00001 #include <cmath>
00002 #include <fstream>
00003 #include <algorithm>
00004
00005 #include "DQM/HcalMonitorTasks/interface/HcalNoiseMonitor.h"
00006
00007 #include "DataFormats/FEDRawData/interface/FEDNumbering.h"
00008 #include "DataFormats/FEDRawData/interface/FEDTrailer.h"
00009 #include "DataFormats/FEDRawData/interface/FEDHeader.h"
00010 #include "EventFilter/HcalRawToDigi/interface/HcalDCCHeader.h"
00011
00012 #include "DataFormats/HcalDetId/interface/HcalDetId.h"
00013 #include "DataFormats/HcalRecHit/interface/HcalRecHitCollections.h"
00014 #include "DataFormats/HcalRecHit/interface/HBHERecHit.h"
00015 #include "DataFormats/HcalDigi/interface/HcalDigiCollections.h"
00016
00017 #include "CalibFormats/HcalObjects/interface/HcalCoderDb.h"
00018 #include "CalibFormats/HcalObjects/interface/HcalCalibrations.h"
00019 #include "CalibFormats/HcalObjects/interface/HcalDbService.h"
00020 #include "CalibFormats/HcalObjects/interface/HcalDbRecord.h"
00021
00022 #include "RecoMET/METAlgorithms/interface/HcalNoiseRBXArray.h"
00023 #include "CalibCalorimetry/HcalAlgos/interface/HcalPulseShapes.h"
00024 #include "RecoLocalCalo/HcalRecAlgos/interface/HcalCaloFlagLabels.h"
00025
00026 #include "FWCore/Common/interface/TriggerNames.h"
00027
00028 HcalNoiseMonitor::HcalNoiseMonitor(const edm::ParameterSet& ps)
00029 {
00030 Online_ = ps.getUntrackedParameter<bool>("online",false);
00031 mergeRuns_ = ps.getUntrackedParameter<bool>("mergeRuns",false);
00032 enableCleanup_ = ps.getUntrackedParameter<bool>("enableCleanup",false);
00033 debug_ = ps.getUntrackedParameter<int>("debug",0);
00034 prefixME_ = ps.getUntrackedParameter<std::string>("subSystemFolder","Hcal/");
00035 if(prefixME_.substr(prefixME_.size()-1,prefixME_.size())!="/")
00036 prefixME_.append("/");
00037 subdir_ = ps.getUntrackedParameter<std::string>("TaskFolder","NoiseMonitor_Hcal");
00038 if(subdir_.size()>0 && subdir_.substr(subdir_.size()-1,subdir_.size())!="/")
00039 subdir_.append("/");
00040 subdir_=prefixME_+subdir_;
00041 AllowedCalibTypes_ = ps.getUntrackedParameter<std::vector<int> > ("AllowedCalibTypes");
00042 skipOutOfOrderLS_ = ps.getUntrackedParameter<bool>("skipOutOfOrderLS",false);
00043 NLumiBlocks_ = ps.getUntrackedParameter<int>("NLumiBlocks",4000);
00044 makeDiagnostics_ = ps.getUntrackedParameter<bool>("makeDiagnostics",false);
00045
00046 triggers_=ps.getUntrackedParameter<std::vector<std::string> >("nzsHLTnames");
00047
00048 period_=ps.getUntrackedParameter<int>("NoiseeventPeriod",4096);
00049 rawdataLabel_ = ps.getUntrackedParameter<edm::InputTag>("RawDataLabel");
00050 hltresultsLabel_ = ps.getUntrackedParameter<edm::InputTag>("HLTResultsLabel");
00051 hbheDigiLabel_ = ps.getUntrackedParameter<edm::InputTag>("hbheDigiLabel");
00052 hbheRechitLabel_ = ps.getUntrackedParameter<edm::InputTag>("hbheRechitLabel");
00053 noiseLabel_ = ps.getUntrackedParameter<edm::InputTag>("noiseLabel");
00054
00055 mTrianglePeakTS = 4;
00056
00057 mE2E10MinEnergy = ps.getUntrackedParameter<double>("E2E10MinEnergy");
