CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
Calorimetry_cff.py
Go to the documentation of this file.
2 
3 #Global fast calorimetry parameters
7 FamosCalorimetryBlock = cms.PSet(
8  Calorimetry = cms.PSet(
9  HSParameterBlock,
10  HCALResponseBlock,
11  ECAL = cms.PSet(
12  # See FastSimulation/CaloRecHitsProducer/python/CaloRecHits_cff.py
13  Digitizer = cms.untracked.bool(False),
14  # If set to true the simulation in ECAL would be done 1X0 by 1X0
15  # this is slow but more adapted to detailed studies.
16  # Otherwise roughty 5 steps are used.
17  bFixedLength = cms.bool(False),
18 
19  # For the core 10% of the spots for
20  CoreIntervals = cms.vdouble(100.0, 0.1),
21  # change the radius of the tail of the shower
22  RTFactor = cms.double(1.0),
23  # change the radius of the core of the shower
24  RCFactor = cms.double(1.0),
25  # For the tail 10% of r<1RM. 100% otherwise
26  TailIntervals = cms.vdouble(1.0, 0.1, 100.0, 1.0),
27  FrontLeakageProbability = cms.double(1.0),
28  GridSize = cms.int32(7),
29  # change globally the Moliere radius
30 
31 
32  ### changed after tuning - Feb - July - Shilpi Jain
33  #RadiusFactor = cms.double(1.096),
34  RadiusFactorEB = cms.double(1.096),
35  RadiusFactorEE = cms.double(1.25),
36  ### changed after tuning - Feb - July - Shilpi Jain
37 
38  RadiusPreshowerCorrections = cms.vdouble(0.137, 10.3), # default value for maxshower depth dependence-->works fine
39  MipsinGeV = cms.vdouble(0.0001421,0.0000812), # increase in mipsinGeV by 75% only in layer1
40  #SpotFraction < 0 <=> deactivated. In the case, CoreIntervals and
41  #TailIntervals are used
42  SpotFraction = cms.double(-1.0),
43  GapLossProbability = cms.double(0.9),
44  SimulatePreshower = cms.bool(True)
45  ),
46  ForwardCalorimeterProperties = cms.PSet(
47  HadronicCalorimeterProperties= cms.PSet(
48  HCAL_Sampling = cms.double(0.0035),
49  # Watch out ! The following two values are defined wrt the electron shower simulation
50  # There are not directly related to the detector properties
51  HCAL_PiOverE = cms.double(0.2),
52  # HCAL_PiOverE = cms.double(0.4)
53  HCALAeff= cms.double(55.845),
54  HCALZeff= cms.double(26),
55  HCALrho= cms.double(7.87),
56 
57  HCALradiationLengthIncm= cms.double(1.757),
58  HCALradLenIngcm2= cms.double(13.84),
59  HCALmoliereRadius= cms.double(1.719),
60  HCALcriticalEnergy= cms.double(21E-3),
61  HCALinteractionLength= cms.double(16.77),
62 
63  HCALetatow=cms.vdouble( 0.000, 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566, 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.853, 3.000, 3.139, 3.314, 3.489, 3.664, 3.839, 4.013, 4.191, 4.363, 4.538, 4.716, 4.889, 5.191),
64 # HCALDepthLam=cms.vdouble( 8.930, 9.001, 9.132, 8.912, 8.104, 8.571, 8.852, 9.230, 9.732, 10.29, 10.95, 11.68, 12.49, 12.57, 12.63, 6.449, 5.806, 8.973, 8.934, 8.823, 8.727, 8.641, 8.565, 8.496, 8.436, 8.383, 8.346, 8.307, 8.298, 8.281, 9.442, 9.437, 9.432, 9.429, 9.432, 9.433, 9.430, 9.437, 9.442, 9.446, 9.435)
65  HCALDepthLam=cms.vdouble(8.014, 8.078, 8.195, 7.998, 7.273, 7.692, 7.944, 8.283, 8.734, 9.235, 9.827, 10.482, 11.209, 11.281, 11.335, 5.788, 5.211, 8.053, 8.018, 7.918, 7.832, 7.755, 7.687, 7.625, 7.571, 7.523, 7.490, 7.455, 7.447, 7.432, 8.474, 8.469, 8.465, 8.462, 8.465, 8.466, 8.463, 8.469, 8.474, 8.477, 8.467)
66  ),
67  ),
68  CalorimeterProperties = cms.PSet(
69  # triplet for each p value: p, k_e(p), k_h(p) ...
