CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
SimplifySum.h
Go to the documentation of this file.
1 #ifndef PhysicsTools_Utilities_SimplifySum_h
2 #define PhysicsTools_Utilities_SimplifySum_h
3 
10 #include <boost/type_traits.hpp>
11 #include <boost/mpl/if.hpp>
12 
14 
15 namespace funct {
16 
17  // A + ( B + C ) => ( A + B ) + C
18  SUM_RULE(TYPT3, A, SUM_S(B, C),
19  SUM(SUM(A, B), C), (_1 + _2._1) + _2._2);
20 
21  // ( A + B ) + ( C + D ) => ( ( A + B ) + C ) + D
22  SUM_RULE(TYPT4, SUM_S(A, B), SUM_S(C, D),
23  SUM(SUM(SUM(A, B), C), D), (_1 + _2._1) + _2._2);
24 
25  // n + A = A + n
26  SUM_RULE(TYPN1T1, NUM(n), A, SUM(A, NUM(n)), _2 + _1);
27 
28  // n + ( A + B )= ( A + B ) + n
29  SUM_RULE(TYPN1T2, NUM(n), SUM_S(A, B), SUM(SUM_S(A, B), NUM(n)), _2 + _1);
30 
31  // A + 0 = A
32  SUM_RULE(TYPT1, A, NUM(0), A, _1);
33 
34  // 0 + 0 = 0
35  SUM_RULE(TYP0, NUM(0), NUM(0), NUM(0), num<0>());
36 
37  // ( A * B ) + 0 = ( A * B )
38  SUM_RULE(TYPT2, PROD_S(A, B), NUM(0), PROD_S(A, B), _1);
39 
40  // 0 + ( A * B ) = ( A * B )
41  SUM_RULE(TYPT2, NUM(0), PROD_S(A, B), PROD_S(A, B), _2);
42 
43  // 0 - ( A * B ) = - ( A * B )
44  SUM_RULE(TYPT2, NUM(0), MINUS_S(PROD_S(A, B)), MINUS_S(PROD_S(A, B)), _2);
45 
46  // ( A + B ) + 0 = ( A + B )
47  SUM_RULE(TYPT2, SUM_S(A, B), NUM(0), SUM_S(A, B), _1);
48 
49  // 0 + ( A + B ) = ( A + B )
50  SUM_RULE(TYPT2, NUM(0), SUM_S(A, B), SUM_S(A, B), _2);
51 
52  // A - ( -B ) = A + B
53  DIFF_RULE(TYPT2, A, MINUS_S(B), SUM(A, B), _1 + _2._);
54 
55  // n * A + m * A => ( n + m ) * A
58  typedef PROD(NUM(n), A) arg1;
59  typedef PROD(NUM(m), A) arg2;
60  typedef SUM_S(arg1, arg2) type;
61  COMBINE(arg1, arg2, type(_1, _2));
62  };
63 
64  TEMPL(N2T1)
66  typedef PROD(NUM(n + m), A) type;
68  COMBINE(PROD(NUM(n), A), PROD(NUM(m), A),
69  num<n + m>() * Dec::get(_1));
70  };
71 
72  TEMPL(T1)
73  struct ParametricSimplifiedSum<1, 1, A, true> {
75  COMBINE(A, A, type(_1, _2));
76  };
77 
78  TEMPL(T1)
79  struct ParametricSimplifiedSum<1, 1, A, false> {
80  typedef PROD(NUM(2), A) type;
81  COMBINE( A, A, num<2>() * _1 );
82  };
83 
84  TEMPL(N2T1)
85  struct Sum<PROD_S(NUM(n), A), PROD_S(NUM(m), A) > :
86  public ParametricSimplifiedSum<n, m, A> { };
87 
88  TEMPL(N1T1)
89  struct Sum<A, PROD_S(NUM(n), A) > :
90  public ParametricSimplifiedSum<1, n, A> { };
91 
92  TEMPL(N1T1)
93  struct Sum<PROD_S(NUM(n), A) , A> :
94  public ParametricSimplifiedSum<n, 1, A> { };
95 
96  TEMPL(T1)
97  struct Sum<A, A> :
98  public ParametricSimplifiedSum<1, 1, A> { };
99 
100  TEMPL(T1)
101  struct Sum<MINUS_S(A), MINUS_S(A) > :
102  public ParametricSimplifiedSum<1, 1, MINUS_S(A) > { };
103 
104  TEMPL(T2)
105  struct Sum< MINUS_S(PROD_S(A, B)),
106  MINUS_S(PROD_S(A, B)) > :
107  public ParametricSimplifiedSum< 1, 1, MINUS_S(PROD_S(A, B)) > { };
108 
109  TEMPL(N1)
110  struct Sum< NUM(n), NUM(n) > :
111  public ParametricSimplifiedSum< 1, 1, NUM(n) > { };
112 
113  TEMPL(T2)