00058 mMinE2E10 = ps.getUntrackedParameter<double>("MinE2E10");
00059 mMaxE2E10 = ps.getUntrackedParameter<double>("MaxE2E10");
00060 mMaxHPDHitCount = ps.getUntrackedParameter<int>("MaxHPDHitCount");
00061 mMaxHPDNoOtherHitCount = ps.getUntrackedParameter<int>("MaxHPDNoOtherHitCount");
00062 mMaxADCZeros = ps.getUntrackedParameter<int>("MaxADCZeros");
00063 mTotalZeroMinEnergy = ps.getUntrackedParameter<double>("TotalZeroMinEnergy");
00064 setupDone_ = false;
00065 }
00066
00067 HcalNoiseMonitor::~HcalNoiseMonitor() {}
00068
00069 void HcalNoiseMonitor::reset()
00070 {
00071 }
00072
00073 void HcalNoiseMonitor::cleanup()
00074 {
00075 if(dbe_)
00076 {
00077 dbe_->setCurrentFolder(subdir_);
00078 dbe_->removeContents();
00079 }
00080 }
00081
00082 void HcalNoiseMonitor::beginRun(const edm::Run& run, const edm::EventSetup& c)
00083 {
00084 if(debug_ > 1)
00085 std::cout <<"HcalNoiseMonitor::beginRun"<< std::endl;
00086
00087 HcalBaseDQMonitor::beginRun(run,c);
00088
00089 if(tevt_ == 0)
00090 setup();
00091
00092 if(mergeRuns_ == false)
00093 reset();
00094
00095 return;
00096 }
00097
00098
00099 void HcalNoiseMonitor::setup()
00100 {
00101 if (setupDone_)
00102 return;
00103 setupDone_ = true;
00104 HcalBaseDQMonitor::setup();
00105
00106 if(debug_ > 1)
00107 std::cout << "<HcalNoiseMonitor::setup> Creating histograms" << std::endl;
00108
00109 if(dbe_)
00110 {
00111 dbe_->setCurrentFolder(subdir_);
00112
00113
00114 dbe_->setCurrentFolder(subdir_ + "DoubleChi2/");
00115
00116 hNominalChi2 = dbe_->book1D("Nominal_fit_chi2", "Nominal fit chi2, total charge > 20 fC", 100, 0, 200);
00117 hNominalChi2->setAxisTitle("Nominal fit #chi^{2}", 1);
00118
00119 hLinearChi2 = dbe_->book1D("Linear_fit_chi2", "Linear fit chi2, total charge > 20 fC", 100, 0, 200);
00120 hLinearChi2->setAxisTitle("Linear fit #chi^{2}", 1);
00121
00122 hLinearTestStatistics = dbe_->book1D("Lambda_linear", "#Lambda_{linear}, total charge > 20 fC", 100, -10, 10);
00123 hLinearTestStatistics->setAxisTitle("#Lambda_{linear}", 1);
00124
00125 hRMS8OverMax = dbe_->book1D("RMS8_over_Max", "RMS8/max, total charge > 20 fC", 100, 0, 2);
00126 hRMS8OverMax->setAxisTitle("RMS8/max", 1);
00127
00128 hRMS8OverMaxTestStatistics = dbe_->book1D("Lambda_RMS8_over_max", "#Lambda_{RMS8/Max}, total charge > 20 fC",
00129 100, -30, 10);
00130 hRMS8OverMaxTestStatistics->setAxisTitle("#Lambda_{RMS8/Max}", 1);
00131
00132 hLambdaLinearVsTotalCharge = dbe_->book2D("Lambda_linear_vs_total_charge", "#Lambda_{Linear}",
00133 50, -5, 5, 25, 0, 500);
00134 hLambdaLinearVsTotalCharge->setAxisTitle("#Lambda_{linear}", 1);
00135 hLambdaLinearVsTotalCharge->setAxisTitle("Total charge", 2);
00136
00137 hLambdaRMS8MaxVsTotalCharge = dbe_->book2D("Lambda_RMS8Max_vs_total_charge", "#Lambda_{RMS8/Max}",
00138 50, -15, 5, 25, 0, 500);
00139 hLambdaRMS8MaxVsTotalCharge->setAxisTitle("#Lambda_{RMS8/Max}", 1);
00140 hLambdaRMS8MaxVsTotalCharge->setAxisTitle("Total charge", 2);
00141
00142 hTriangleLeftSlopeVsTS4 = dbe_->book2D("Triangle_fit_left_slope",
