CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Classes | Namespaces | Typedefs | Functions | Variables
oldBasic3DVector.h File Reference
#include "DataFormats/GeometryVector/interface/Basic2DVector.h"
#include "DataFormats/GeometryVector/interface/Theta.h"
#include "DataFormats/GeometryVector/interface/Phi.h"
#include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
#include "DataFormats/GeometryVector/interface/CoordinateSets.h"
#include "DataFormats/Math/interface/SIMDVec.h"
#include <iosfwd>
#include <cmath>

Go to the source code of this file.

Classes

class  Basic3DVector< T >
 

Namespaces

 detailsBasic3DVector
 
 geometryDetails
 

Typedefs

typedef Basic3DVector< double > Basic3DVectorD
 
typedef Basic3DVector< float > Basic3DVectorF
 
typedef Basic3DVector< long
double > 
Basic3DVectorLD
 
typedef
Geom::Cylindrical2Cartesian< T
Cylindrical
 
typedef Basic3DVector< TMathVector
 
typedef Spherical Polar
 
typedef T ScalarType
 
typedef
Geom::Spherical2Cartesian< T
Spherical
 

Functions

float detailsBasic3DVector::__attribute__ ((always_inline)) __attribute__((pure)) eta(float x
 
template<typename T >
class Basic3DVector __attribute__ ((aligned(16)))
 
T barePhi () const
 
T bareTheta () const
 
 Basic3DVector ()
 
 Basic3DVector (const Basic3DVector &p)
 Copy constructor from same type. Should not be needed but for gcc bug 12685. More...
 
template<class U >
 Basic3DVector (const Basic3DVector< U > &p)
 Copy constructor and implicit conversion from Basic3DVector of different precision. More...
 
 Basic3DVector (const Basic2DVector< T > &p)
 constructor from 2D vector (X and Y from 2D vector, z set to zero) More...
 
template<class OtherPoint >
 Basic3DVector (const OtherPoint &p)
 
 Basic3DVector (const T &x, const T &y, const T &z, const T &w=0)
 construct from cartesian coordinates More...
 
template<typename U >
 Basic3DVector (const Geom::Theta< U > &theta, const Geom::Phi< U > &phi, const T &r)
 
Basic3DVector cross (const Basic3DVector &v) const
 Vector product, or "cross" product, with a vector of same type. More...
 
template<class U >
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
cross (const Basic3DVector< U > &v) const
 
T dot (const Basic3DVector &v) const
 Scalar product, or "dot" product, with a vector of same type. More...
 
template<class U >
PreciseFloatType< T, U >::Type dot (const Basic3DVector< U > &v) const
 
T eta () const
 
T mag () const
 The vector magnitude. Equivalent to sqrt(vec.mag2()) More...
 
T mag2 () const
 The vector magnitude squared. Equivalent to vec.dot(vec) More...
 
template<class T >
T operator* (const Basic3DVector< T > &v1, const Basic3DVector< T > &v2)
 scalar product of vectors of same precision More...
 
template<class T , class U >
PreciseFloatType< T, U >::Type operator* (const Basic3DVector< T > &v1, const Basic3DVector< U > &v2)
 scalar product of vectors of different precision More...
 
template<class T >
Basic3DVector< Toperator* (const Basic3DVector< T > &v, T t)
 
template<class T >
Basic3DVector< Toperator* (T t, const Basic3DVector< T > &v)
 Same as operator*( Vector, Scalar) More...
 
template<class T , typename S >
Basic3DVector< Toperator* (S t, const Basic3DVector< T > &v)
 
template<class T , typename S >
Basic3DVector< Toperator* (const Basic3DVector< T > &v, S t)
 
Basic3DVectoroperator*= (T t)
 Scaling by a scalar value (multiplication) More...
 
template<class T , class U >
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
operator+ (const Basic3DVector< T > &a, const Basic3DVector< U > &b)
 vector sum and subtraction of vectors of possibly different precision More...
 
template<class U >
Basic3DVectoroperator+= (const Basic3DVector< U > &p)
 
template<class T , class U >
Basic3DVector< typename
PreciseFloatType< T, U >::Type > 
operator- (const Basic3DVector< T > &a, const Basic3DVector< U > &b)
 
Basic3DVector operator- () const
 Unary minus, returns a vector with components (-x(),-y(),-z()) More...
 
template<class U >
Basic3DVectoroperator-= (const Basic3DVector< U > &p)
 
template<class T , typename S >
Basic3DVector< Toperator/ (const Basic3DVector< T > &v, S s)
 
Basic3DVectoroperator/= (T t)
 Scaling by a scalar value (division) More...
 
template<class T >
std::ostream & operator<< (std::ostream &s, const Basic3DVector< T > &v)
 simple text output to standard streams More...
 
bool operator== (const Basic3DVector &rh) const
 
T operator[] (int i) const
 
T perp () const
 Magnitude of transverse component. More...
 
