CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
fftjetcommon_cfi.py
Go to the documentation of this file.
1 import math
2 import FWCore.ParameterSet.Config as cms
4 
5 # Common definitions for FFTJet interface modules
6 
7 # Some useful constants
8 fftjet_large_int = pow(2,31) - 1
9 
10 # Global phi-to-eta bandwidth ratio
11 fftjet_phi_to_eta_bw_ratio = 1.0
12 
13 # Are we including the complete event at the lowest scale
14 # of the clustering tree?
15 fftjet_insert_complete_event = False
16 fftjet_complete_event_scale = 0.05
17 
18 # The standard eta range for various algos
19 fftjet_standard_eta_range = 5.2
20 
21 # Provide several feasible energy discretization grid configurations.
22 # The width of eta bins is 0.087. We want to choose the binning
23 # so that FFT is efficient. At the same time, we have to prevent
24 # wrap-around energy leakage during convolutions from one eta side
25 # to another. Note that the CMS calorimeter extends up to eta of 5.191.
26 fftjet_grid_256_72 = cms.PSet(
27  nEtaBins = cms.uint32(256),
28  etaMin = cms.double(-11.136),
29  etaMax = cms.double(11.136),
30  nPhiBins = cms.uint32(72),
31  phiBin0Edge = cms.double(0.0),
32  title = cms.untracked.string("256 x 72")
33 )
34 
35 fftjet_grid_192_72 = cms.PSet(
36  nEtaBins = cms.uint32(192),
37  etaMin = cms.double(-8.352),
38  etaMax = cms.double(8.352),
39  nPhiBins = cms.uint32(72),
40  phiBin0Edge = cms.double(0.0),
41  title = cms.untracked.string("192 x 72")
42 )
43 
44 fftjet_grid_144_72 = cms.PSet(
45  nEtaBins = cms.uint32(144),
46  etaMin = cms.double(-6.264),
47  etaMax = cms.double(6.264),
48  nPhiBins = cms.uint32(72),
49  phiBin0Edge = cms.double(0.0),
50  title = cms.untracked.string("144 x 72")
51 )
52 
53 fftjet_grid_128_72 = cms.PSet(
54  nEtaBins = cms.uint32(128),
55  etaMin = cms.double(-5.568),
56  etaMax = cms.double(5.568),
57  nPhiBins = cms.uint32(72),
58  phiBin0Edge = cms.double(0.0),
59  title = cms.untracked.string("128 x 72")
60 )
61 
62 fftjet_grid_256_128 = cms.PSet(
63  nEtaBins = cms.uint32(256),
64  etaMin = cms.double(-2.0*math.pi),
65  etaMax = cms.double(2.0*math.pi),
66  nPhiBins = cms.uint32(128),
67  phiBin0Edge = cms.double(0.0),
68  title = cms.untracked.string("256 x 128")
69 )
70 
71 #
72 # Definitions for anomalous towers
73 #
74 fftjet_anomalous_tower_default = anom.AnomalousCellParameters
75 
76 fftjet_anomalous_tower_allpass = cms.PSet(
77  maxBadEcalCells = cms.uint32(fftjet_large_int),
78  maxRecoveredEcalCells = cms.uint32(fftjet_large_int),
79  maxProblematicEcalCells = cms.uint32(fftjet_large_int),
80  maxBadHcalCells = cms.uint32(fftjet_large_int),
81  maxRecoveredHcalCells = cms.uint32(fftjet_large_int),
82  maxProblematicHcalCells = cms.uint32(fftjet_large_int)
83 )
84 
85 #
86 # Peak selectors
87 #
88 fftjet_peak_selector_allpass = cms.PSet(
89  Class = cms.string("AllPeaksPass")
90 )
91 
92 #
93 # 50 scales (49 intervals) from 0.087 to 0.6 in log space correspond
94 # to the pattern recognition kernel bandwidth increase of 4.0% per scale.
95 # This set of scales is useful for generic jet reconstruction with
96 # variable jet size and for multiresolution studies.
97 #
98 fftjet_patreco_scales_50 = cms.PSet(
99  Class = cms.string("EquidistantInLogSpace"),
100  minScale = cms.double(0.087),
101  maxScale = cms.double(0.6),
102  nScales = cms.uint32(50)
103 )
104 
105 #
106 # Various sets of scales with 3 values (and 2 intervals).
107 # Central scale is to be used for single-resolution jet
108 # reconstruction. Using 3 scales instead of 1 allows for
109 # determination of varios "speed" quantities for peaks.
