Public Member Functions | |
def | __init__ |
def | __repr__ |
def | Path |
def | SVG |
Public Attributes | |
attr | |
d | |
loop | |
mode | |
Static Public Attributes | |
dictionary | defaults = {} |
Draws a curve specified by a sequence of points. The curve may be piecewise linear, like a polygon, or a Bezier curve. Poly(d, mode, loop, attribute=value) d required list of tuples representing points and possibly control points mode default="L" "lines", "bezier", "velocity", "foreback", "smooth", or an abbreviation loop default=False if True, connect the first and last point, closing the loop attribute=value pairs keyword list SVG attributes The format of the tuples in d depends on the mode. "lines"/"L" d=[(x,y), (x,y), ...] piecewise-linear segments joining the (x,y) points "bezier"/"B" d=[(x, y, c1x, c1y, c2x, c2y), ...] Bezier curve with two control points (control points preceed (x,y), as in SVG paths). If (c1x,c1y) and (c2x,c2y) both equal (x,y), you get a linear interpolation ("lines") "velocity"/"V" d=[(x, y, vx, vy), ...] curve that passes through (x,y) with velocity (vx,vy) (one unit of arclength per unit time); in other words, (vx,vy) is the tangent vector at (x,y). If (vx,vy) is (0,0), you get a linear interpolation ("lines"). "foreback"/"F" d=[(x, y, bx, by, fx, fy), ...] like "velocity" except that there is a left derivative (bx,by) and a right derivative (fx,fy). If (bx,by) equals (fx,fy) (with no minus sign), you get a "velocity" curve "smooth"/"S" d=[(x,y), (x,y), ...] a "velocity" interpolation with (vx,vy)[i] equal to ((x,y)[i+1] - (x,y)[i-1])/2: the minimal derivative
def svgfig.Poly.__init__ | ( | self, | |
d = [] , |
|||
mode = "L" , |
|||
loop = False , |
|||
attr | |||
) |
Definition at line 1721 of file svgfig.py.
def svgfig.Poly.__repr__ | ( | self | ) |
Definition at line 1718 of file svgfig.py.
References svgfig.SVG.attr, svgfig.Path.attr, svgfig.Curve.attr, svgfig.Poly.attr, svgfig.Fig.d, svgfig.Plot.d, svgfig.Frame.d, svgfig.Path.d, svgfig.Poly.d, svgfig.Curve.loop, svgfig.Poly.loop, and svgfig.Poly.mode.
def svgfig.Poly.Path | ( | self, | |
trans = None , |
|||
local = False |
|||
) |
Apply the transformation "trans" and return a Path object in global coordinates. If local=True, return a Path in local coordinates (which must be transformed again).
Definition at line 1733 of file svgfig.py.
References svgfig.SVG.attr, svgfig.Path.attr, svgfig.Curve.attr, svgfig.Poly.attr, svgfig.Fig.d, svgfig.Plot.d, svgfig.Frame.d, svgfig.Path.d, svgfig.Poly.d, svgfig.Curve.loop, svgfig.Poly.loop, svgfig.Poly.mode, and svgfig.totrans().
Referenced by svgfig.Poly.SVG().
def svgfig.Poly.SVG | ( | self, | |
trans = None |
|||
) |
Apply the transformation "trans" and return an SVG object.
Definition at line 1729 of file svgfig.py.
References SiPixelHistoPlotter::PlotParameter.Path, SiStripHistoPlotter::PlotParameter.Path, Json::PathArgument.Path, svgfig.Curve.Path(), and svgfig.Poly.Path().
svgfig.Poly.attr |
Definition at line 1726 of file svgfig.py.
Referenced by svgfig.Poly.__repr__(), svgfig.Text.__repr__(), svgfig.TextGlobal.__repr__(), svgfig.Dots.__repr__(), svgfig.LineGlobal.__repr__(), svgfig.Ticks.__repr__(), svgfig.Axes.__repr__(), svgfig.HGrid.__repr__(), svgfig.VGrid.__repr__(), svgfig.Grid.__repr__(), svgfig.Poly.Path(), svgfig.Text.SVG(), svgfig.TextGlobal.SVG(), svgfig.LineGlobal.SVG(), svgfig.Axes.SVG(), svgfig.XErrorBars.SVG(), and svgfig.YErrorBars.SVG().
svgfig.Poly.d |
Definition at line 1722 of file svgfig.py.
Referenced by svgfig.Poly.__repr__(), svgfig.Text.__repr__(), svgfig.TextGlobal.__repr__(), svgfig.Dots.__repr__(), svgfig.XErrorBars.__repr__(), svgfig.YErrorBars.__repr__(), svgfig.Poly.Path(), svgfig.Text.SVG(), svgfig.TextGlobal.SVG(), svgfig.Dots.SVG(), svgfig.XErrorBars.SVG(), and svgfig.YErrorBars.SVG().
svgfig.Poly.loop |
Definition at line 1724 of file svgfig.py.
Referenced by svgfig.Poly.__repr__(), and svgfig.Poly.Path().
svgfig.Poly.mode |
Definition at line 1723 of file svgfig.py.
Referenced by svgfig.Poly.__repr__(), svgfig.Poly.Path(), and alignment.Alignment.restrictTo().