T perp2 () const
 Squared magnitude of transverse component. More...
 
Geom::Phi< Tphi () const
 
std::ostream & geometryDetails::print3D (std::ostream &s, double x, double y, double z)
 
Geom::Theta< Ttheta () const
 
T transverse () const
 Another name for perp() More...
 
Basic3DVector unit () const
 
T w () const
 
T x () const
 Cartesian x coordinate. More...
 
Basic2DVector< Txy () const
 
T y () const
 Cartesian y coordinate. More...
 
T z () const
 Cartesian z coordinate. More...
 

Variables

T theW
 
T theX
 
T theY
 
T theZ
 

Typedef Documentation

typedef Basic3DVector<double> Basic3DVectorD

Definition at line 346 of file oldBasic3DVector.h.

typedef Basic3DVector<float> Basic3DVectorF

Definition at line 345 of file oldBasic3DVector.h.

typedef Basic3DVector<long double> Basic3DVectorLD

Definition at line 347 of file oldBasic3DVector.h.

Definition at line 176 of file oldBasic3DVector.h.

Definition at line 172 of file oldBasic3DVector.h.

typedef Spherical Polar

Definition at line 178 of file oldBasic3DVector.h.

typedef T ScalarType

Definition at line 175 of file oldBasic3DVector.h.

Definition at line 177 of file oldBasic3DVector.h.

Function Documentation

template<typename T >
class Basic3DVector __attribute__ ( (aligned(16))  )
T __attribute__::barePhi ( ) const

Azimuthal angle. The value is returned in radians, in the range (-pi,pi]. Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 293 of file oldBasic3DVector.h.

299 {
T __attribute__::bareTheta ( ) const

Polar angle. The value is returned in radians, in the range [0,pi] Same precision as the system atan2(x,y) function. The return type is Geom::Phi<T>, see it's documentation.

Definition at line 300 of file oldBasic3DVector.h.

__attribute__::Basic3DVector ( )

default constructor uses default constructor of T to initialize the components. For built-in floating-point types this means initialization to zero??? (force init to 0)

Definition at line 184 of file oldBasic3DVector.h.

193 {
__attribute__::Basic3DVector ( const Basic3DVector p)

Copy constructor from same type. Should not be needed but for gcc bug 12685.

Definition at line 187 of file oldBasic3DVector.h.

193  {
template<class U >
__attribute__::Basic3DVector ( const Basic3DVector< U > &  p)

Copy constructor and implicit conversion from Basic3DVector of different precision.

Definition at line 192 of file oldBasic3DVector.h.

193  {
__attribute__::Basic3DVector ( const Basic2DVector< T > &  p)

constructor from 2D vector (X and Y from 2D vector, z set to zero)

Definition at line 196 of file oldBasic3DVector.h.

202  { return Basic3DVector(-x(),-y(),-z());}
float float float z
T x() const
Cartesian x coordinate.
Basic3DVector()
template<class OtherPoint >
__attribute__::Basic3DVector ( const OtherPoint &  p)
explicit

Explicit constructor from other (possibly unrelated) vector classes The only constraint on the argument type is that it has methods x(), y() and z(), and that these methods return a type convertible to T. Examples of use are
construction from a Basic3DVector with different precision
construction from a Hep3Vector
construction from a coordinate system converter

Definition at line 208 of file oldBasic3DVector.h.

214  {
__attribute__::Basic3DVector ( const T x,
const T y,
const T z,
const T w = 0 
)

construct from cartesian coordinates

Definition at line 225 of file oldBasic3DVector.h.

template<typename U >
__attribute__::Basic3DVector ( const Geom::Theta< U > &  theta,
const Geom::Phi< U > &  phi,
const T r 
)

Deprecated construct from polar coordinates, use
Basic3DVector<T>( Basic3DVector<T>::Polar( theta, phi, r)) instead.

Definition at line 242 of file oldBasic3DVector.h.

Basic3DVector __attribute__::cross ( const Basic3DVector v) const

Vector product, or "cross" product, with a vector of same type.