110 #
111 fftjet_patreco_scales_3_at_010 = cms.PSet(
112  Class = cms.string("EquidistantInLogSpace"),
113  minScale = cms.double(0.10/1.04),
114  maxScale = cms.double(0.10*1.04),
115  nScales = cms.uint32(3)
116 )
117 fftjet_patreco_scales_3_at_015 = cms.PSet(
118  Class = cms.string("EquidistantInLogSpace"),
119  minScale = cms.double(0.15/1.04),
120  maxScale = cms.double(0.15*1.04),
121  nScales = cms.uint32(3)
122 )
123 fftjet_patreco_scales_3_at_017 = cms.PSet(
124  Class = cms.string("EquidistantInLogSpace"),
125  minScale = cms.double(0.17/1.04),
126  maxScale = cms.double(0.17*1.04),
127  nScales = cms.uint32(3)
128 )
129 fftjet_patreco_scales_3_at_020 = cms.PSet(
130  Class = cms.string("EquidistantInLogSpace"),
131  minScale = cms.double(0.20/1.04),
132  maxScale = cms.double(0.20*1.04),
133  nScales = cms.uint32(3)
134 )
135 fftjet_patreco_scales_3_at_025 = cms.PSet(
136  Class = cms.string("EquidistantInLogSpace"),
137  minScale = cms.double(0.25/1.04),
138  maxScale = cms.double(0.25*1.04),
139  nScales = cms.uint32(3)
140 )
141 fftjet_patreco_scales_3_at_050 = cms.PSet(
142  Class = cms.string("EquidistantInLogSpace"),
143  minScale = cms.double(0.50/1.04),
144  maxScale = cms.double(0.50*1.04),
145  nScales = cms.uint32(3)
146 )
147 
148 #
149 # Here, the distance calculator for the tree is a simple eta-phi
150 # distance with fixed bandwidth values in eta and phi. However,
151 # if the "etaDependentScaleFactors" are given in the module
152 # configuration, it makes a lot of sense to use eta-dependent
153 # eta-to-phi bandwidth ratio.
154 #
155 fftjet_fixed_bandwidth_distance = cms.PSet(
156  Class = cms.string("PeakEtaPhiDistance"),
157  etaToPhiBandwidthRatio = cms.double(1.0/fftjet_phi_to_eta_bw_ratio)
158 )
159 
160 #
161 # A placeholder for the tree distance calculator with eta-dependent
162 # eta-to-phi bandwidth ratio (must be modified for meaningful use).
163 # Inside the interpolator, bandwidth ratio points are placed at the
164 # cell centers.
165 #
166 fftjet_variable_bandwidth_distance = cms.PSet(
167  Class = cms.string("PeakEtaDependentDistance"),
168  Interpolator = cms.PSet(
169  xmin = cms.double(-5.2),
170  xmax = cms.double(5.2),
171  flow = cms.double(1.0),
172  fhigh = cms.double(1.0),
173  data = cms.vdouble(1.0, 1.0)
174  )
175 )
176 
177 #
178 # Various jet membership functions
179 #
180 fftjet_jet_membership_cone = cms.PSet(
181  Class = cms.string("Linear2d"),
182  sx = cms.double(math.sqrt(1.0/fftjet_phi_to_eta_bw_ratio)),
183  sy = cms.double(math.sqrt(fftjet_phi_to_eta_bw_ratio)),
184  scalePower = cms.int32(1),
185  kernelParameters = cms.vdouble()
186 )
187 
188 #
189 # Background/noise membership functions
190 #
191 fftjet_noise_membership_smallconst = cms.PSet(
192  Class = cms.string("GaussianNoiseMembershipFcn"),
193  minWeight = cms.double(1.0e-8),
194  prior = cms.double(0.0)
195 )
196 
197 #
198 # Distance between jets for convergence determination
199 #
200 fftjet_convergence_jet_distance = cms.PSet(
201  Class = cms.string("JetConvergenceDistance"),
202  etaToPhiBandwidthRatio = cms.double(1.0/fftjet_phi_to_eta_bw_ratio),
203  relativePtBandwidth = cms.double(1.0)
204 )
205 
206 #
207 # Various peak functors
208 #
209 fftjet_peakfunctor_const_zero = cms.PSet(
210  Class = cms.string("ConstDouble"),
211  value = cms.double(0.0)
212 )
213 
214 fftjet_peakfunctor_const_one = cms.PSet(
215  Class = cms.string("ConstDouble"),
216  value = cms.double(1.0)
217 )
Power< A, B >::type pow(const A &a, const B &b)
Definition: Power.h:40