121, 122}, {123, 124},
384  {125, 125}, {126, 127}, {128, 128}, {129, 130}, {131, 132}, {133, 133}, {134, 135}, {136, 136}, {137, 138}, {139, 140},
385  {141, 141}, {142, 143}, {144, 144}, {145, 146}, {147, 148}, {149, 149}, {150, 151}, {152, 152}, {153, 154}, {155, 156},
386  {157, 157}, {158, 159}, {160, 160}, {161, 162}, {163, 164}, {165, 165}, {166, 167}, {168, 169}, {170, 170}, {171, 172},
387  {173, 173}, {174, 175}, {176, 177}, {178, 178}, {179, 180}, {181, 181}, {182, 183}, {184, 185}, {186, 186}, {187, 188},
388  {189, 189}, {190, 191}, {192, 192}, {192, 192}, {192, 192}, {192, 192}, {192, 192}
389  };
390 }
391 
393 {
394 }
395 
396 
398 {
399  lut_wg_eta_odd = {
400  {-2.43106, -2.43106},
401  {-2.41441, -2.41441}, {-2.39399, -2.39399}, {-2.374, -2.374}, {-2.35442, -2.35442}, {-2.33524, -2.33524},
402  {-2.31644, -2.31644}, {-2.29801, -2.29801}, {-2.27993, -2.27993}, {-2.26219, -2.26219}, {-2.24478, -2.24478},
403  {-2.22768, -2.22768}, {-2.2109, -2.2109}, {-2.19441, -2.19441}, {-2.17821, -2.17821}, {-2.16228, -2.16228},
404  {-2.14663, -2.14663}, {-2.13123, -2.13123}, {-2.11609, -2.11609}, {-2.1012, -2.1012}, {-2.08654, -2.08654},
405  {-2.07211, -2.07211}, {-2.06002, -2.06002}, {-2.04392, -2.04392}, {-2.03015, -2.03015}, {-2.01659, -2.01659},
406  {-2.00322, -2.00322}, {-1.99005, -1.99005}, {-1.97707, -1.97707}, {-1.96428, -1.96428}, {-1.95166, -1.95166},
407  {-1.93922, -1.93922}, {-1.92696, -1.92696}, {-1.91306, -1.91306}, {-1.89878, -1.89878}, {-1.88474, -1.88474},
408  {-1.87091, -1.87091}, {-1.8573, -1.8573}, {-1.8439, -1.8439}, {-1.8307, -1.8307}, {-1.81931, -1.81931},
409  {-1.80489, -1.80489}, {-1.79227, -1.79227}, {-1.77984, -1.77984}, {-1.76758, -1.76758}, {-1.7555, -1.7555},
410  {-1.74359, -1.74359}, {-1.73184, -1.73184}, {-1.72026, -1.72026}, {-1.70883, -1.70883}, {-1.69756, -1.69756},
411  {-1.68644, -1.68644}, {-1.67546, -1.67546}, {-1.66463, -1.66463}, {-1.65394, -1.65394}, {-1.64339, -1.64339}
412  };
413 
414  lut_wg_eta_even = {
415  {-2.40118, -2.40118},
416  {-2.38455, -2.38455}, {-2.36416, -2.36416}, {-2.3442, -2.3442}, {-2.32465, -2.32465}, {-2.3055, -2.3055},
417  {-2.28673, -2.28673}, {-2.26833, -2.26833}, {-2.25028, -2.25028}, {-2.23257, -2.23257}, {-2.21519, -2.21519},
418  {-2.19813, -2.19813}, {-2.18138, -2.18138}, {-2.16492, -2.16492}, {-2.14875, -2.14875}, {-2.13286, -2.13286},
419  {-2.11723, -2.11723}, {-2.10187, -2.10187}, {-2.08676, -2.08676}, {-2.0719, -2.0719}, {-2.05727, -2.05727},
420  {-2.04288, -2.04288}, {-2.03082, -2.03082}, {-2.01476, -2.01476}, {-2.00102, -2.00102}, {-1.98749, -1.98749},
421  {-1.97416, -1.97416}, {-1.96102, -1.96102}, {-1.94808, -1.94808}, {-1.93532, -1.93532}, {-1.92274, -1.92274},
422  {-1.91033, -1.91033}, {-1.8981, -1.8981}, {-1.88424, -1.88424}, {-1.87001, -1.87001}, {-1.85601, -1.85601},
423  {-1.84222, -1.84222}, {-1.82866, -1.82866}, {-1.8153, -1.8153}, {-1.80215, -1.80215}, {-1.7908, -1.7908},
424  {-1.77643, -1.77643}, {-1.76385, -1.76385}, {-1.75146, -1.75146}, {-1.73925, -1.73925}, {-1.72722, -1.72722},