70  RespCorrP = cms.vdouble(1.0, 1.0, 1.0, 1000.0, 1.0, 1.0),
71  PreshowerLayer2_thickness = cms.double(0.38), # layer2 thickness back to original
72  ECALEndcap_LightCollection = cms.double(0.023),
73  PreshowerLayer1_thickness = cms.double(1.65), # increase in thickness of layer 1 by 3%
74  PreshowerLayer1_mipsPerGeV = cms.double(17.85), # 50% decrease in mipsperGeV
75  PreshowerLayer2_mipsPerGeV = cms.double(59.5),
76  ECALBarrel_LightCollection = cms.double(0.03),
77  HadronicCalorimeterProperties= cms.PSet(
78  HCAL_Sampling = cms.double(0.0035),
79  # Watch out ! The following two values are defined wrt the electron shower simulation
80  # There are not directly related to the detector properties
81  HCAL_PiOverE = cms.double(0.2),
82  # HCAL_PiOverE = cms.double(0.4)
83  HCALAeff= cms.double(63.546),
84  HCALZeff= cms.double(29.),
85  HCALrho= cms.double(8.960),
86 
87  HCALradiationLengthIncm= cms.double(1.43),
88  HCALradLenIngcm2= cms.double(12.86),
89  HCALmoliereRadius= cms.double(1.712),
90  HCALcriticalEnergy= cms.double(18.63E-3),
91  HCALinteractionLength= cms.double(15.05),
92 
93  HCALetatow=cms.vdouble( 0.000, 0.087, 0.174, 0.261, 0.348, 0.435, 0.522, 0.609, 0.696, 0.783, 0.870, 0.957, 1.044, 1.131, 1.218, 1.305, 1.392, 1.479, 1.566, 1.653, 1.740, 1.830, 1.930, 2.043, 2.172, 2.322, 2.500, 2.650, 2.853, 3.000, 3.139, 3.314, 3.489, 3.664, 3.839, 4.013, 4.191, 4.363, 4.538, 4.716, 4.889, 5.191),
94  HCALDepthLam=cms.vdouble( 8.930, 9.001, 9.132, 8.912, 8.104, 8.571, 8.852, 9.230, 9.732, 10.29, 10.95, 11.68, 12.49, 12.57, 12.63, 6.449, 5.806, 8.973, 8.934, 8.823, 8.727, 8.641, 8.565, 8.496, 8.436, 8.383, 8.346, 8.307, 8.298, 8.281, 9.442, 9.437, 9.432, 9.429, 9.432, 9.433, 9.430, 9.437, 9.442, 9.446, 9.435)
95  ),
96 
97  BarrelCalorimeterProperties = cms.PSet(
98 
99  #====== Geometrical material properties ========
100 
101  # Light Collection efficiency
102  lightColl = cms.double(0.03),
103  # Light Collection uniformity
104  lightCollUnif = cms.double(0.003),
105  # Photostatistics (photons/GeV) in the homegeneous material
106  photoStatistics = cms.double(50.E3),
107  # Thickness of the detector in cm
108  thickness = cms.double(23.0),
109 
110  #====== Global parameters of the material ========
111 
112  # Interaction length in cm
113  interactionLength = cms.double(18.5),
114  Aeff = cms.double(170.87),
115  Zeff = cms.double(68.36),
116  rho = cms.double(8.280),
117  # Radiation length in g/cm^2
118  radLenIngcm2 = cms.double(7.37),
119 
120  # ===== Those parameters might be entered by hand
121  # or calculated out of the previous ones
122 
123  # Radiation length in cm. If value set to -1, FastSim uses internally the
124  # formula radLenIngcm2/rho
125  radLenIncm = cms.double(0.89),
126  # Critical energy in GeV. If value set to -1, FastSim uses internally the
127  # formula (2.66E-3*(x0*Z/A)^1.1): 8.74E-3 for ECAL EndCap
128  criticalEnergy = cms.double(8.74E-3),
129  # Moliere Radius in cm.If value set to -1, FastSim uses internally the
