2 from fitResidual
import fitResidual
3 from drawHistoAllChambers
import drawHisto
5 layerCorrectionFactors = {
'SL1':(1.17,1.16,1.15,1.14),
6 'SL2':(1.83,1.20,1.20,1.83),
7 'SL3':(1.14,1.15,1.16,1.17)}
10 dir=
'DQMData/Run 1/DT/Run summary/DTCalibValidation',
11 option=
"HISTOPE1",draw=
True):
19 slStr =
"SL%d" % slType
21 layerStr =
"Layer%d" % layerType
25 ROOT.TH1.AddDirectory(
False)
27 file = ROOT.TFile(fileName,
'read')
29 wheels = (-2,-1,0,1,2)
35 if slType == 2: nBins = 180
36 histoMean = ROOT.TH1F(
"h_ResMeanAll_%s_%s" % (slStr,layerStr),
"Mean of residuals",nBins,0,nBins)
37 histoSigma = ROOT.TH1F(
"h_ResSigmaAll_%s_%s" % (slStr,layerStr),
"Sigma of residuals",nBins,0,nBins)
40 if st == 4: nSectors = 14
41 if st == 4
and slType == 2:
continue
42 if verbose:
print "Station",st
44 if verbose:
print "Wheel",wh
45 for sec
in range(1,nSectors+1):
46 if verbose:
print "Sector",sec
48 histoName =
"%s/Wheel%d/Station%d/Sector%d/%s/hResDist_STEP3_W%d_St%d_Sec%d_%s_%s" % (dir,wh,st,sec,slStr,wh,st,sec,slStr,layerStr)
49 print "Accessing",histoName
50 histo = file.Get(histoName)
51 (histo,fitFunc) =
fitResidual(histo,nSigmas,verbose)
52 fitMean = fitFunc.GetParameter(1)
53 fitMeanErr = fitFunc.GetParError(1)
54 fitSigma = fitFunc.GetParameter(2)
55 fitSigmaErr = fitFunc.GetParError(2)
57 layerIdx = (layer - 1)
58 corrFactor = layerCorrectionFactors[slStr][layerIdx]
60 binHistoNew = (st - 1)*60 + (wh + 2)*nSectors + sec
61 if verbose:
print "Bin in summary histo",binHistoNew
62 histoMean.SetBinContent(binHistoNew,fitMean)
63 histoMean.SetBinError(binHistoNew,fitMeanErr)
64 histoSigma.SetBinContent(binHistoNew,fitSigma*corrFactor)
65 histoSigma.SetBinError(binHistoNew,fitSigmaErr*corrFactor)
68 label =
"Wheel %d" % wh
69 if wh == -2: label +=
" MB%d" % st
70 histoMean.GetXaxis().SetBinLabel(binHistoNew,label)
71 histoSigma.GetXaxis().SetBinLabel(binHistoNew,label)
73 objectsMean =
drawHisto(histoMean,title=
"Mean of residuals (cm)",
74 ymin=mean_ymin,ymax=mean_ymax,option=option,draw=draw)
75 objectsSigma =
drawHisto(histoSigma,title=
"Resolution (cm)",
76 ymin=sig_ymin,ymax=sig_ymax,option=option,draw=draw)
78 return (objectsMean,objectsSigma)
81 dir=
'DQMData/Run 1/DT/Run summary/DTCalibValidation',type=
'mean',option=
'HISTOPE1'):
82 colors = (2,4,12,44,55,38,27,46)
83 markers = (24,25,26,27,28,30,32,5)
84 labels=[
'Layer 1',
'Layer 2',
'Layer 3',
'Layer 4']
86 if type ==
'mean': idx_type = 0
87 elif type ==
'sigma': idx_type = 1
88 else:
raise RuntimeError,
"Wrong option: %s" % type
94 for layer
in range(1,5):
96 if not idx: draw =
True
99 histos.append(objs[idx_type][1])
100 histos[-1].SetName(
"%s_%d" % (histos[-1].GetName(),idx) )
102 canvas = objs[idx_type][0]
103 objects = objs[idx_type][2]
107 histos[-1].SetLineColor(colors[ (idx - 1) % len(colors) ])
108 histos[-1].SetMarkerColor(colors[ (idx - 1) % len(colors) ])
109 histos[-1].SetMarkerStyle(markers[ (idx - 1) % len(markers) ])
111 histos[-1].Draw(option +
"SAME")
115 legend = ROOT.TLegend(0.4,0.7,0.95,0.8)
116 for idx
in range( len(histos) ):
118 label = histo.GetName()
119 if len(labels): label = labels[idx]
120 legend.AddEntry(histo,label,
"LP")
125 legend.SetFillColor( canvas.GetFillColor() )
127 objects.append(legend)
133 wheels = (-2,-1,0,1,2)
136 slStr =
"SL%d" % slType
138 nBinsAve = len(stations)*len(wheels)
139 histoAverage = ROOT.TH1F(
"h_AverageAll_" + slStr,
"",nBinsAve,0,nBinsAve)
146 if st == 4: nSectors = 14
147 if st == 4
and slType == 2:
continue
149 binHistoAve = (st - 1)*5 + (wh + 2) + 1
150 label =
"Wheel %d" % wh
151 if wh == -2: label +=
" MB%d" % st
152 histoAverage.GetXaxis().SetBinLabel(binHistoAve,label)
154 averages[(st,wh)] = 0.
155 averagesSumw[(st,wh)] = 0.