425  {-1.71535, -1.71535}, {-1.70365, -1.70365}, {-1.69211, -1.69211}, {-1.68073, -1.68073}, {-1.66951, -1.66951},
426  {-1.65843, -1.65843}, {-1.64751, -1.64751}, {-1.63672, -1.63672}, {-1.62608, -1.62608}, {-1.61558, -1.61558}
427  };
428 
429  /*
430  98% acceptance cuts of the GEM-CSC bending angle in ME21
431  for various pT thresholds and for even/odd chambers
432  */
434  {3, 0.01832829, 0.01003643 },
435  {5, 0.01095490, 0.00631625 },
436  {7, 0.00786026, 0.00501017 },
437  {10, 0.00596349, 0.00414560 },
438  {15, 0.00462411, 0.00365550 },
439  {20, 0.00435298, 0.00361550 },
440  {30, 0.00465160, 0.00335700 },
441  {40, 0.00372145, 0.00366262 }
442  };
443 
444  // roll 1 through 12
446  {1.64258, 1.70821},
447  {1.70837, 1.77962},
448  {1.77979, 1.84546},
449  {1.84565, 1.91671},
450  {1.91691, 1.98263},
451  {1.98285, 2.05379},
452  {2.05402, 2.11977},
453  {2.12002, 2.19085},
454  {2.19112, 2.25688},
455  {2.25717, 2.32792},
456  {2.32823, 2.39406},
457  {2.39439, 2.46514}
458  };
459 
461  {1.64671, 1.71238},
462  {1.71254, 1.78382},
463  {1.784, 1.8497},
464  {1.84988, 1.92097},
465  {1.92117, 1.98692},
466  {1.98713, 2.05809},
467  {2.05833, 2.12409},
468  {2.12434, 2.19519},
469  {2.19546, 2.26124},
470  {2.26153, 2.33228},
471  {2.33259, 2.39844},
472  {2.39877, 2.46953}
473  };
474 
476  {1.63978, 1.70538},
477  {1.70554, 1.77677},
478  {1.77694, 1.84259},
479  {1.84277, 1.91382},
480  {1.91402, 1.97972},
481  {1.97994, 2.05086},
482  {2.0511, 2.11683},
483  {2.11708, 2.18791},
484  {2.18818, 2.25393},
485  {2.25422, 2.32495},
486  {2.32526, 2.39109},
487  {2.39142, 2.46216}
488  };
489 
491  {1.64392, 1.70956},
492  {1.70972, 1.78098},
493  {1.78115, 1.84684},
494  {1.84702, 1.91809},
495  {1.91829, 1.98402},
496  {1.98424, 2.05518},
497  {2.05541, 2.12117},
498  {2.12142, 2.19226},
499  {2.19253, 2.25829},
500  {2.25858, 2.32933},
501  {2.32964, 2.39547},
502  {2.39581, 2.46656}
503  };
504 
506  {12, 12},
507  {12, 12}, {12, 12}, {12, 12}, {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11},
508  {11, 11}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9},
509  {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8},
510  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
511  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
512  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
513  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
514  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
515  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
516  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1},
517  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
518  {1, 1}
519  };
520 
522  {12, 12},
523  {12, 12}, {12, 12}, {12, 12}, {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11},
524  {11, 11}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9},
525  {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8},
