test
CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
BSpdfsFcn.cc
Go to the documentation of this file.
1 
14 #include "TMath.h"
15 
16 #include <cmath>
17 #include <vector>
18 
19 //______________________________________________________________________
20 double BSpdfsFcn::PDFGauss_d(double z, double d, double sigmad,
21  double phi, const std::vector<double>& parms) const {
22 
23  //---------------------------------------------------------------------------
24  // PDF for d0 distribution. This PDF is a simple gaussian in the
25  // beam reference frame.
26  //---------------------------------------------------------------------------
27  double fsqrt2pi = sqrt(2.* TMath::Pi());
28 
29  double sig = sqrt(parms[fPar_SigmaBeam]*parms[fPar_SigmaBeam] +
30  sigmad*sigmad);
31 
32  double dprime = d - ( ( parms[fPar_X0] + z*parms[fPar_dxdz] )*sin(phi)
33  - ( parms[fPar_Y0] + z*parms[fPar_dydz] )*cos(phi) );
34 
35  double result = (exp(-(dprime*dprime)/(2.0*sig*sig)))/(sig*fsqrt2pi);
36 
37  return result;
38 
39 }
40 
41 //______________________________________________________________________
42 double BSpdfsFcn::PDFGauss_d_resolution(double z, double d, double phi, double pt, const std::vector<double>& parms) const {
43 
44  //---------------------------------------------------------------------------
45  // PDF for d0 distribution. This PDF is a simple gaussian in the
46  // beam reference frame. The IP resolution is parametrize by a linear
47  // function as a function of 1/pt.
48  //---------------------------------------------------------------------------
49  double fsqrt2pi = sqrt(2.* TMath::Pi());
50 
51  double sigmad = parms[fPar_c0] + parms[fPar_c1]/pt;
52 
53  double sig = sqrt(parms[fPar_SigmaBeam]*parms[fPar_SigmaBeam] +
54  sigmad*sigmad);
55 
56  double dprime = d - ( ( parms[fPar_X0] + z*parms[fPar_dxdz] )*sin(phi)
57  - ( parms[fPar_Y0] + z*parms[fPar_dydz] )*cos(phi) );
58 
59  double result = (exp(-(dprime*dprime)/(2.0*sig*sig)))/(sig*fsqrt2pi);
60 
61  return result;
62 
63 }
64 
65 //______________________________________________________________________
66 double BSpdfsFcn::PDFGauss_z(double z, double sigmaz, const std::vector<double>& parms) const {
67 
68  //---------------------------------------------------------------------------
69  // PDF for z-vertex distribution. This distribution
70  // is parametrized by a simple normalized gaussian distribution.
71  //---------------------------------------------------------------------------
72  double fsqrt2pi = sqrt(2.* TMath::Pi());
73 
74  double sig = sqrt(sigmaz*sigmaz+parms[fPar_SigmaZ]*parms[fPar_SigmaZ]);
75  //double sig = sqrt(sigmaz*sigmaz+parms[1]*parms[1]);
76  double result = (exp(-((z-parms[fPar_Z0])*(z-parms[fPar_Z0]))/(2.0*sig*sig)))/(sig*fsqrt2pi);
77  //double result = (exp(-((z-parms[0])*(z-parms[0]))/(2.0*sig*sig)))/(sig*fsqrt2pi);
78 
79  return result;
80 
81 }
82 
83 
84 
85 
86 //______________________________________________________________________
87 double BSpdfsFcn::operator() (const std::vector<double>& params) const {
88 
89  double f = 0.0;
90 
91  //std::cout << "fusepdfs=" << fusepdfs << " params.size="<<params.size() << std::endl;
92 
93  std::vector<BSTrkParameters>::const_iterator iparam = fBSvector.begin();
94 
95  double pdf = 0;
96 
97  for( iparam = fBSvector.begin(); iparam != fBSvector.end(); ++iparam) {
98 
99 
100  if (fusepdfs == "PDFGauss_z") {
101  pdf = PDFGauss_z( iparam->z0(), iparam->sigz0(),params);
102  }
103  else if (fusepdfs == "PDFGauss_d") {
104  pdf = PDFGauss_d( iparam->z0(), iparam->d0(),
105  iparam->sigd0(), iparam->phi0(),params);
106  }
107  else if (fusepdfs == "PDFGauss_d_resolution") {
108  pdf = PDFGauss_d_resolution( iparam->z0(), iparam->d0(),
109  iparam->phi0(), iparam->pt(),params);
110  }
111  else if (fusepdfs == "PDFGauss_d*PDFGauss_z") {
112  //std::cout << "pdf= " << pdf << std::endl;
113  pdf = PDFGauss_d( iparam->z0(), iparam->d0(),
114  iparam->sigd0(), iparam->phi0(),params)*
115  PDFGauss_z( iparam->z0(), iparam->sigz0(),params);
116  }
117  else if (fusepdfs == "PDFGauss_d_resolution*PDFGauss_z") {
118  pdf = PDFGauss_d_resolution( iparam->z0(), iparam->d0(),
119  iparam->phi0(), iparam->pt(),params)*
120  PDFGauss_z( iparam->z0(), iparam->sigz0(),params);
121  }
122 
123  f = log(pdf) + f;
124  }
125 
126  f= -2.0*f;
127  return f;
128 
129 }
std::vector< BSTrkParameters > fBSvector
Definition: BSpdfsFcn.h:49
const double Pi
static const int fPar_dydz
Definition: BSpdfsFcn.h:56
static const int fPar_Y0
Definition: BSpdfsFcn.h:52
static const int fPar_X0
Definition: BSpdfsFcn.h:51
static const int fPar_dxdz
Definition: BSpdfsFcn.h:55
Sin< T >::type sin(const T &t)
Definition: Sin.h:22
static const int fPar_c0
Definition: BSpdfsFcn.h:58
double PDFGauss_d(double z, double d, double sigmad, double phi, const std::vector< double > &parms) const
Definition: BSpdfsFcn.cc:20
double PDFGauss_z(double z, double sigmaz, const std::vector< double > &parms) const
Definition: BSpdfsFcn.cc:66
static const int fPar_SigmaZ
Definition: BSpdfsFcn.h:54
float float float z
tuple result
Definition: mps_fire.py:83
static const int fPar_SigmaBeam
Definition: BSpdfsFcn.h:57
tuple d
Definition: ztail.py:151
virtual double operator()(const std::vector< double > &) const
Definition: BSpdfsFcn.cc:87
T sqrt(T t)
Definition: SSEVec.h:18
Cos< T >::type cos(const T &t)
Definition: Cos.h:22
static const int fPar_c1
Definition: BSpdfsFcn.h:59
double f[11][100]
double PDFGauss_d_resolution(double z, double d, double phi, double pt, const std::vector< double > &parms) const
Definition: BSpdfsFcn.cc:42
std::string fusepdfs
Definition: BSpdfsFcn.h:48
static const int fPar_Z0
Definition: BSpdfsFcn.h:53
Geom::Phi< T > phi() const