00143 "Triangle fit left distance vs. TS4", 50, 0, 10, 25, 0, 500);
00144 hTriangleLeftSlopeVsTS4->setAxisTitle("Left slope", 1);
00145 hTriangleLeftSlopeVsTS4->setAxisTitle("Peak time slice", 2);
00146
00147 hTriangleRightSlopeVsTS4 = dbe_->book2D("Triangle_fit_right_slope",
00148 "Triangle fit right distance vs. peak time slice", 50, 0, 10, 25, 0, 500);
00149 hTriangleRightSlopeVsTS4->setAxisTitle("Left slope", 1);
00150 hTriangleRightSlopeVsTS4->setAxisTitle("Peak time slice", 2);
00151
00152 SetupEtaPhiHists(hFailLinearEtaPhi, "Fail_linear_Eta_Phi_Map", "");
00153 SetupEtaPhiHists(hFailRMSMaxEtaPhi, "Fail_RMS8Max_Eta_Phi_Map", "");
00154 SetupEtaPhiHists(hFailTriangleEtaPhi, "Fail_triangle_Eta_Phi_Map", "");
00155
00156
00157 dbe_->setCurrentFolder(subdir_ + "IsolationVariable/");
00158
00159 SetupEtaPhiHists(hFailIsolationEtaPhi, "Fail_isolation_Eta_Phi_Map", "");
00160
00161
00162 dbe_->setCurrentFolder(subdir_ + "TS4TS5Variable/");
00163
00164 hTS4TS5RelativeDifference = dbe_->book1D("TS4_TS5_relative_difference",
00165 "(TS4-TS5)/(TS4+TS5), total charge > 20 fC", 100, -1, 1);
00166 hTS4TS5RelativeDifference->setAxisTitle("(TS4 - TS5) / (TS4 + TS5)", 1);
00167
00168 hTS4TS5RelativeDifferenceVsCharge = dbe_->book2D("TS4_TS5_relative_difference_charge",
00169 "(TS4-TS5)/(TS4+TS5) vs. Charge", 25, 0, 400, 75, -1, 1);
00170 hTS4TS5RelativeDifferenceVsCharge->setAxisTitle("Charge", 1);
00171 hTS4TS5RelativeDifferenceVsCharge->setAxisTitle("(TS4 - TS5) / (TS4 + TS5)", 2);
00172
00173
00174 dbe_->setCurrentFolder(subdir_ + "NoiseMonitoring/");
00175
00176 hMaxZeros = dbe_->book1D("Max_Zeros", "Max zeros", 15, -0.5, 14.5);
00177
00178 hTotalZeros = dbe_->book1D("Total_Zeros", "Total zeros", 15, -0.5, 14.5);
00179
00180 hE2OverE10Digi = dbe_->book1D("E2OverE10Digi", "E2/E10 of the highest digi in an HPD", 100, 0, 2);
00181
00182 hE2OverE10Digi5 = dbe_->book1D("E2OverE10Digi5", "E2/E10 of the highest 5 digi in an HPD", 100, 0, 2);
00183
00184 hE2OverE10RBX = dbe_->book1D("E2OverE10RBX", "E2/E10 of RBX", 100, 0, 2);
00185
00186 hHPDHitCount = dbe_->book1D("HPDHitCount", "HPD hit count (1.5 GeV)", 19, -0.5, 18.5);
00187
00188 hRBXHitCount = dbe_->book1D("RBXHitCount", "Number of hits in RBX", 74, -0.5, 73.5);
00189
00190 hHcalNoiseCategory = dbe_->book1D("Hcal_noise_category", "Hcal noise category", 10, 0.5, 10.5);
00191 hHcalNoiseCategory->setBinLabel(1, "RBX noise", 1);
00192 hHcalNoiseCategory->setBinLabel(2, "RBX pedestal flatter", 1);
00193 hHcalNoiseCategory->setBinLabel(3, "RBX pedestal sharper", 1);
00194 hHcalNoiseCategory->setBinLabel(4, "RBX flash large hit count", 1);
00195 hHcalNoiseCategory->setBinLabel(5, "RBX flash small hit count", 1);
00196 hHcalNoiseCategory->setBinLabel(7, "HPD discharge", 1);
00197 hHcalNoiseCategory->setBinLabel(8, "HPD ion feedback", 1);
00198
00199 hBadZeroRBX = dbe_->book1D("BadZeroRBX", "RBX with bad ADC zero counts", 72, 0.5, 72.5);
00200 hBadCountHPD = dbe_->book1D("BadCountHPD", "HPD with bad hit counts", 72 * 4, 0.5, 72 * 4 + 0.5);