526  {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
527  {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
528  {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
529  {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
530  {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
531  {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
532  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1},
533  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
534  {1, 1}
535  };
536 
538  {12, 12},
539  {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {10, 10}, {10, 10},
540  {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9}, {9, 9}, {9, 9}, {9, 9},
541  {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8},
542  {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
543  {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
544  {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
545  {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
546  {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
547  {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
548  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
549  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
550  {1, 1}
551  };
552 
554  {12, 12},
555  {12, 12}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {11, 11}, {10, 10}, {10, 10},
556  {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {10, 10}, {9, 9}, {9, 9}, {9, 9}, {9, 9},
557  {9, 9}, {9, 9}, {9, 9}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8}, {8, 8},
558  {8, 8}, {8, 8}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7}, {7, 7},
559  {7, 7}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6}, {6, 6},
560  {6, 6}, {6, 6}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5}, {5, 5},
561  {5, 5}, {5, 5}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4}, {4, 4},
562  {4, 4}, {4, 4}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3}, {3, 3},
563  {3, 3}, {3, 3}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2}, {2, 2},
564  {2, 2}, {2, 2}, {2, 2}, {2, 2}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
565  {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1}, {1, 1},
566  {1, 1}
567  };
568 
570  157,
571  157, 156, 156, 156, 155, 155, 154, 154, 154, 153,
572  153, 152, 152, 152, 151, 151, 150, 150, 150, 149,
573  149, 148, 148, 148, 147, 147, 146, 146, 146, 145,
574  145, 144, 144, 144, 143, 143, 142, 142, 142, 141,
575  141, 140, 140, 140, 139, 139, 138, 138, 138, 137,
576  137, 136, 136, 135, 135, 135, 134, 134, 133, 133,
577  133, 132, 132, 131, 131, 131, 130, 130, 129, 129,
578  129, 128, 128, 127, 127, 127, 126, 126, 125, 125,
579  125, 124, 124, 123, 123, 122, 122, 122, 121, 121,
580  120, 120, 120, 119, 119, 118, 118, 118, 117, 117,
581  116, 116, 116, 115, 115, 114, 114, 113, 113, 113,
582  112, 112, 111, 111, 111, 110, 110, 109, 109, 109,
583  108, 108, 107, 107, 107, 106, 106, 105, 105, 104,
584  104, 104, 103, 103, 102, 102, 102, 101, 101, 100,