114  struct Sum< PROD_S(A, B), PROD_S(A, B) > :
115  public ParametricSimplifiedSum< 1, 1, PROD_S(A, B) > { };
116 
117  TEMPL(N1T1)
118  struct Sum< PROD_S(NUM(n), A),
119  PROD_S(NUM(n), A) > :
120  public ParametricSimplifiedSum< 1, 1, PROD_S(NUM(n), A) > { };
121 
122  // simplify f + g + h regardless of the order
123  template <typename Prod, bool simplify = Prod::value>
124  struct AuxSum {
125  typedef SUM(typename Prod::AB, typename Prod::C) type;
126  COMBINE(typename Prod::AB, typename Prod::C, _1 + _2);
127  };
128 
129  template<typename Prod>
130  struct AuxSum<Prod, false> {
131  typedef SUM_S(typename Prod::AB, typename Prod::C) type;
132  COMBINE(typename Prod::AB, typename Prod::C, type(_1, _2));
133  };
134 
135  template<typename F, typename G, typename H>
136  struct SimplSumOrd {
137  struct prod0 {
138  typedef F A; typedef G B; typedef H C;
139  typedef SUM_S(A, B) AB;
140  inline static const A& a(const F& f, const G& g, const H& h) { return f; }
141  inline static const B& b(const F& f, const G& g, const H& h) { return g; }
142  inline static const C& c(const F& f, const G& g, const H& h) { return h; }
143  enum { value = false };
144  };
145  struct prod1 {
146  typedef F A; typedef H B; typedef G C;
147  typedef SUM_S(A, B) base;
148  typedef SUM(A, B) AB;
149  inline static const A& a(const F& f, const G& g, const H& h) { return f; }
150  inline static const B& b(const F& f, const G& g, const H& h) { return h; }
151  inline static const C& c(const F& f, const G& g, const H& h) { return g; }
152  enum { value = ::boost::type_traits::ice_not<
154  };
155  struct prod2 {
156  typedef G A; typedef H B; typedef F C;
157  typedef SUM_S(A, B) base;
158  typedef SUM(A, B) AB;
159  inline static const A& a(const F& f, const G& g, const H& h) { return g; }
160  inline static const B& b(const F& f, const G& g, const H& h) { return h; }
161  inline static const C& c(const F& f, const G& g, const H& h) { return f; }
162  enum { value = ::boost::type_traits::ice_not<
164  };
165 
166  typedef typename
167  ::boost::mpl::if_ <prod1,
168  prod1,
169  typename ::boost::mpl::if_ <prod2,
170  prod2,
171  prod0
172  >::type
174  typedef typename AuxSum< prod >::type type;
175  inline static type combine(const SUM_S(F, G)& fg, const H& h) {
176  const F& f = fg._1;
177  const G& g = fg._2;
178  const typename prod::A & a = prod::a(f, g, h);
179  const typename prod::B & b = prod::b(f, g, h);
180  const typename prod::C & c = prod::c(f, g, h);
181  return AuxSum< prod >::combine(a + b, c);
182  }
183  };
184 
185  TEMPL(T3)
186  struct Sum<SUM_S(A, B), C> :
187  public SimplSumOrd<A, B, C> { };
188 
189  TEMPL(T4)
190  struct Sum< SUM_S(A, B), PROD_S(C, D) > :
191  public SimplSumOrd< A, B, PROD_S(C, D) > { };
192 
193 }
194 
196 
197 #endif
::boost::mpl::if_< prod1, prod1, typename::boost::mpl::if_< prod2, prod2, prod0 >::type >::type prod
Definition: SimplifySum.h:173
tuple base
Main Program