00201 hBadNoOtherCountHPD = dbe_->book1D("BadNoOtherCountHPD", "HPD with bad \"no other\" hit counts", 72 * 4, 0.5, 72 * 4 + 0.5);
00202 hBadE2E10RBX = dbe_->book1D("BadE2E10RBX", "RBX with bad E2/E10 value", 72, 0.5, 72.5);
00203 }
00204
00205 ReadHcalPulse();
00206
00207 return;
00208 }
00209
00210
00211 void HcalNoiseMonitor::analyze(edm::Event const &iEvent, edm::EventSetup const &iSetup)
00212 {
00213 edm::Handle<HBHEDigiCollection> hHBHEDigis;
00214 iEvent.getByLabel(edm::InputTag(hbheDigiLabel_),hHBHEDigis);
00215
00216 edm::ESHandle<HcalDbService> hConditions;
00217 iSetup.get<HcalDbRecord>().get(hConditions);
00218
00219 edm::Handle<HBHERecHitCollection> hRecHits;
00220 iEvent.getByLabel(edm::InputTag(hbheRechitLabel_), hRecHits);
00221
00222 edm::Handle<reco::HcalNoiseRBXCollection> hRBXCollection;
00223 iEvent.getByLabel(edm::InputTag(noiseLabel_),hRBXCollection);
00224
00225 HcalBaseDQMonitor::analyze(iEvent, iSetup);
00226
00227 if(dbe_ == NULL)
00228 {
00229 if(debug_ > 0)
00230 std::cout << "HcalNoiseMonitor::processEvent DQMStore not instantiated!!!"<< std::endl;
00231 return;
00232 }
00233
00234
00235 for(HBHEDigiCollection::const_iterator iter = hHBHEDigis->begin(); iter != hHBHEDigis->end(); iter++)
00236 {
00237 HcalDetId id = iter->id();
00238 const HcalCalibrations &Calibrations = hConditions->getHcalCalibrations(id);
00239 const HcalQIECoder *ChannelCoder = hConditions->getHcalCoder(id);
00240 const HcalQIEShape *Shape = hConditions->getHcalShape(ChannelCoder);
00241 HcalCoderDb Coder(*ChannelCoder, *Shape);
00242 CaloSamples Tool;
00243 Coder.adc2fC(*iter, Tool);
00244
00245
00246
00247
00248
00249 double Charge[10] = {0};
00250 for(int i = 0; i < iter->size(); i++)
00251 Charge[i] = Tool[i] - Calibrations.pedestal(iter->sample(i).capid());
00252
00253 double TotalCharge = 0;
00254 for(int i = 0; i < 10; i++)
00255 TotalCharge = TotalCharge + Charge[i];
00256
00257 if(TotalCharge > 20)
00258 {
00259 double NominalChi2 = 10000000;
00260 NominalChi2 = PerformNominalFit(Charge);
00261
00262 double LinearChi2 = PerformLinearFit(Charge);
00263 double RMS8Max = CalculateRMS8Max(Charge);
00264 TriangleFitResult TriangleResult = PerformTriangleFit(Charge);
00265
00266 double TS4LeftSlope = 100000;
00267 double TS4RightSlope = 100000;
00268
00269 if(TriangleResult.LeftSlope > 1e-5)
00270 TS4LeftSlope = Charge[4] / fabs(TriangleResult.LeftSlope);
00271 if(TriangleResult.RightSlope < -1e-5)
00272 TS4RightSlope = Charge[4] / fabs(TriangleResult.RightSlope);
00273
00274 if(TS4LeftSlope < -1000 || TS4LeftSlope > 1000)
00275 TS4LeftSlope = 1000;
00276 if(TS4RightSlope < -1000 || TS4RightSlope > 1000)
00277 TS4RightSlope = 1000;
00278
00279 hNominalChi2->Fill(NominalChi2);
00280 hLinearChi2->Fill(LinearChi2);
00281 hLinearTestStatistics->Fill(log(LinearChi2) - log(NominalChi2));
00282 hRMS8OverMax->Fill(RMS8Max);
00283 hRMS8OverMaxTestStatistics->Fill(log(RMS8Max) - log(NominalChi2));
00284
00285 hLambdaLinearVsTotalCharge->Fill(log(LinearChi2) - log(NominalChi2), TotalCharge);