Definition at line 380 of file oldBasic3DVector.h.

template<class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> __attribute__::cross ( const Basic3DVector< U > &  v) const

Vector (or cross) product with a vector of different precision. The product is computed without loss of precision. The type of the returned vector is the more precise of the types of the two vectors.

Definition at line 394 of file oldBasic3DVector.h.

T __attribute__::dot ( const Basic3DVector v) const

Scalar product, or "dot" product, with a vector of same type.

Definition at line 365 of file oldBasic3DVector.h.

template<class U >
PreciseFloatType<T,U>::Type __attribute__::dot ( const Basic3DVector< U > &  v) const

Scalar (or dot) product with a vector of different precision. The product is computed without loss of precision. The type of the returned scalar is the more precise of the scalar types of the two vectors.

Definition at line 375 of file oldBasic3DVector.h.

T __attribute__::eta ( ) const

Pseudorapidity. Does not check for zero transverse component; in this case the behavior is as for divide-by zero, i.e. system-dependent.

Definition at line 308 of file oldBasic3DVector.h.

314 {
T __attribute__::mag ( ) const

The vector magnitude. Equivalent to sqrt(vec.mag2())

Definition at line 278 of file oldBasic3DVector.h.

T __attribute__::mag2 ( ) const

The vector magnitude squared. Equivalent to vec.dot(vec)

Definition at line 275 of file oldBasic3DVector.h.

template<class T >
T operator* ( const Basic3DVector< T > &  v1,
const Basic3DVector< T > &  v2 
)
inline

scalar product of vectors of same precision

Definition at line 299 of file oldBasic3DVector.h.

299  {
300  return v1.dot(v2);
301 }
T dot(const Basic3DVector &rh) const
Scalar product, or &quot;dot&quot; product, with a vector of same type.
template<class T , class U >
PreciseFloatType<T,U>::Type operator* ( const Basic3DVector< T > &  v1,
const Basic3DVector< U > &  v2 
)
inline

scalar product of vectors of different precision

Definition at line 305 of file oldBasic3DVector.h.

References Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

306  {
307  return v1.x()*v2.x() + v1.y()*v2.y() + v1.z()*v2.z();
308 }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<class T >
Basic3DVector<T> operator* ( const Basic3DVector< T > &  v,
T  t 
)
inline

Multiplication by scalar, does not change the precision of the vector. The return type is the same as the type of the vector argument.

Definition at line 314 of file oldBasic3DVector.h.

References lumiQTWidget::t, Basic3DVector< T >::w(), Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

314  {
315  return Basic3DVector<T>(v.x()*t, v.y()*t, v.z()*t, v.w()*t);
316 }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<class T >
Basic3DVector<T> operator* ( T  t,
const Basic3DVector< T > &  v 
)
inline

Same as operator*( Vector, Scalar)

Definition at line 320 of file oldBasic3DVector.h.

References lumiQTWidget::t, Basic3DVector< T >::w(), Basic3DVector< T >::x(), Basic3DVector< T >::y(), and Basic3DVector< T >::z().

320  {
321  return Basic3DVector<T>(v.x()*t, v.y()*t, v.z()*t, v.w()*t);
322 }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<class T , typename S >
Basic3DVector<T> operator* ( S  t,
const Basic3DVector< T > &  v 
)
inline

Definition at line 325 of file oldBasic3DVector.h.

References lumiQTWidget::t.

325  {
326  return static_cast<T>(t)*v;
327 }
long double T
template<class T , typename S >
Basic3DVector<T> operator* ( const Basic3DVector< T > &  v,
S  t 
)
inline

Definition at line 330 of file oldBasic3DVector.h.

References lumiQTWidget::t.

330  {
331  return static_cast<T>(t)*v;
332 }
long double T
Basic3DVector& __attribute__::operator*= ( T  t)

Scaling by a scalar value (multiplication)

Definition at line 346 of file oldBasic3DVector.h.

template<class T , class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> operator+ ( const Basic3DVector< T > &  a,
const Basic3DVector< U > &  b 
)
inline

vector sum and subtraction of vectors of possibly different precision

Definition at line 285 of file oldBasic3DVector.h.

285  {
287  return RT(a.x()+b.x(), a.y()+b.y(), a.z()+b.z(), a.w()+b.w());
288 }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
template<class U >
Basic3DVector& __attribute__::operator+= ( const Basic3DVector< U > &  p)

Operator += with a Basic3DVector of possibly different precision.

Definition at line 323 of file oldBasic3DVector.h.