Definition: newFWLiteAna.py:92
COMBINE(arg1, arg2, type(_1, _2))
static const B & b(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:141
static const B & b(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:160
typedef SUM(A, B) AB
static const C & c(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:151
COMBINE(A, NUM(n), num< 1 >()/pow(_1, num<-n >()))
#define TYPT2
Definition: Simplify_begin.h:7
MINUS_S(B)>
Definition: Factorize.h:99
static const A & a(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:149
double_binary B
Definition: DDStreamer.cc:234
static const A & a(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:159
static const C & c(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:161
PROD_S(A, B)>
Definition: Factorize.h:44
typedef SUM(SUM(PROD(NUM(n-p), SIN2(A)), PROD(NUM(m-p), COS2(A))), NUM(p)) type
SUM_RULE(TYPT3, A, SUM_S(B, C), SUM(SUM(A, B), C),(_1+_2._1)+_2._2)
static const A & a(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:140
SUM_S(B, A)>
The Signals That Services Can Subscribe To This is based on ActivityRegistry and is current per Services can connect to the signals distributed by the ActivityRegistry in order to monitor the activity of the application Each possible callback has some defined which we here list in angle e g
Definition: Activities.doc:4
static type combine(const SUM_S(F, G)&fg, const H &h)
Definition: SimplifySum.h:175
#define TYPN1T1
typedef PROD(NUM(n), A) arg1
COMBINE(typename Prod::AB, typename Prod::C, _1+_2)
static type combine(const A &_1, const B &_2)
Definition: Factorize.h:186
#define TYP0
Definition: Simplify_begin.h:4
#define TYPN1T2
double f[11][100]
The Signals That Services Can Subscribe To This is based on ActivityRegistry h
Helper function to determine trigger accepts.
Definition: Activities.doc:4
#define TYPT4
Definition: Simplify_begin.h:9
tuple G
Definition: callgraph.py:12
typedef SUM_S(A, B) base
static const B & b(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:150
static const C & c(const F &f, const G &g, const H &h)
Definition: SimplifySum.h:142
DecomposeProduct< PROD(NUM(n), A), A > Dec
Definition: SimplifySum.h:67
double b
Definition: hdecay.h:120
string const
Definition: compareJSON.py:14
arg type
Definition: Factorize.h:37
DIFF_RULE(TYPT2, A, MINUS_S(B), SUM(A, B), _1+_2._)
typedef SUM_S(A, B) AB
typedef PROD(F, SUM(RATIO(A, F), RATIO(B, F))) type
double a
Definition: hdecay.h:121
Definition: Sum.h:27
TEMPL(XT1) DERIV(X
Definition: Derivative.h:22
#define TYPT3
Definition: Simplify_begin.h:8
typedef SUM(typename Prod::AB, typename Prod::C) type
typedef SUM_S(A, B) base
typedef SUM_S(arg1, arg2) type
NUM(n))
Definition: Factorize.h:92
static uInt32 F(BLOWFISH_CTX *ctx, uInt32 x)
Definition: blowfish.cc:281
DecomposeProduct< arg, typename Div::arg > D
Definition: Factorize.h:150
#define TYPT1
Definition: Simplify_begin.h:6
T get(const Candidate &c)
Definition: component.h:55
typedef SUM(A, B) AB