130  # formula : Es/criticalEnergy*X0 with Es=sqrt(4*Pi/alphaEM)*me*c^2=0.0212 GeV
131  # This value is known to be 2.190 cm for ECAL Endcap, but the formula gives 2.159 cm
132  moliereRadius = cms.double(2.190),
133 
134  #====== Parameters for sampling ECAL ========
135 
136  # Sampling Fraction: Fs = X0eff/(da+dp) where X0eff is the average X0
137  # of the active and passive media and da/dp their thicknesses
138  Fs = cms.double(0.0),
139 
140  # e/mip for the calorimeter. May be estimated by 1./(1+0.007*(Zp-Za))
141  ehat = cms.double(0.0),
142 
143  # a rough estimate of ECAL resolution sigma/E = resE/sqrt(E)
144  # it is used to generate Nspots in radial profiles.
145  resE = cms.double(1.),
146 
147  # the width in cm of the active layer
148  da = cms.double(0.2),
149 
150  # the width in cm of the passive layer
151  dp = cms.double(0.8),
152 
153  # Is a homogenious detector?
154  bHom = cms.bool(True),
155 
156  # Activate the LogDebug
157  debug = cms.bool(False)
158 
159  ),
160 
161  EndcapCalorimeterProperties = cms.PSet(
162 
163  #====== Geometrical material properties ========
164 
165  # Light Collection efficiency
166  lightColl = cms.double(0.023),
167  # Light Collection uniformity
168  lightCollUnif = cms.double(0.003),
169  # Photostatistics (photons/GeV) in the homegeneous material
170  photoStatistics = cms.double(50.E3),
171  # Thickness of the detector in cm
172  thickness = cms.double(22.0),
173 
174  #====== Global parameters of the material ========
175 
176  # Interaction length in cm
177  interactionLength = cms.double(18.5),
178  Aeff = cms.double(170.87),
179  Zeff = cms.double(68.36),
180  rho = cms.double(8.280),
181  # Radiation length in g/cm^2
182  radLenIngcm2 = cms.double(7.37),
183 
184  # ===== Those parameters might be entered by hand
185  # or calculated out of the previous ones
186 
187  # Radiation length in cm. If value set to -1, FastSim uses internally the
188  # formula radLenIngcm2/rho
189  radLenIncm = cms.double(0.89),
190  # Critical energy in GeV. If value set to -1, FastSim uses internally the
191  # formula (2.66E-3*(x0*Z/A)^1.1): 8.74E-3 for ECAL EndCap
192  criticalEnergy = cms.double(8.74E-3),
193  # Moliere Radius in cm.If value set to -1, FastSim uses internally the
194  # formula : Es/criticalEnergy*X0 with Es=sqrt(4*Pi/alphaEM)*me*c^2=0.0212 GeV
195  # This value is known to be 2.190 cm for ECAL Endcap, but the formula gives 2.159 cm
196  moliereRadius = cms.double(2.190),
197 
198 
199  #====== Parameters for sampling ECAL ========
200 
201  # Sampling Fraction: Fs = X0eff/(da+dp) where X0eff is the average X0
202  # of the active and passive media and da/dp their thicknesses
203  Fs = cms.double(0.0),
204 
205  # e/mip for the calorimeter. May be estimated by 1./(1+0.007*(Zp-Za))
206  ehat = cms.double(0.0),
207 
208  # a rough estimate of ECAL resolution sigma/E = resE/sqrt(E)
209  # it is used to generate Nspots in radial profiles.