585  100, 100, 99, 99, 98, 98, 97, 97, 97, 96,
586  96, 95, 95, 95, 94, 94, 93, 93, 93, 92,
587  92, 91, 91, 90, 90, 90, 89, 89, 88, 88,
588  88, 87, 87, 86, 86, 86, 85, 85, 84, 84,
589  83, 83, 83, 82, 82, 81, 81, 81, 80, 80,
590  79, 79, 79, 78, 78, 77, 77, 76, 76, 76,
591  75, 75, 74, 74, 74, 73, 73, 72, 72, 72,
592  71, 71, 70, 70, 69, 69, 69, 68, 68, 67,
593  67, 67, 66, 66, 65, 65, 65, 64, 64, 63,
594  63, 62, 62, 62, 61, 61, 60, 60, 60, 59,
595  59, 58, 58, 58, 57, 57, 56, 56, 55, 55,
596  55, 54, 54, 53, 53, 53, 52, 52, 51, 51,
597  51, 50, 50, 49, 49, 48, 48, 48, 47, 47,
598  46, 46, 46, 45, 45, 44, 44, 44, 43, 43,
599  42, 42, 42, 41, 41, 40, 40, 39, 39, 39,
600  38, 38, 37, 37, 37, 36, 36, 35, 35, 35,
601  34, 34, 33, 33, 33, 32, 32, 31, 31, 31,
602  30, 30, 29, 29, 28, 28, 28, 27, 27, 26,
603  26, 26, 25, 25, 24, 24, 24, 23, 23, 22,
604  22, 22, 21, 21, 20, 20, 20, 19, 19, 18,
605  18, 18, 17, 17, 16, 16, 16, 15, 15, 14,
606  14, 14, 13, 13, 12, 12, 11, 11, 11, 10,
607  10, 9, 9, 9, 8, 8, 7, 7, 7, 6,
608  6, 5, 5, 5, 4, 4, 3, 3, 3, 2,
609  2, 1, 1
610  };
611 
613  1,
614  1, 2, 2, 2, 3, 3, 4, 4, 4, 5,
615  5, 6, 6, 6, 7, 7, 8, 8, 8, 9,
616  9, 10, 10, 10, 11, 11, 12, 12, 12, 13,
617  13, 14, 14, 14, 15, 15, 16, 16, 17, 17,
618  17, 18, 18, 19, 19, 19, 20, 20, 21, 21,
619  21, 22, 22, 23, 23, 23, 24, 24, 25, 25,
620  25, 26, 26, 27, 27, 27, 28, 28, 29, 29,
621  29, 30, 30, 31, 31, 32, 32, 32, 33, 33,
622  34, 34, 34, 35, 35, 36, 36, 36, 37, 37,
623  38, 38, 38, 39, 39, 40, 40, 40, 41, 41,
624  42, 42, 43, 43, 43, 44, 44, 45, 45, 45,
625  46, 46, 47, 47, 47, 48, 48, 49, 49, 50,
626  50, 50, 51, 51, 52, 52, 52, 53, 53, 54,
627  54, 54, 55, 55, 56, 56, 56, 57, 57, 58,
628  58, 59, 59, 59, 60, 60, 61, 61, 61, 62,
629  62, 63, 63, 63, 64, 64, 65, 65, 66, 66,
630  66, 67, 67, 68, 68, 68, 69, 69, 70, 70,
631  70, 71, 71, 72, 72, 73, 73, 73, 74, 74,
632  75, 75, 75, 76, 76, 77, 77, 77, 78, 78,
633  79, 79, 80, 80, 80, 81, 81, 82, 82, 82,
634  83, 83, 84, 84, 84, 85, 85, 86, 86, 87,
635  87, 87, 88, 88, 89, 89, 89, 90, 90, 91,
636  91, 92, 92, 92, 93, 93, 94, 94, 94, 95,
637  95, 96, 96, 96, 97, 97, 98, 98, 98, 99,
638  99, 100, 100, 101, 101, 101, 102, 102, 103, 103,
639  103, 104, 104, 105, 105, 105, 106, 106, 107, 107,
640  108, 108, 108, 109, 109, 110, 110, 110, 111, 111,
641  112, 112, 112, 113, 113, 114, 114, 115, 115, 115,
642  116, 116, 117, 117, 117, 118, 118, 119, 119, 119,
643  120, 120, 121, 121, 121, 122, 122, 123, 123, 124,
644  124, 124, 125, 125, 126, 126, 126, 127, 127, 128,
645  128, 128, 129, 129, 130, 130, 130, 131, 131, 132,
646  132, 132, 133, 133, 134, 134, 134, 135, 135, 136,
647  136, 137, 137, 137, 138, 138, 139, 139, 139, 140,
648  140, 141, 141, 141, 142, 142, 143, 143, 143, 144,
649  144, 145, 145, 145, 146, 146, 147, 147, 147, 148,
650  148, 149, 149, 149, 150, 150, 151, 151, 151, 152,
651  152, 153, 153, 153, 154, 154, 155, 155, 155, 156,
652  156, 157, 157
653  };
654 
656  {384, 384},
