CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
List of all members | Public Member Functions | Private Attributes
SiG4UniversalFluctuation Class Reference

#include <SiG4UniversalFluctuation.h>

Public Member Functions

double SampleFluctuations (const double momentum, const double mass, double &tmax, const double length, const double meanLoss)
 
 SiG4UniversalFluctuation (CLHEP::HepRandomEngine &)
 
 ~SiG4UniversalFluctuation ()
 

Private Attributes

double alim
 
double chargeSquare
 
double e0
 
double e1Fluct
 
double e1LogFluct
 
double e2Fluct
 
double e2LogFluct
 
double electronDensity
 
double f1Fluct
 
double f2Fluct
 
CLHEP::RandFlat * flatDistribution
 
CLHEP::RandGaussQ * gaussQDistribution
 
double ipotFluct
 
double ipotLogFluct
 
double minLoss
 
double minNumberInteractionsBohr
 
double nmaxCont1
 
double nmaxCont2
 
double particleMass
 
CLHEP::RandPoissonQ * poissonQDistribution
 
double problim
 
double rateFluct
 
CLHEP::HepRandomEngine & rndEngine
 
double sumalim
 
double theBohrBeta2
 

Detailed Description

Definition at line 67 of file SiG4UniversalFluctuation.h.

Constructor & Destructor Documentation

SiG4UniversalFluctuation::SiG4UniversalFluctuation ( CLHEP::HepRandomEngine &  eng)

Definition at line 76 of file SiG4UniversalFluctuation.cc.

References chargeSquare, e0, e1Fluct, e1LogFluct, e2Fluct, e2LogFluct, electronDensity, f1Fluct, f2Fluct, flatDistribution, gaussQDistribution, ipotFluct, ipotLogFluct, create_public_lumi_plots::log, poissonQDistribution, problim, rateFluct, rndEngine, and sumalim.

77  :rndEngine(eng),
82  theBohrBeta2(50.0*keV/proton_mass_c2),
83  minLoss(10.*eV),
84  problim(5.e-3),
85  alim(10.),
86  nmaxCont1(4.),
87  nmaxCont2(16.)
88 {
89  sumalim = -log(problim);
90  //lastMaterial = 0;
91 
92  // Add these definitions d.k.
93  chargeSquare = 1.; //Assume all particles have charge 1
94  // Taken from Geant4 printout, HARDWIRED for Silicon.
95  ipotFluct = 0.0001736; //material->GetIonisation()->GetMeanExcitationEnergy();
96  electronDensity = 6.797E+20; // material->GetElectronDensity();
97  f1Fluct = 0.8571; // material->GetIonisation()->GetF1fluct();
98  f2Fluct = 0.1429; //material->GetIonisation()->GetF2fluct();
99  e1Fluct = 0.000116;// material->GetIonisation()->GetEnergy1fluct();
100  e2Fluct = 0.00196; //material->GetIonisation()->GetEnergy2fluct();
101  e1LogFluct = -9.063; //material->GetIonisation()->GetLogEnergy1fluct();
102  e2LogFluct = -6.235; //material->GetIonisation()->GetLogEnergy2fluct();
103  rateFluct = 0.4; //material->GetIonisation()->GetRateionexcfluct();
104  ipotLogFluct = -8.659; //material->GetIonisation()->GetLogMeanExcEnergy();
105  e0 = 1.E-5; //material->GetIonisation()->GetEnergy0fluct();
106 
107  gaussQDistribution = new CLHEP::RandGaussQ(rndEngine);
108  poissonQDistribution = new CLHEP::RandPoissonQ(rndEngine);
109  flatDistribution = new CLHEP::RandFlat(rndEngine);
110 
111  //cout << " init new fluct +++++++++++++++++++++++++++++++++++++++++"<<endl;
112 }
CLHEP::RandPoissonQ * poissonQDistribution
CLHEP::RandGaussQ * gaussQDistribution
CLHEP::HepRandomEngine & rndEngine
SiG4UniversalFluctuation::~SiG4UniversalFluctuation ( )

Definition at line 119 of file SiG4UniversalFluctuation.cc.