00286 hLambdaRMS8MaxVsTotalCharge->Fill(log(RMS8Max) - log(NominalChi2), TotalCharge);
00287 hTriangleLeftSlopeVsTS4->Fill(TS4LeftSlope, Charge[4]);
00288 hTriangleRightSlopeVsTS4->Fill(TS4RightSlope, Charge[4]);
00289 }
00290
00291 if(Charge[4] + Charge[5] > 1e-5)
00292 {
00293 hTS4TS5RelativeDifference->Fill((Charge[4] - Charge[5]) / (Charge[4] + Charge[5]));
00294 hTS4TS5RelativeDifferenceVsCharge->Fill(TotalCharge, (Charge[4] - Charge[5]) / (Charge[4] + Charge[5]));
00295 }
00296 }
00297
00298
00299 for(HBHERecHitCollection::const_iterator iter = hRecHits->begin(); iter != hRecHits->end(); iter++)
00300 {
00301 HcalDetId id = iter->id();
00302
00303 int ieta = id.ieta();
00304 int iphi = id.iphi();
00305 int depth = id.depth();
00306
00307 if(iter->flagField(HcalCaloFlagLabels::HBHEFlatNoise) == 1)
00308 hFailLinearEtaPhi.depth[depth-1]->Fill(ieta, iphi);
00309
00310 if(iter->flagField(HcalCaloFlagLabels::HBHESpikeNoise) == 1)
00311 hFailRMSMaxEtaPhi.depth[depth-1]->Fill(ieta, iphi);
00312
00313 if(iter->flagField(HcalCaloFlagLabels::HBHETriangleNoise) == 1)
00314 hFailTriangleEtaPhi.depth[depth-1]->Fill(ieta, iphi);
00315
00316 if(iter->flagField(HcalCaloFlagLabels::HBHEIsolatedNoise) == 1)
00317 hFailIsolationEtaPhi.depth[depth-1]->Fill(ieta, iphi);
00318 }
00319
00320
00321 for(reco::HcalNoiseRBXCollection::const_iterator rbx = hRBXCollection->begin();
00322 rbx != hRBXCollection->end(); rbx++)
00323 {
00324 const reco::HcalNoiseRBX RBX = *rbx;
00325
00326 int NumberRBXHits = RBX.numRecHits(1.5);
00327 double RBXEnergy = RBX.recHitEnergy(1.5);
00328 double RBXE2 = RBX.allChargeHighest2TS();
00329 double RBXE10 = RBX.allChargeTotal();
00330
00331 std::vector<reco::HcalNoiseHPD> HPDs = RBX.HPDs();
00332
00333 int RBXID = RBX.idnumber();
00334
00335 if(RBXEnergy > mTotalZeroMinEnergy && RBX.totalZeros() >= mMaxADCZeros)
00336 hBadZeroRBX->Fill(RBXID);
00337 if(RBXEnergy > mE2E10MinEnergy && RBXE10 > 1e-5 && (RBXE2 / RBXE10 > mMaxE2E10 || RBXE2 / RBXE10 < mMinE2E10))
00338 hBadE2E10RBX->Fill(RBXID);
00339 for(std::vector<reco::HcalNoiseHPD>::const_iterator hpd = HPDs.begin(); hpd != HPDs.end(); hpd++)
00340 {
00341 reco::HcalNoiseHPD HPD = *hpd;
00342 int HPDHitCount = HPD.numRecHits(1.5);
00343 if(HPDHitCount >= mMaxHPDHitCount)
00344 hBadCountHPD->Fill(HPD.idnumber());
00345 if(HPDHitCount == NumberRBXHits && HPDHitCount >= mMaxHPDNoOtherHitCount)
00346 hBadNoOtherCountHPD->Fill(HPD.idnumber());
00347 }
00348
00349 if(NumberRBXHits == 0 || RBXEnergy <= 10)
00350 continue;
00351
00352 hRBXHitCount->Fill(NumberRBXHits);
00353
00354 hMaxZeros->Fill(RBX.maxZeros());
00355 hTotalZeros->Fill(RBX.totalZeros());
00356
00357 double HighestHPDEnergy = 0;
00358 int HighestHPDHits = 0;
00359
00360 for(std::vector<reco::HcalNoiseHPD>::const_iterator hpd = HPDs.begin(); hpd != HPDs.end(); hpd++)
00361 {
00362 reco::HcalNoiseHPD HPD = *hpd;
00363
00364 if(HPD.recHitEnergy(1.5) > HighestHPDEnergy)
00365 {
00366 HighestHPDEnergy = HPD.recHitEnergy(1.5);