657  {384, 384}, {381, 382}, {378, 380}, {376, 377}, {373, 375}, {371, 372}, {368, 370}, {366, 367}, {363, 365}, {361, 362},
658  {358, 360}, {356, 357}, {354, 355}, {351, 353}, {349, 350}, {346, 348}, {344, 345}, {341, 343}, {339, 340}, {336, 338},
659  {334, 335}, {331, 333}, {329, 330}, {326, 328}, {324, 325}, {321, 323}, {319, 320}, {316, 318}, {314, 315}, {312, 313},
660  {309, 311}, {307, 308}, {304, 306}, {302, 303}, {299, 301}, {297, 298}, {294, 296}, {292, 293}, {289, 291}, {287, 288},
661  {285, 286}, {282, 284}, {280, 281}, {277, 279}, {275, 276}, {272, 274}, {270, 271}, {267, 269}, {265, 266}, {263, 264},
662  {260, 262}, {258, 259}, {255, 257}, {253, 254}, {250, 252}, {248, 249}, {246, 247}, {243, 245}, {241, 242}, {238, 240},
663  {236, 237}, {233, 235}, {231, 232}, {229, 230}, {226, 228}, {224, 225}, {221, 223}, {219, 220}, {216, 218}, {214, 215},
664  {212, 213}, {209, 211}, {207, 208}, {204, 206}, {202, 203}, {199, 201}, {197, 198}, {195, 196}, {192, 194}, {190, 191},
665  {187, 189}, {185, 186}, {182, 184}, {180, 181}, {178, 179}, {175, 177}, {173, 174}, {170, 172}, {168, 169}, {165, 167},
666  {163, 164}, {161, 162}, {158, 160}, {156, 157}, {153, 155}, {151, 152}, {148, 150}, {146, 147}, {144, 145}, {141, 143},
667  {139, 140}, {136, 138}, {134, 135}, {131, 133}, {129, 130}, {127, 128}, {124, 126}, {122, 123}, {119, 121}, {117, 118},
668  {114, 116}, {112, 113}, {109, 111}, {107, 108}, {105, 106}, {102, 104}, {100, 101}, {97, 99}, {95, 96}, {92, 94},
669  {90, 91}, {87, 89}, {85, 86}, {83, 84}, {80, 82}, {78, 79}, {75, 77}, {73, 74}, {70, 72}, {68, 69},
670  {65, 67}, {63, 64}, {60, 62}, {58, 59}, {55, 57}, {53, 54}, {51, 52}, {48, 50}, {46, 47}, {43, 45},
671  {41, 42}, {38, 40}, {36, 37}, {33, 35}, {31, 32}, {28, 30}, {26, 27}, {23, 25}, {21, 22}, {18, 20},
672  {16, 17}, {13, 15}, {11, 12}, {8, 10}, {6, 7}, {3, 5}, {1, 2}, {1, 1}, {1, 1}
673  };
674 
676  {1, 2},
677  {1, 2}, {3, 5}, {6, 7}, {8, 10}, {11, 12}, {13, 15}, {16, 17}, {18, 20}, {21, 22}, {23, 25},
678  {26, 27}, {28, 30}, {31, 32}, {33, 35}, {36, 37}, {38, 39}, {40, 42}, {43, 44}, {45, 47}, {48, 49},
679  {50, 52}, {53, 54}, {55, 57}, {58, 59}, {60, 62}, {63, 64}, {65, 67}, {68, 69}, {70, 72}, {73, 74},
680  {75, 76}, {77, 79}, {80, 81}, {82, 84}, {85, 86}, {87, 89}, {90, 91}, {92, 94}, {95, 96}, {97, 99},
681  {100, 101}, {102, 103}, {104, 106}, {107, 108}, {109, 111}, {112, 113}, {114, 116}, {117, 118}, {119, 120}, {121, 123},
682  {124, 125}, {126, 128}, {129, 130}, {131, 133}, {134, 135}, {136, 138}, {139, 140}, {141, 142}, {143, 145}, {146, 147},
683  {148, 150}, {151, 152}, {153, 155}, {156, 157}, {158, 159}, {160, 162}, {163, 164}, {165, 167}, {168, 169}, {170, 172},
684  {173, 174}, {175, 176}, {177, 179}, {180, 181}, {182, 184}, {185, 186}, {187, 189}, {190, 191}, {192, 193}, {194, 196},
685  {197, 198}, {199, 201}, {202, 203}, {204, 206}, {207, 208}, {209, 210}, {211, 213}, {214, 215}, {216, 218}, {219, 220},
686  {221, 222}, {223, 225}, {226, 227}, {228, 230}, {231, 232}, {233, 235}, {236, 237}, {238, 240}, {241, 242}, {243, 244},
