CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
hydjet2DefaultParameters2015_cff.py
Go to the documentation of this file.
1 import FWCore.ParameterSet.Config as cms
2 
4 
5 collisionParameters2760GeV = cms.PSet(
6  fAw = cms.double(208.0), # beam/target atomic number
7  fSqrtS = cms.double(2760.0), #
8  fUmax = cms.double(1.265), # Maximal transverse flow rapidity at thermal freeze-out for central collisions, fUmax
9  fPtmin = cms.double(8.2), # Minimal pt of parton-parton scattering in PYTHIA event, fPtmin [GeV/c]
10  fT0 = cms.double(1.), # Initial QGP temperature for central Pb+Pb collisions in mid-rapidity, fT0 [GeV]; allowed range [0.2,2.0]GeV;
11 
12  ### Volume parameters at thermal freeze-out ###
13  fTau = cms.double(12.2), # Proper time proper at thermal freeze-out for central collisions, fTau [fm/c]
14  fR = cms.double(13.45), # Maximal transverse radius at thermal freeze-out for central collisions, fR [fm]
15 )
16 
17 collisionParameters5020GeV = cms.PSet(
18  fAw = cms.double(208.0), ## beam/target atomic number
19  fSqrtS = cms.double(5020.0),
20  fUmax = cms.double(1.35), # Maximal transverse flow rapidity at thermal freeze-out for central collisions, fUmax
21  fPtmin = cms.double(10.), # Minimal pt of parton-parton scattering in PYTHIA event, fPtmin [GeV/c]
22  fT0 = cms.double(1.1), # Initial QGP temperature for central Pb+Pb collisions in mid-rapidity, fT0 [GeV]; allowed range [0.2,2.0]GeV;
23 
24  ### Volume parameters at thermal freeze-out ###
25  fTau = cms.double(13.2), # Proper time proper at thermal freeze-out for central collisions, fTau [fm/c]
26  fR = cms.double(13.9), # Maximal transverse radius at thermal freeze-out for central collisions, fR [fm]
27 )
28 
29 qgpParameters = cms.PSet(
30  fTau0 = cms.double(0.1), # Proper QGP formation time in fm/c, fTau0 (0.01<fTau0<10)
31  fNf = cms.int32(0), # Number of active quark flavours in QGP, fNf (0, 1, 2 or 3)
32 )
33 
34 hydjet2Parameters = cms.PSet(
35  ### Thermodinamic parameters at chemical freez-out ###
36  fTMuType = cms.double(0.), # Flag to use calculated T_ch, mu_B and mu_S as a function of fSqrtS, fTMuType (=0 user's ones, >0 calculated)
37  fT = cms.double(0.165), # Temperature at chemical freeze-out, fT [GeV]
38  fMuB = cms.double(0.), # Chemical baryon potential per unit charge, fMuB [GeV]
39  fMuS = cms.double(0.), # Chemical strangeness potential per unit charge, fMuS [GeV]
40  fMuC = cms.double(0.), # Chemical charm potential per unit charge, fMuC [GeV] (used if charm production is turned on)
41  fMuI3 = cms.double(0.), # Chemical isospin potential per unit charge, fMuI3 [GeV]
42 
43  ### Thermodinamic parameters at thermal freez-out ###
44  fThFO = cms.double(0.105), # Temperature at thermal freeze-out, fTthFO [GeV]
45  fMu_th_pip = cms.double(0.), # Chemical potential of pi+ at thermal freeze-out, fMu_th_pip [GeV]
46 
47  ### Volume parameters at thermal freeze-out ###
48  fSigmaTau = cms.double(3.5), # Duration of emission at thermal freeze-out for central collisions, fSigmaTau [fm/c]
49 
50  ### Strangeness suppression factor ###
51  fCorrS = cms.double(1.), # Strangeness supression factor gamma_s with fCorrS value (0<fCorrS <=1, if fCorrS <= 0 then it is calculated)
52 
53  ### Maximal longitudinal flow rapidity at thermal freeze-out ###
54  fYlmax = cms.double(4.5), # Maximal longitudinal flow rapidity at thermal freeze-out, fYlmax