00367 HighestHPDHits = HPD.numRecHits(1.5);
00368 }
00369
00370 if(HPD.numRecHits(5) < 1)
00371 continue;
00372
00373 if(HPD.bigChargeTotal() > 1e-5)
00374 hE2OverE10Digi->Fill(HPD.bigChargeHighest2TS() / HPD.bigChargeTotal());
00375 if(HPD.big5ChargeTotal() > 1e-5)
00376 hE2OverE10Digi5->Fill(HPD.big5ChargeHighest2TS() / HPD.big5ChargeTotal());
00377
00378 hHPDHitCount->Fill(HPD.numRecHits(1.5));
00379 }
00380
00381 int NoiseCategory = 0;
00382 bool IsRBXNoise = false;
00383
00384
00385
00386
00387 if(RBXEnergy > 1e-5 && HighestHPDEnergy / RBXEnergy > 0.98)
00388 {
00389
00390
00391 if(HighestHPDHits >= 9)
00392 {
00393
00394 NoiseCategory = 7;
00395 }
00396 else
00397 {
00398
00399 NoiseCategory = 8;
00400 }
00401 }
00402 else
00403 {
00404 IsRBXNoise = true;
00405 NoiseCategory = 1;
00406
00407 if(RBXE10 > 1e-5)
00408 {
00409 if(RBXE2 / RBXE10 < 0.33)
00410 NoiseCategory = 2;
00411 else if(RBXE2 / RBXE10 < 0.8)
00412 NoiseCategory = 3;
00413 else if(RBXE2 / RBXE10 > 0.8 && NumberRBXHits > 10)
00414 NoiseCategory = 4;
00415 else if(RBXE2 / RBXE10 > 0.8 && NumberRBXHits < 10)
00416 NoiseCategory = 5;
00417 }
00418 }
00419
00420 hHcalNoiseCategory->Fill(NoiseCategory);
00421
00422 if(IsRBXNoise == true && RBXE10 > 1e-5)
00423 hE2OverE10RBX->Fill(RBXE2 / RBXE10);
00424 }
00425
00426 return;
00427 }
00428
00429 double HcalNoiseMonitor::PerformNominalFit(double Charge[10])
00430 {
00431
00432
00433
00434
00435
00436
00437
00438 int DigiSize = 10;
00439
00440 double MinimumChi2 = 100000;
00441
00442 double F = 0;
00443
00444 double SumF2 = 0;
00445 double SumTF = 0;
00446 double SumT2 = 0;
00447
00448 for(int i = 0; i + 250 < (int)CumulativeIdealPulse.size(); i++)
00449 {
00450 if(CumulativeIdealPulse[i+250] - CumulativeIdealPulse[i] < 1e-5)
00451 continue;
00452
00453 SumF2 = 0;
00454 SumTF = 0;
00455 SumT2 = 0;
00456
00457 for(int j = 0; j < DigiSize; j++)
00458 {
00459
00460 F = CumulativeIdealPulse[i+j*25+25] - CumulativeIdealPulse[i+j*25];
00461
00462 double Error2 = Charge[j];
00463 if(Error2 < 1)
00464 Error2 = 1;
00465
00466
00467 SumF2 += F * F / Error2;
00468 SumTF += F * Charge[j] / Error2;
00469 SumT2 += Charge[j] * Charge[j] / Error2;
00470 }
00471
00472
00473
00474
00475
00476
00477
00478
00479
00480
00481
00482 double Chi2 = SumT2 - SumTF * SumTF / SumF2;
00483
00484 if(Chi2 < MinimumChi2)
00485 MinimumChi2 = Chi2;
00486 }
00487
00488
00489 if(MinimumChi2 < 1e-5)
00490 MinimumChi2 = 1e-5;
00491
00492 return MinimumChi2;
00493 }
00494
00495 double HcalNoiseMonitor::PerformDualNominalFit(double Charge[10])
00496 {
00497
00498
00499
00500
00501
00502
00503
00504
00505 double OverallMinimumChi2 = 1000000;
00506
00507 int AvailableDistance[] = {-100, -75, -50, 50, 75, 100};
00508
00509
00510 for(int k = 0; k < 6; k++)
00511 {
00512 double SingleMinimumChi2 = 1000000;
00513 int MinOffset = 0;
00514
00515
00516 for(int i = 0; i + 250 < (int)CumulativeIdealPulse.size(); i += 10)
00517 {
00518 double Chi2 = DualNominalFitSingleTry(Charge, i, AvailableDistance[k]);