References flatDistribution, gaussQDistribution, and poissonQDistribution.

120 {
121  delete gaussQDistribution;
122  delete poissonQDistribution;
123  delete flatDistribution;
124 
125 }
CLHEP::RandPoissonQ * poissonQDistribution
CLHEP::RandGaussQ * gaussQDistribution

Member Function Documentation

double SiG4UniversalFluctuation::SampleFluctuations ( const double  momentum,
const double  mass,
double &  tmax,
const double  length,
const double  meanLoss 
)

Definition at line 128 of file SiG4UniversalFluctuation.cc.

References alim, funct::C, chargeSquare, e0, e1Fluct, e1LogFluct, e2Fluct, e2LogFluct, electronDensity, f1Fluct, f2Fluct, flatDistribution, gam, gaussQDistribution, i, ipotFluct, ipotLogFluct, gen::k, max(), minLoss, minNumberInteractionsBohr, nmaxCont1, nmaxCont2, p1, p2, p3, particleMass, poissonQDistribution, RPCpg::rate(), rateFluct, mathSSE::sqrt(), sumalim, w(), w2, and x.

133 {
134 // Calculate actual loss from the mean loss.
135 // The model used to get the fluctuations is essentially the same
136 // as in Glandz in Geant3 (Cern program library W5013, phys332).
137 // L. Urban et al. NIM A362, p.416 (1995) and Geant4 Physics Reference Manual
138 
139  // shortcut for very very small loss (out of validity of the model)
140  //
141  if (meanLoss < minLoss) return meanLoss;
142 
143  //if(!particle) InitialiseMe(dp->GetDefinition());
144  //G4double tau = dp->GetKineticEnergy()/particleMass;
145  //G4double gam = tau + 1.0;
146  //G4double gam2 = gam*gam;
147  //G4double beta2 = tau*(tau + 2.0)/gam2;
148 
149  particleMass = mass; // dp->GetMass();
150  double gam2 = (momentum*momentum)/(particleMass*particleMass) + 1.0;
151  double beta2 = 1.0 - 1.0/gam2;
152  double gam = sqrt(gam2);
153 
154  double loss(0.), siga(0.);
155 
156  // Gaussian regime
157  // for heavy particles only and conditions
158  // for Gauusian fluct. has been changed
159  //
160  if ((particleMass > electron_mass_c2) &&
161  (meanLoss >= minNumberInteractionsBohr*tmax))
162  {
163  double massrate = electron_mass_c2/particleMass ;
164  double tmaxkine = 2.*electron_mass_c2*beta2*gam2/
165  (1.+massrate*(2.*gam+massrate)) ;
166  if (tmaxkine <= 2.*tmax)
167  {
168  //electronDensity = material->GetElectronDensity();
169  siga = (1.0/beta2 - 0.5) * twopi_mc2_rcl2 * tmax * length
171  siga = sqrt(siga);
172  double twomeanLoss = meanLoss + meanLoss;
173  if (twomeanLoss < siga) {
174  double x;
175  do {
176  loss = twomeanLoss*flatDistribution->fire();
177  x = (loss - meanLoss)/siga;
178  } while (1.0 - 0.5*x*x < flatDistribution->fire());
179  } else {
180  do {
181  loss = gaussQDistribution->fire(meanLoss,siga);
182  } while (loss < 0. || loss > twomeanLoss);
183  }
184  return loss;
185  }
186  }
187 
188  // Glandz regime : initialisation
189  //
190 // if (material != lastMaterial) {
191 // f1Fluct = material->GetIonisation()->GetF1fluct();
192 // f2Fluct = material->GetIonisation()->GetF2fluct();
193 // e1Fluct = material->GetIonisation()->GetEnergy1fluct();
194 // e2Fluct = material->GetIonisation()->GetEnergy2fluct();
195 // e1LogFluct = material->GetIonisation()->GetLogEnergy1fluct();
196 // e2LogFluct = material->GetIonisation()->GetLogEnergy2fluct();
197 // rateFluct = material->GetIonisation()->GetRateionexcfluct();
198 // ipotFluct = material->GetIonisation()->GetMeanExcitationEnergy();
199 // ipotLogFluct = material->GetIonisation()->GetLogMeanExcEnergy();
200 // lastMaterial = material;
201 // }
202 
203  double a1 = 0. , a2 = 0., a3 = 0. ;
204  double p1,p2,p3;
205  double rate = rateFluct ;
206 
207  double w1 = tmax/ipotFluct;
208  double w2 = vdt::fast_log(2.*electron_mass_c2*beta2*gam2)-beta2;