156 for sec
in range(1,nSectors+1):
157 binHisto = (st - 1)*60 + (wh + 2)*nSectors + sec
158 for idx
in range( len(histos) ):
160 value = histo.GetBinContent( binHisto )
161 error = histo.GetBinError( binHisto )
162 averages[(st,wh)] += value/( error*error )
163 averagesSumw[(st,wh)] += 1./( error*error )
165 averages[(st,wh)] = averages[(st,wh)]/averagesSumw[(st,wh)]
166 averagesErr[(st,wh)] = math.sqrt( 1./averagesSumw[(st,wh)] )
167 histoAverage.SetBinContent(binHistoAve,averages[(st,wh)])
168 histoAverage.SetBinError(binHistoAve,averagesErr[(st,wh)])
169 print "Station %d, Wheel %d: %.4f +/- %.6f" % (st,wh,averages[(st,wh)],averagesErr[(st,wh)])
171 canvasAverage = ROOT.TCanvas(
"c_" + histoAverage.GetName())
172 canvasAverage.SetGridx()
173 canvasAverage.SetGridy()
174 canvasAverage.SetFillColor( 0 )
181 histoAverage.GetYaxis().SetTitle(
"Mean of residuals (cm)")
182 histoAverage.GetYaxis().SetRangeUser(mean_ymin,mean_ymax)
183 elif type ==
'sigma':
184 histoAverage.GetYaxis().SetTitle(
"Resolution (cm)")
185 histoAverage.GetYaxis().SetRangeUser(sig_ymin,sig_ymax)
187 histoAverage.SetStats(0)
188 histoAverage.SetLineWidth(2)
189 histoAverage.SetMarkerStyle( 27 )
190 histoAverage.SetMarkerSize( 1.5 )
191 histoAverage.LabelsOption(
"d",
"X")
192 histoAverage.Draw(
"E2")
194 return ( (canvas,canvasAverage),(histos,histoAverage),objects )
196 def plotMean(fileName,sl,dir='DQMData/Run 1/DT/Run summary/DTCalibValidation',option='HISTOPE1'):
198 objs =
plot(fileName,sl,dir,type,option)
201 def plotSigma(fileName,sl,dir='DQMData/Run 1/DT/Run summary/DTCalibValidation',option='HISTOPE1'):
203 objs =
plot(fileName,sl,dir,type,option)
206 def plotSigmaAll(fileName,dir='DQMData/Run 1/DT/Run summary/DTCalibValidation',option='HISTOPE1',outputFileName=''):
207 colors = (2,4,12,44,55,38,27,46)
208 markers = (24,25,26,27,28,30,32,5)
211 labels = (
'R-#phi SL1',
'R-z SL2',
'R-#phi SL3')
218 if not idx: draw =
True
221 histos.append(objs[1][1])
222 histos[-1].SetName(
"%s_%d" % (histos[-1].GetName(),idx) )
229 histos[-1].SetLineColor(colors[ (idx - 1) % len(colors) ])
230 histos[-1].SetMarkerColor(colors[ (idx - 1) % len(colors) ])
231 histos[-1].SetMarkerStyle(markers[ (idx - 1) % len(markers) ])
233 histos[-1].Draw(option +
"SAME")
237 legend = ROOT.TLegend(0.4,0.7,0.95,0.8)
238 for idx
in range( len(histos) ):
240 label = histo.GetName()
241 if len(labels): label = labels[idx]
242 legend.AddEntry(histo,label,
"LP")
247 legend.SetFillColor( canvas.GetFillColor() )
249 if not objects: objects = [legend]
250 else: objects.append(legend)
253 outputFile = ROOT.TFile(outputFileName,
'recreate')
255 for histo
in histos: histo.Write()
259 return (canvas,histos,objects)
264 AddDirectoryStatus_ = ROOT.TH1.AddDirectoryStatus()
265 ROOT.TH1.AddDirectory(
False)
270 for file
in fileNames: rootFiles.append( ROOT.TFile(file,
'read') )
272 variables = [
'h_AverageAll_SL1_0',
273 'h_AverageAll_SL2_1',
274 'h_AverageAll_SL3_2']
276 colors = (1,2,4,12,44,55,38,27,46)
277 markers = (20,24,25,26,27,28,30,32,5)
283 for var
in variables:
284 print "Accessing",var
301 for file
in rootFiles:
302 histos_tmp.append( file.Get(var) )
303 histos_tmp[-1].SetName(
"%s_%d" % (histos_tmp[-1].GetName(),idx) )
304 print "Created",histos_tmp[-1].GetName()
305 histos_tmp[-1].SetLineColor(colors[ idx % len(colors) ])
306 histos_tmp[-1].SetMarkerColor(colors[ idx % len(colors) ])
307 histos_tmp[-1].SetMarkerStyle(markers[ idx % len(markers) ])
308 histos_tmp[-1].SetMarkerSize(1.4)
310 histos.append( histos_tmp )
312 canvases.append( ROOT.TCanvas(
"c_" + var,var) )
313 canvases[-1].SetGridx()
314 canvases[-1].SetGridy()
315 canvases[-1].SetFillColor(0)
321 for histo
in histos[-1][1:]: histo.Draw(
"SAME")
326 legends.append( ROOT.TLegend(0.4,0.7,0.95,0.8) )
328 for histo
in histos[-1]:
329 legends[-1].AddEntry(histo,labels[idx],
"LP")
332 legends[-1].SetFillColor( canvases[-1].GetFillColor() )
333 legends[-1].Draw(
"SAME")
337 if not objects: objects = [legends]
338 else: objects.append(legends)
340 ROOT.TH1.AddDirectory(AddDirectoryStatus_)
342 return (canvases,histos,objects)