00519
00520 if(Chi2 < SingleMinimumChi2)
00521 {
00522 SingleMinimumChi2 = Chi2;
00523 MinOffset = i;
00524 }
00525 }
00526
00527
00528 for(int i = MinOffset - 15; i + 250 < (int)CumulativeIdealPulse.size() && i < MinOffset + 15; i++)
00529 {
00530 double Chi2 = DualNominalFitSingleTry(Charge, i, AvailableDistance[k]);
00531 if(Chi2 < SingleMinimumChi2)
00532 SingleMinimumChi2 = Chi2;
00533 }
00534
00535
00536 if(SingleMinimumChi2 < OverallMinimumChi2)
00537 OverallMinimumChi2 = SingleMinimumChi2;
00538 }
00539
00540 return OverallMinimumChi2;
00541 }
00542
00543 double HcalNoiseMonitor::DualNominalFitSingleTry(double Charge[10], int Offset, int Distance)
00544 {
00545
00546
00547
00548
00549
00550
00551
00552
00553
00554
00555 int DigiSize = 10;
00556
00557 if(Offset < 0 || Offset + 250 >= (int)CumulativeIdealPulse.size())
00558 return 1000000;
00559 if(CumulativeIdealPulse[Offset+250] - CumulativeIdealPulse[Offset] < 1e-5)
00560 return 1000000;
00561
00562 static std::vector<double> F1;
00563 static std::vector<double> F2;
00564
00565 F1.resize(DigiSize);
00566 F2.resize(DigiSize);
00567
00568 double SumF1F1 = 0;
00569 double SumF1F2 = 0;
00570 double SumF2F2 = 0;
00571 double SumTF1 = 0;
00572 double SumTF2 = 0;
00573
00574 double Error = 0;
00575
00576 for(int j = 0; j < DigiSize; j++)
00577 {
00578
00579 F1[j] = CumulativeIdealPulse[Offset+j*25+25] - CumulativeIdealPulse[Offset+j*25];
00580
00581
00582
00583
00584 int OffsetTemp = Offset + j * 25 + Distance;
00585
00586 double C1 = 0;
00587 double C2 = 0;
00588
00589 if(OffsetTemp + 25 < (int)CumulativeIdealPulse.size() && OffsetTemp + 25 >= 0)
00590 C1 = CumulativeIdealPulse[OffsetTemp+25];
00591 if(OffsetTemp + 25 >= (int)CumulativeIdealPulse.size())
00592 C1 = CumulativeIdealPulse[CumulativeIdealPulse.size()-1];
00593 if(OffsetTemp < (int)CumulativeIdealPulse.size() && OffsetTemp >= 0)
00594 C2 = CumulativeIdealPulse[OffsetTemp];
00595 if(OffsetTemp >= (int)CumulativeIdealPulse.size())
00596 C2 = CumulativeIdealPulse[CumulativeIdealPulse.size()-1];
00597 F2[j] = C1 - C2;
00598
00599 Error = Charge[j];
00600 if(Error < 1)
00601 Error = 1;
00602
00603 SumF1F1 += F1[j] * F1[j] / Error;
00604 SumF1F2 += F1[j] * F2[j] / Error;
00605 SumF2F2 += F2[j] * F2[j] / Error;
00606 SumTF1 += F1[j] * Charge[j] / Error;
00607 SumTF2 += F2[j] * Charge[j] / Error;
00608 }
00609
00610 double Height = (SumF1F2 * SumTF2 - SumF2F2 * SumTF1) / (SumF1F2 * SumF1F2 - SumF1F1 * SumF2F2);
00611 double Height2 = (SumF1F2 * SumTF1 - SumF1F1 * SumTF2) / (SumF1F2 * SumF1F2 - SumF1F1 * SumF2F2);
00612
00613 double Chi2 = 0;
00614 for(int j = 0; j < DigiSize; j++)
00615 {
00616 double Error = Charge[j];
00617 if(Error < 1)
00618 Error = 1;
00619
00620 double Residual = Height * F1[j] + Height2 * F2[j] - Charge[j];
00621 Chi2 += Residual * Residual / Error;
00622 }
00623
00624
00625 if(Chi2 < 1e-5)
00626 Chi2 = 1e-5;
00627
00628 return Chi2;
00629 }
00630
00631 double HcalNoiseMonitor::PerformLinearFit(double Charge[10])
00632 {
00633
00634