209 
210  if(w2 > ipotLogFluct)
211  {
212  double C = meanLoss*(1.-rateFluct)/(w2-ipotLogFluct);
213  a1 = C*f1Fluct*(w2-e1LogFluct)/e1Fluct;
214  a2 = C*f2Fluct*(w2-e2LogFluct)/e2Fluct;
215  if(a2 < 0.)
216  {
217  a1 = 0. ;
218  a2 = 0. ;
219  rate = 1. ;
220  }
221  }
222  else
223  {
224  rate = 1. ;
225  }
226 
227  // added
228  if(tmax > ipotFluct) {
229  a3 = rate*meanLoss*(tmax-ipotFluct)/(ipotFluct*tmax*vdt::fast_log(w1));
230  }
231  double suma = a1+a2+a3;
232 
233  // Glandz regime
234  //
235  if (suma > sumalim)
236  {
237  p1 = 0., p2 = 0 ;
238  if((a1+a2) > 0.)
239  {
240  // excitation type 1
241  if (a1>alim) {
242  siga=sqrt(a1) ;
243  p1 = max(0.,gaussQDistribution->fire(a1,siga)+0.5);
244  } else {
245  p1 = double(poissonQDistribution->fire(a1));
246  }
247 
248  // excitation type 2
249  if (a2>alim) {
250  siga=sqrt(a2) ;
251  p2 = max(0.,gaussQDistribution->fire(a2,siga)+0.5);
252  } else {
253  p2 = double(poissonQDistribution->fire(a2));
254  }
255 
256  loss = p1*e1Fluct+p2*e2Fluct;
257 
258  // smearing to avoid unphysical peaks
259  if (p2 > 0.)
260  loss += (1.-2.*flatDistribution->fire())*e2Fluct;
261  else if (loss>0.)
262  loss += (1.-2.*flatDistribution->fire())*e1Fluct;
263  if (loss < 0.) loss = 0.0;
264  }
265 
266  // ionisation
267  if (a3 > 0.) {
268  if (a3>alim) {
269  siga=sqrt(a3) ;
270  p3 = max(0.,gaussQDistribution->fire(a3,siga)+0.5);
271  } else {
272  p3 = double(poissonQDistribution->fire(a3));
273  }
274  double lossc = 0.;
275  if (p3 > 0) {
276  double na = 0.;
277  double alfa = 1.;
278  if (p3 > nmaxCont2) {
279  double rfac = p3/(nmaxCont2+p3);
280  double namean = p3*rfac;
281  double sa = nmaxCont1*rfac;
282  na = gaussQDistribution->fire(namean,sa);
283  if (na > 0.) {
284  alfa = w1*(nmaxCont2+p3)/(w1*nmaxCont2+p3);
285  double alfa1 = alfa*vdt::fast_log(alfa)/(alfa-1.);
286  double ea = na*ipotFluct*alfa1;
287  double sea = ipotFluct*sqrt(na*(alfa-alfa1*alfa1));
288  lossc += gaussQDistribution->fire(ea,sea);
289  }
290  }
291 
292  if (p3 > na) {
293  w2 = alfa*ipotFluct;
294  double w = (tmax-w2)/tmax;
295  int nb = int(p3-na);
296  for (int k=0; k<nb; k++) lossc += w2/(1.-w*flatDistribution->fire());
297  }
298  }
299  loss += lossc;
300  }
301  return loss;
302  }
303 
304  // suma < sumalim; very small energy loss;
305  //
306  //double e0 = material->GetIonisation()->GetEnergy0fluct();
307 
308  a3 = meanLoss*(tmax-e0)/(tmax*e0*vdt::fast_log(tmax/e0));
309  if (a3 > alim)
310  {
311  siga=sqrt(a3);
312  p3 = max(0.,gaussQDistribution->fire(a3,siga)+0.5);
313  } else {
314  p3 = double(poissonQDistribution->fire(a3));
315  }
316  if (p3 > 0.) {
317  double w = (tmax-e0)/tmax;
318  double corrfac = 1.;
319  if (p3 > nmaxCont2) {
320  corrfac = p3/nmaxCont2;
321  p3 = nmaxCont2;
322  }
323  int ip3 = (int)p3;
324  for (int i=0; i<ip3; i++) loss += 1./(1.-w*flatDistribution->fire());
325  loss *= e0*corrfac;
326  // smearing for losses near to e0
327  if(p3 <= 2.)
328  loss += e0*(1.-2.*flatDistribution->fire()) ;
329  }
330 
331  return loss;
332 }
int i
Definition: DBlmapReader.cc:9
common ppss p3p6s2 common epss epspn46 common const1 w2
Definition: inclppp.h:1
const T & max(const T &a, const T &b)
T sqrt(T t)
Definition: SSEVec.h:48
double p2[4]
Definition: TauolaWrapper.h:90
int k[5][pyjets_maxn]
CLHEP::RandPoissonQ * poissonQDistribution
static const double tmax[3]
CLHEP::RandGaussQ * gaussQDistribution
double rate(double x)
Definition: Constants.cc:3
double p1[4]
Definition: TauolaWrapper.h:89
T w() const
Definition: DDAxes.h:10
double p3[4]
Definition: TauolaWrapper.h:91

