CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
G4MonopoleEquation.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // GEANT4 tag $Name: $
27 //
28 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
30 //
31 //
32 // class G4MonopoleEquation
33 //
34 // Class description:
35 //
36 //
37 // This is the standard right-hand side for equation of motion.
38 //
39 // The only case another is required is when using a moving reference
40 // frame ... or extending the class to include additional Forces,
41 // eg an electric field
42 //
43 // 10.11.98 V.Grichine
44 //
45 // 30.04.10 S.Burdin (modified to use for the monopole trajectories).
46 //
47 // 15.06.10 B.Bozsogi (replaced the hardcoded magnetic charge with
48 // the one passed by G4MonopoleTransportation)
49 // +workaround to pass the electric charge.
50 //
51 // 12.07.10 S.Burdin (added equations for the electric charges)
52 // -------------------------------------------------------------------
53 
54 #include "SimG4Core/MagneticField/interface/G4MonopoleEquation.hh"
55 #include "globals.hh"
56 #include <iomanip>
57 
58 G4MonopoleEquation::G4MonopoleEquation(G4ElectroMagneticField *emField )
59  : G4EquationOfMotion( emField ) {
60 }
61 
62 void
63 G4MonopoleEquation::SetChargeMomentumMass(G4double particleMagneticCharge, // e+ units
64  G4double particleElectricCharge,
65  G4double particleMass)
66 {
67  // fElCharge = particleElectricCharge;
68  fElCharge =eplus* particleElectricCharge*c_light;
69 
70 
71  fMagCharge = eplus*particleMagneticCharge*c_light ;
72 
73 // G4cout << " G4MonopoleEquation: ElectricCharge=" << particleElectricCharge
74 // << "; MagneticCharge=" << particleMagneticCharge
75 // << G4endl;
76 
77 
78  fMassCof = particleMass*particleMass ;
79 }
80 
81 void
82 G4MonopoleEquation::EvaluateRhsGivenB(const G4double y[],
83  const G4double Field[],
84  G4double dydx[] ) const
85 {
86 
87  // Components of y:
88  // 0-2 dr/ds,
89  // 3-5 dp/ds - momentum derivatives
90 
91  G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
92 
93  G4double Energy = std::sqrt( pSquared + fMassCof );
94 
95  // G4double pModuleInverse = (pSquared <= 0.0) ? 0.0 : 1.0/std::sqrt(pSquared);
96  G4double pModuleInverse = 1.0/std::sqrt(pSquared);
97 
98  G4double inverse_velocity = Energy * pModuleInverse / c_light;
99 
100  G4double cofEl = fElCharge * pModuleInverse ;
101  G4double cofMag = fMagCharge * Energy * pModuleInverse;
102 
103 
104  dydx[0] = y[3]*pModuleInverse ;
105  dydx[1] = y[4]*pModuleInverse ;
106  dydx[2] = y[5]*pModuleInverse ;
107 
108  // G4double magCharge = twopi * hbar_Planck / (eplus * mu0);
109  // magnetic charge in SI units A*m convention
110  // see http://en.wikipedia.org/wiki/Magnetic_monopole
111  // G4cout << "Magnetic charge: " << magCharge << G4endl;
112 
113  // dp/ds = dp/dt * dt/ds = dp/dt / v = Force / velocity
114 
115  // dydx[3] = fMagCharge * Field[0] * inverse_velocity * c_light; // multiplied by c_light to convert to MeV/mm
116  // dydx[4] = fMagCharge * Field[1] * inverse_velocity * c_light;
117  // dydx[5] = fMagCharge * Field[2] * inverse_velocity * c_light;
118 
119  dydx[3] = cofMag * Field[0] + cofEl * (y[4]*Field[2] - y[5]*Field[1]);
120  dydx[4] = cofMag * Field[1] + cofEl * (y[5]*Field[0] - y[3]*Field[2]);
121  dydx[5] = cofMag * Field[2] + cofEl * (y[3]*Field[1] - y[4]*Field[0]);
122 
123 // G4cout << std::setprecision(5)<< "E=" << Energy
124 // << "; p="<< 1/pModuleInverse
125 // << "; mC="<< magCharge
126 // <<"; x=" << y[0]
127 // <<"; y=" << y[1]
128 // <<"; z=" << y[2]
129 // <<"; dydx[3]=" << dydx[3]
130 // <<"; dydx[4]=" << dydx[4]
131 // <<"; dydx[5]=" << dydx[5]
132 // << G4endl;
133 
134  dydx[6] = 0.;//not used
135 
137 
138  // Lab Time of flight
139  dydx[7] = inverse_velocity;
140  return ;
141 }
T sqrt(T t)
Definition: SSEVec.h:48
return(e1-e2)*(e1-e2)+dp *dp