210  resE = cms.double(1.),
211 
212  # the width in cm of the active layer
213  da = cms.double(0.2),
214 
215  # the width in cm of the passive layer
216  dp = cms.double(0.8),
217 
218  # Is a homogenious detector?
219  bHom = cms.bool(True),
220 
221  # Activate the LogDebug
222  debug = cms.bool(False)
223 
224  )
225 
226  ),
227  Debug = cms.untracked.bool(False),
228  useDQM = cms.untracked.bool(False),
229 # EvtsToDebug = cms.untracked.vuint32(487),
230  HCAL = cms.PSet(
231  SimMethod = cms.int32(0), ## 0 - use HDShower, 1 - use HDRShower, 2 - GFLASH
232  GridSize = cms.int32(7),
233  #-- 0 - simple response, 1 - parametrized response + showering, 2 - tabulated response + showering
234  SimOption = cms.int32(2),
235  Digitizer = cms.untracked.bool(False),
236 
237  samplingHBHE = cms.vdouble(125.44, 125.54, 125.32, 125.13, 124.46,
238  125.01, 125.22, 125.48, 124.45, 125.90,
239  125.83, 127.01, 126.82, 129.73, 131.83,
240  143.52, # HB
241  210.55, 197.93, 186.12, 189.64, 189.63,
242  190.28, 189.61, 189.60, 190.12, 191.22,
243  190.90, 193.06, 188.42, 188.42), #HE
244  samplingHF = cms.vdouble(0.383, 0.368),
245  samplingHO = cms.vdouble(231.0, 231.0, 231.0, 231.0, 360.0,
246  360.0, 360.0, 360.0, 360.0, 360.0,
247  360.0, 360.0, 360.0, 360.0, 360.0),
248 
249  ietaShiftHB = cms.int32(1),
250  timeShiftHB = cms.vdouble(6.9, 6.9, 7.1, 7.1, 7.3, 7.5, 7.9, 8.3, 8.7, 9.1, 9.5, 10.3, 10.9, 11.5, 12.3, 14.1),
251  ietaShiftHE = cms.int32(16),
252  timeShiftHE = cms.vdouble(16.9, 15.7, 15.3, 15.3, 15.1, 14.9, 14.7, 14.7, 14.5, 14.5, 14.3, 14.3, 14.5, 13.9),
253  ietaShiftHO = cms.int32(1),
254  timeShiftHO = cms.vdouble(13.7, 13.7, 13.9, 14.1, 15.1, 15.7, 16.5, 17.3, 18.1, 19.1, 20.3, 21.9, 23.3, 25.5, 26.1),
255  ietaShiftHF = cms.int32(29),
256  timeShiftHF = cms.vdouble(50.7, 52.5, 52.9, 53.9, 54.5, 55.1, 55.1, 55.7, 55.9, 56.1, 56.1, 56.1, 56.5),
257  )
258  ),
259  GFlash = cms.PSet(
260  GflashExportToFastSim = cms.bool(True),
261  GflashHadronPhysics = cms.string('QGSP_BERT'),
262  GflashEMShowerModel = cms.bool(False),
263  GflashHadronShowerModel = cms.bool(True),
264  GflashHcalOuter = cms.bool(False),
265  GflashHistogram = cms.bool(False),
266  GflashHistogramName = cms.string('gflash_histogram.root'),
267  Verbosity = cms.untracked.int32(0),
268  bField = cms.double(3.8),
269  watcherOn = cms.bool(False),
270  tuning_pList = cms.vdouble()
271  )
272 )
273 
274 if(CaloMode == 1 ):
275  FamosCalorimetryBlock.Calorimetry.ECAL.Digitizer = True
276 
277 if(CaloMode == 2 ):
278  FamosCalorimetryBlock.Calorimetry.HCAL.Digitizer = True
279 
280 if(CaloMode == 3 ):
281  FamosCalorimetryBlock.Calorimetry.ECAL.Digitizer = True
282  FamosCalorimetryBlock.Calorimetry.HCAL.Digitizer = True
if(dp >Float(M_PI)) dp-