55 
56  ### Anizotropy parameter at thermal freeze-out ###
57  fIfDeltaEpsilon = cms.double(1.), # Flag to specify fDelta and fEpsilon values, fIfDeltaEpsilon (=0 user's ones, >=1 calculated)
58  fDelta = cms.double(0.1), # Momentum azimuthal anizotropy parameter at thermal freeze-out, fDelta
59  fEpsilon = cms.double(0.05), # Spatial azimuthal anisotropy parameter at thermal freeze-out, fEpsilon
60 
61  ### Decays ###
62  fDecay = cms.int32(1), # Flag to switch on/off hadron decays, fDecay (=0 decays off, >=1 decays on)
63  fWeakDecay = cms.double(0.000000000000001), # Low decay width threshold fWeakDecay[GeV]: width<fWeakDecay decay off, width>=fDecayWidth decay on; can be used to switch off weak decays
64 
65  ### Charm ###
66  fCharmProd = cms.int32(1), # Flag to include thermal charm production, fIcharm (=0 no charm production, >=1 charm production)
67  fCorrC = cms.double(-1.), # Charmness enhancement factor gamma_c with fCorrC value (fCorrC >0, if fCorrC<0 then it is calculated)
68  fEtaType = cms.double(1.), # Flag to choose longitudinal flow rapidity distribution, fEtaType (=0 uniform, >0 Gaussian with the dispersion Ylmax)
69  fIshad = cms.int32(1), # Flag to switch on/off nuclear shadowing, fIshad (0 shadowing off, 1 shadowing on)
70  fPyhist = cms.int32(0), # Flag to suppress the output of particle history from PYTHIA, fPyhist (=1 only final state particles; =0 full particle history from PYTHIA)
71  fIenglu = cms.int32(0), # Flag to fix type of partonic energy loss, fIenglu (0 radiative and collisional loss, 1 radiative loss only, 2 collisional loss only)
72  fIanglu = cms.int32(1), # Flag to fix type of angular distribution of in-medium emitted gluons, fIanglu (0 small-angular, 1 wide-angular, 2 collinear).
73  embeddingMode = cms.bool(False),
74  rotateEventPlane = cms.bool(True)
75 )
76 
77 PythiaDefaultBlock = cms.PSet(
78  pythiaUESettingsBlock,
79  TDB = cms.vstring(
80  'PARJ(14)=0.' # ! replacing the same parametr from pythiaQuarkoniaSettings block to avoid producing h'_1 (pdg - 10333)
81  ),
82  hydjet2PythiaDefault = cms.vstring(
83  'MSEL=1', # ! type of hard QCD production process
84  'MSTU(21) = 1', # ! controle parameter to avoid stopping run
85  'PARU(14)=1.', # ! tolerance parameter to adjust fragmentation'
86  'MSTJ(21) = 1', # ! hadron decays on (if off - decays by FASTMC decayer)
87  'MSTP(2) = 1', # ! which order running alphaS
88  'MSTJ(22)=2', # ! particle decays if lifetime < parj(71)
89  'PARJ(71)=10.', # ! ctau=10 mm
90  'MSTP(52) = 1', # ! NO LAPDF
91  'mstp(122)=0' # ! no printout of Pythia initialization information hereinafter
92  ),
93  ProQ2Otune = cms.vstring(
94  'mstp(51)=7', # ! PDF set: structure function chosen - CTEQ5M pdf
95  'mstp(3)=2', # ! QCD switch for choice of LambdaQCD
96  'parp(62)=2.9', # ! ISR IR cutoff
97  'parp(64)=0.14',# ! ISR renormalization scale prefactor
98  'parp(67)=2.65',# ! ISR Q2max factor
99  'mstp(68)=3', # ! ISR phase space choice & ME corrections
100  'parp(71)=4.', # ! FSR Q2max factor for non-s-channel procs
101  'parj(81)=0.29',# ! FSR Lambda_QCD scale
102  'parj(82)=1.65',# ! FSR IR cutoff
103  'mstp(33)=0', # ! "K" switch for K-factor on/off & type
104  'mstp(81)=1', # ! UE model
105  'parp(82)=1.9', # ! UE IR cutoff at reference ecm
106  'parp(89)=1800.',# ! UE IR cutoff reference ecm
107  'parp(90)=0.22',# ! UE IR cutoff ecm scaling power