Member Data Documentation

double SiG4UniversalFluctuation::alim
private

Definition at line 132 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::chargeSquare
private

Definition at line 110 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e0
private

Definition at line 125 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e1Fluct
private

Definition at line 119 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e1LogFluct
private

Definition at line 122 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e2Fluct
private

Definition at line 120 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::e2LogFluct
private

Definition at line 123 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::electronDensity
private

Definition at line 114 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::f1Fluct
private

Definition at line 117 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::f2Fluct
private

Definition at line 118 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

CLHEP::RandFlat* SiG4UniversalFluctuation::flatDistribution
private
CLHEP::RandGaussQ* SiG4UniversalFluctuation::gaussQDistribution
private
double SiG4UniversalFluctuation::ipotFluct
private

Definition at line 113 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::ipotLogFluct
private

Definition at line 124 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::minLoss
private

Definition at line 129 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::minNumberInteractionsBohr
private

Definition at line 127 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::nmaxCont1
private

Definition at line 133 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::nmaxCont2
private

Definition at line 134 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

double SiG4UniversalFluctuation::particleMass
private

Definition at line 109 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations().

CLHEP::RandPoissonQ* SiG4UniversalFluctuation::poissonQDistribution
private
double SiG4UniversalFluctuation::problim
private

Definition at line 130 of file SiG4UniversalFluctuation.h.

Referenced by SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::rateFluct
private

Definition at line 121 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

CLHEP::HepRandomEngine& SiG4UniversalFluctuation::rndEngine
private

Definition at line 98 of file SiG4UniversalFluctuation.h.

Referenced by SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::sumalim
private

Definition at line 131 of file SiG4UniversalFluctuation.h.

Referenced by SampleFluctuations(), and SiG4UniversalFluctuation().

double SiG4UniversalFluctuation::theBohrBeta2
private

Definition at line 128 of file SiG4UniversalFluctuation.h.