325  {
326  return static_cast<T>(t)*v;
327 }
328 
329 template <class T, typename S>
long double T
template<class T , class U >
Basic3DVector<typename PreciseFloatType<T,U>::Type> operator- ( const Basic3DVector< T > &  a,
const Basic3DVector< U > &  b 
)
inline

Definition at line 292 of file oldBasic3DVector.h.

292  {
294  return RT(a.x()-b.x(), a.y()-b.y(), a.z()-b.z(), a.w()-b.w());
295 }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
Basic3DVector __attribute__::operator- ( ) const

Unary minus, returns a vector with components (-x(),-y(),-z())

Definition at line 343 of file oldBasic3DVector.h.

template<class U >
Basic3DVector& __attribute__::operator-= ( const Basic3DVector< U > &  p)

Operator -= with a Basic3DVector of possibly different precision.

Definition at line 334 of file oldBasic3DVector.h.

339  {
340  T t = T(1)/s;
long double T
template<class T , typename S >
Basic3DVector<T> operator/ ( const Basic3DVector< T > &  v,
S  s 
)
inline

Division by scalar, does not change the precision of the vector. The return type is the same as the type of the vector argument.

Definition at line 339 of file oldBasic3DVector.h.

References alignCSCRings::s, and lumiQTWidget::t.

339  {
340  T t = T(1)/s;
341  return v*t;
342 }
long double T
Basic3DVector& __attribute__::operator/= ( T  t)

Scaling by a scalar value (division)

Definition at line 355 of file oldBasic3DVector.h.

template<class T >
std::ostream& operator<< ( std::ostream &  s,
const Basic3DVector< T > &  v 
)
inline

simple text output to standard streams

Definition at line 277 of file oldBasic3DVector.h.

277  {
278  return geometryDetails::print3D(s, v.x(),v.y(), v.z());
279 }
T y() const
Cartesian y coordinate.
T x() const
Cartesian x coordinate.
T z() const
Cartesian z coordinate.
std::ostream & print3D(std::ostream &s, double x, double y, double z)
Definition: print.cc:5
bool __attribute__::operator== ( const Basic3DVector rh) const

Definition at line 270 of file oldBasic3DVector.h.

References geometryDetails::print3D(), and alignCSCRings::s.

271  {
272  std::ostream & print3D(std::ostream& s, double x, double y, double z);
float float float z
T x() const
Cartesian x coordinate.
std::ostream & print3D(std::ostream &s, double x, double y, double z)
Definition: print.cc:5
T __attribute__::operator[] ( int  i) const

Definition at line 249 of file oldBasic3DVector.h.

T __attribute__::perp ( ) const

Magnitude of transverse component.

Definition at line 284 of file oldBasic3DVector.h.

285 {
T __attribute__::perp2 ( ) const

Squared magnitude of transverse component.

Definition at line 281 of file oldBasic3DVector.h.

Geom::Phi<T> __attribute__::phi ( ) const

Definition at line 294 of file oldBasic3DVector.h.

299 {
Geom::Theta<T> __attribute__::theta ( ) const

Definition at line 301 of file oldBasic3DVector.h.

T __attribute__::transverse ( ) const

Another name for perp()

Definition at line 287 of file oldBasic3DVector.h.

Basic3DVector __attribute__::unit ( ) const

Unit vector parallel to this. If mag() is zero, a zero vector is returned.

Definition at line 313 of file oldBasic3DVector.h.

314  {
315  return Basic3DVector<T>(v.x()*t, v.y()*t, v.z()*t, v.w()*t);
316 }
317 
T __attribute__::w ( ) const

Definition at line 263 of file oldBasic3DVector.h.

271 {
T __attribute__::x ( ) const

Cartesian x coordinate.

Definition at line 255 of file oldBasic3DVector.h.

259 :
260  T theX;
T theX
long double T
Basic2DVector<T> __attribute__::xy ( ) const

Definition at line 266 of file oldBasic3DVector.h.

271 {
T __attribute__::y ( ) const

Cartesian y coordinate.

Definition at line 258 of file oldBasic3DVector.h.

259 :
260  T theX;
T theX
long double T
T __attribute__::z ( ) const

Cartesian z coordinate.

Definition at line 261 of file oldBasic3DVector.h.

271 {

Variable Documentation

T theW

Definition at line 404 of file oldBasic3DVector.h.

T theX

Definition at line 401 of file oldBasic3DVector.h.

T theY

Definition at line 402 of file oldBasic3DVector.h.

T theZ

Definition at line 403 of file oldBasic3DVector.h.