108  'mstp(82)=4', # ! UE hadron transverse mass distribution
109  'parp(83)=0.83',# ! UE mass distribution parameter
110  'parp(84)=0.6', # ! UE mass distribution parameter
111  'parp(85)=0.86',# ! UE gg colour correlated fraction
112  'parp(86)=0.93',# ! UE total gg fraction
113  'mstp(91)=1', # ! BR primordial kT distribution
114  'parp(91)=2.1', # ! BR primordial kT width <|kT|>
115  'parp(93)=5.', # ! BR primordial kT UV cutoff
116  'mstj(11)=5', # ! HAD choice of fragmentation function(s)
117  'parj(1)=0.073',# ! HAD diquark suppression
118  'parj(2)=0.2', # ! HAD strangeness suppression
119  'parj(3)=0.94', # ! HAD strange diquark suppression
120  'parj(4)=0.032',# ! HAD vector diquark suppression
121  'parj(11)=0.31',# ! HAD P(vector meson), u and d only
122  'parj(12)=0.4', # ! HAD P(vector meson), contains s
123  'parj(13)=0.54',# ! HAD P(vector meson), heavy quarks
124  'parj(21)=0.325',# ! HAD fragmentation pT
125  'parj(25)=0.63',# ! HAD eta0 suppression
126  'parj(26)=0.12',# ! HAD eta0' suppression
127  'parj(41)=0.5', # ! HAD string parameter a
128  'parj(42)=0.6', # ! HAD string parameter b
129  'parj(46)=1.', # ! HAD Lund(=0)-Bowler(=1) rQ (rc)
130  'parj(47)=0.67' # ! HAD Lund(=0)-Bowler(=1) rb
131 
132  ),
133  ppJets = cms.vstring('MSEL=1'), # ! QCD hight pT processes
134  customProcesses = cms.vstring('MSEL=0'),# ! User processes
135  pythiaJets = cms.vstring(
136  'MSUB(11)=1', # ! q+q->q+q
137  'MSUB(12)=1', # ! q+qbar->q+qbar
138  'MSUB(13)=1', # ! q+qbar->g+g
139  'MSUB(28)=1', # ! q+g->q+g
140  'MSUB(53)=1', # ! g+g->q+qbar
141  'MSUB(68)=1' # ! g+g->g+g
142  ),
143  pythiaPromptPhotons = cms.vstring(
144  'MSUB(14)=1', # ! q+qbar->g+gamma
145  'MSUB(18)=1', # ! q+qbar->gamma+gamma
146  'MSUB(29)=1', # ! q+g->q+gamma
147  'MSUB(114)=1', # ! g+g->gamma+gamma
148  'MSUB(115)=1' # ! g+g->g+gamma
149  ),
150  pythiaWeakBosons = cms.vstring(
151  'MSUB(1)=1',
152  'MSUB(2)=1'
153  ),
154  pythiaZjets = cms.vstring(
155  'MSUB(15)=1',
156  'MSUB(30)=1'
157  ),
158  pythiaCharmoniumNRQCD = cms.vstring(
159  'MSUB(421) = 1',
160  'MSUB(422) = 1',
161  'MSUB(423) = 1',
162  'MSUB(424) = 1',
163  'MSUB(425) = 1',
164  'MSUB(426) = 1',
165  'MSUB(427) = 1',
166  'MSUB(428) = 1',
167  'MSUB(429) = 1',
168  'MSUB(430) = 1',
169  'MSUB(431) = 1',
170  'MSUB(432) = 1',
171  'MSUB(433) = 1',
172  'MSUB(434) = 1',
173  'MSUB(435) = 1',
174  'MSUB(436) = 1',
175  'MSUB(437) = 1',
176  'MSUB(438) = 1',
177  'MSUB(439) = 1'
178  ),
179  pythiaBottomoniumNRQCD = cms.vstring(
180  'MSUB(461) = 1',
181  'MSUB(462) = 1',
182  'MSUB(463) = 1',
183  'MSUB(464) = 1',
184  'MSUB(465) = 1',
185  'MSUB(466) = 1',
186  'MSUB(467) = 1',
187  'MSUB(468) = 1',
188  'MSUB(469) = 1',
189  'MSUB(470) = 1',
190  'MSUB(471) = 1',
191  'MSUB(472) = 1',
192  'MSUB(473) = 1',
193  'MSUB(474) = 1',
194  'MSUB(475) = 1',
195  'MSUB(476) = 1',
196  'MSUB(477) = 1',
197  'MSUB(478) = 1',
198  'MSUB(479) = 1',
199  ),
200  pythiaQuarkoniaSettings = cms.vstring(
201  'PARP(141)=1.16', # Matrix Elements
202  'PARP(142)=0.0119',
203  'PARP(143)=0.01',
204  'PARP(144)=0.01',
205  'PARP(145)=0.05',
206  'PARP(146)=9.28',
207  'PARP(147)=0.15',
208  'PARP(148)=0.02',
209  'PARP(149)=0.02',
210  'PARP(150)=0.085',
211  # Meson spin
212  'PARJ(13)=0.60',
213  'PARJ(14)=0.162',
214  'PARJ(15)=0.018',
215  'PARJ(16)=0.054',