687  {245, 247}, {248, 249}, {250, 252}, {253, 254}, {255, 257}, {258, 259}, {260, 261}, {262, 264}, {265, 266}, {267, 269},
688  {270, 271}, {272, 274}, {275, 276}, {277, 278}, {279, 281}, {282, 283}, {284, 286}, {287, 288}, {289, 291}, {292, 293},
689  {294, 296}, {297, 298}, {299, 300}, {301, 303}, {304, 305}, {306, 308}, {309, 310}, {311, 313}, {314, 315}, {316, 318},
690  {319, 320}, {321, 323}, {324, 325}, {326, 328}, {329, 330}, {331, 332}, {333, 335}, {336, 337}, {338, 340}, {341, 342},
691  {343, 345}, {346, 347}, {348, 350}, {351, 352}, {353, 355}, {356, 357}, {358, 360}, {361, 362}, {363, 365}, {366, 367},
692  {368, 370}, {371, 372}, {373, 375}, {376, 377}, {378, 380}, {381, 382}, {383, 384}, {384, 384}, {384, 384}
693  };
694 }
695 
696 
698 {
699 }
std::vector< int > get_gem_pad_to_csc_hs(Parity par, enum CSCPart) const override
std::vector< int > get_gem_pad_to_csc_hs(Parity par, enum CSCPart) const override
std::vector< std::pair< int, int > > get_csc_hs_to_gem_pad(Parity par, enum CSCPart) const override
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l1
std::vector< int > gem_pad_to_csc_hs_me1b_even
std::vector< int > gem_roll_to_csc_wg_odd_l1
std::vector< int > get_gem_roll_to_csc_wg(Parity par, int layer=1) const
std::vector< int > gem_pad_to_csc_hs_even
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l1
std::vector< int > gem_pad_to_csc_hs_me1b_odd
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1b_even
std::vector< int > gem_pad_to_csc_hs_me1a_odd
std::vector< std::vector< double > > lut_wg_vs_hs_me1a
std::vector< int > gem_pad_to_csc_hs_me1a_even
std::vector< int > gem_roll_to_csc_wg_even_l1
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l2
std::vector< int > gem_roll_to_csc_wg_even_l2
std::vector< std::vector< double > > get_lut_wg_vs_hs(enum CSCPart) const
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_even
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_odd_l1
std::vector< std::pair< double, double > > gem_roll_eta_limits_odd_l2
std::vector< std::vector< double > > lut_wg_eta_odd
std::vector< std::vector< double > > lut_wg_vs_hs_me1ag
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l1
std::vector< std::pair< int, int > > get_csc_hs_to_gem_pad(Parity par, enum CSCPart) const override
std::vector< std::vector< double > > lut_wg_vs_hs_me1b
std::vector< int > gem_pad_to_csc_hs_odd
std::vector< std::pair< double, double > > gem_roll_eta_limits_even_l2
std::vector< int > gem_roll_to_csc_wg_odd_l2
std::vector< std::pair< int, int > > csc_wg_to_gem_roll_even_l2
std::vector< std::vector< double > > lut_wg_eta_even
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1a_odd
std::vector< std::vector< double > > lut_pt_vs_dphi_gemcsc
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1a_even
std::vector< std::pair< int, int > > csc_hs_to_gem_pad_me1b_odd
std::vector< std::pair< int, int > > get_csc_wg_to_gem_roll(Parity par, int layer=1) const