216  # Polarization
217  'MSTP(145)=0',
218  'MSTP(146)=0',
219  'MSTP(147)=0',
220  'MSTP(148)=1',
221  'MSTP(149)=1',
222  # Chi_c branching ratios
223  'BRAT(861)=0.202',
224  'BRAT(862)=0.798',
225  'BRAT(1501)=0.013',
226  'BRAT(1502)=0.987',
227  'BRAT(1555)=0.356',
228  'BRAT(1556)=0.644'
229  ),
230  pythiaZtoMuons = cms.vstring(
231  "MDME(174,1)=0", # !Z decay into d dbar,
232  "MDME(175,1)=0", # !Z decay into u ubar,
233  "MDME(176,1)=0", # !Z decay into s sbar,
234  "MDME(177,1)=0", # !Z decay into c cbar,
235  "MDME(178,1)=0", # !Z decay into b bbar,
236  "MDME(179,1)=0", # !Z decay into t tbar,
237  "MDME(182,1)=0", # !Z decay into e- e+,
238  "MDME(183,1)=0", # !Z decay into nu_e nu_ebar,
239  "MDME(184,1)=1", # !Z decay into mu- mu+,
240  "MDME(185,1)=0", # !Z decay into nu_mu nu_mubar,
241  "MDME(186,1)=0", # !Z decay into tau- tau+,
242  "MDME(187,1)=0" # !Z decay into nu_tau nu_taubar
243  ),
244  pythiaZtoElectrons = cms.vstring(
245  "MDME(174,1)=0", # !Z decay into d dbar,
246  "MDME(175,1)=0", # !Z decay into u ubar,
247  "MDME(176,1)=0", # !Z decay into s sbar,
248  "MDME(177,1)=0", # !Z decay into c cbar,
249  "MDME(178,1)=0", # !Z decay into b bbar,
250  "MDME(179,1)=0", # !Z decay into t tbar,
251  "MDME(182,1)=1", # !Z decay into e- e+,
252  "MDME(183,1)=0", # !Z decay into nu_e nu_ebar,
253  "MDME(184,1)=0", # !Z decay into mu- mu+,
254  "MDME(185,1)=0", # !Z decay into nu_mu nu_mubar,
255  "MDME(186,1)=0", # !Z decay into tau- tau+,
256  "MDME(187,1)=0" # !Z decay into nu_tau nu_taubar
257  ),
258  pythiaZtoMuonsAndElectrons = cms.vstring(
259  "MDME(174,1)=0", # !Z decay into d dbar,
260  "MDME(175,1)=0", # !Z decay into u ubar,
261  "MDME(176,1)=0", # !Z decay into s sbar,
262  "MDME(177,1)=0", # !Z decay into c cbar,
263  "MDME(178,1)=0", # !Z decay into b bbar,
264  "MDME(179,1)=0", # !Z decay into t tbar,
265  "MDME(182,1)=1", # !Z decay into e- e+,
266  "MDME(183,1)=0", # !Z decay into nu_e nu_ebar,
267  "MDME(184,1)=1", # !Z decay into mu- mu+,
268  "MDME(185,1)=0", # !Z decay into nu_mu nu_mubar,
269  "MDME(186,1)=0", # !Z decay into tau- tau+,
270  "MDME(187,1)=0" # !Z decay into nu_tau nu_taubar
271  ),
272  pythiaUpsilonToMuons = cms.vstring(
273  'BRAT(1034) = 0 ', # switch off',
274  'BRAT(1035) = 1 ', # switch on',
275  'BRAT(1036) = 0 ', # switch off',
276  'BRAT(1037) = 0 ', # switch off',
277  'BRAT(1038) = 0 ', # switch off',
278  'BRAT(1039) = 0 ', # switch off',
279  'BRAT(1040) = 0 ', # switch off',
280  'BRAT(1041) = 0 ', # switch off',
281  'BRAT(1042) = 0 ', # switch off',
282  'MDME(1034,1) = 0 ', # switch off',
283  'MDME(1035,1) = 1 ', # switch on',
284  'MDME(1036,1) = 0 ', # switch off',
285  'MDME(1037,1) = 0 ', # switch off',
286  'MDME(1038,1) = 0 ', # switch off',
287  'MDME(1039,1) = 0 ', # switch off',
288  'MDME(1040,1) = 0 ', # switch off',
289  'MDME(1041,1) = 0 ', # switch off',
290  'MDME(1042,1) = 0 ', # switch off'
291  ),
292  pythiaJpsiToMuons = cms.vstring(
293  'BRAT(858) = 0 ', # switch off',
294  'BRAT(859) = 1 ', # switch on',
295  'BRAT(860) = 0 ', # switch off',
296  'MDME(858,1) = 0 ', # switch off',
297  'MDME(859,1) = 1 ', # switch on',
298  'MDME(860,1) = 0 ', # switch off'
299  ),
300  pythiaMuonCandidates = cms.vstring(
301  'CKIN(3)=20',
302  'MSTJ(22)=2',
303  'PARJ(71)=40.'
304  ),
305  myParameters = cms.vstring('MDCY(310,1)=0')
306 )