00635
00636
00637
00638
00639
00640
00641 int DigiSize = 10;
00642
00643 double SumTS2OverTi = 0;
00644 double SumTSOverTi = 0;
00645 double SumOverTi = 0;
00646 double SumTiTS = 0;
00647 double SumTi = 0;
00648
00649 double Error2 = 0;
00650 for(int i = 0; i < DigiSize; i++)
00651 {
00652 Error2 = Charge[i];
00653 if(Charge[i] < 1)
00654 Error2 = 1;
00655
00656 SumTS2OverTi += 1.* i * i / Error2;
00657 SumTSOverTi += 1.* i / Error2;
00658 SumOverTi += 1. / Error2;
00659 SumTiTS += Charge[i] * i / Error2;
00660 SumTi += Charge[i] / Error2;
00661 }
00662
00663 double CM1 = SumTS2OverTi;
00664 double CM2 = SumTSOverTi;
00665 double CD1 = SumTSOverTi;
00666 double CD2 = SumOverTi;
00667 double C1 = SumTiTS;
00668 double C2 = SumTi;
00669
00670 double Slope = (C1 * CD2 - C2 * CD1) / (CM1 * CD2 - CM2 * CD1);
00671 double Intercept = (C1 * CM2 - C2 * CM1) / (CD1 * CM2 - CD2 * CM1);
00672
00673
00674 double Chi2 = 0;
00675 for(int i = 0; i < DigiSize; i++)
00676 {
00677 double Deviation = Slope * i + Intercept - Charge[i];
00678 double Error2 = Charge[i];
00679 if(Charge[i] < 1)
00680 Error2 = 1;
00681 Chi2 += Deviation * Deviation / Error2;
00682 }
00683
00684
00685 if(Chi2 < 1e-5)
00686 Chi2 = 1e-5;
00687
00688 return Chi2;
00689 }
00690
00691 double HcalNoiseMonitor::CalculateRMS8Max(double Charge[10])
00692 {
00693
00694
00695
00696
00697
00698
00699
00700
00701
00702 int DigiSize = 10;
00703
00704
00705 std::vector<double> TempCharge(Charge, Charge + 10);
00706
00707
00708 sort(TempCharge.begin(), TempCharge.end());
00709
00710 double Total = 0;
00711 double Total2 = 0;
00712 for(int i = 0; i < DigiSize - 2; i++)
00713 {
00714 Total = Total + TempCharge[i];
00715 Total2 = Total2 + TempCharge[i] * TempCharge[i];
00716 }
00717
00718
00719
00720
00721
00722
00723
00724 double RMS = sqrt(Total2 - Total * Total / (DigiSize - 2));
00725
00726 double RMS8Max = 99999;
00727 if(TempCharge[DigiSize-1] > 1e-5)
00728 RMS8Max = RMS / TempCharge[DigiSize-1];
00729 if(RMS8Max < 1e-5)
00730 RMS8Max = 1e-5;
00731
00732 return RMS8Max;
00733 }
00734
00735 TriangleFitResult HcalNoiseMonitor::PerformTriangleFit(double Charge[10])
00736 {
00737
00738
00739
00740
00741
00742
00743 TriangleFitResult result;
00744 result.Chi2 = 0;
00745 result.LeftSlope = 0;
00746 result.RightSlope = 0;
00747
00748 int DigiSize = 10;
00749
00750
00751 double MinimumRightChi2 = 1000000;
00752 double Numerator = 0;
00753 double Denominator = 0;
00754
00755 for(int iTS = mTrianglePeakTS + 2; iTS <= DigiSize; iTS++)
00756 {
00757
00758 Numerator = 0;
00759 Denominator = 0;
00760
00761 for(int i = mTrianglePeakTS + 1; i < iTS; i++)
00762 {
00763 Numerator += (i - mTrianglePeakTS) * (Charge[i] - Charge[mTrianglePeakTS]);
00764 Denominator += (i - mTrianglePeakTS) * (i - mTrianglePeakTS);
00765 }
00766
00767 double BestSlope = Numerator / Denominator;
00768 if(BestSlope > 0)
00769 BestSlope = 0;
00770
00771
00772 if(iTS != DigiSize)
00773 {
00774 if(BestSlope > -1 * Charge[mTrianglePeakTS] / (iTS - mTrianglePeakTS))
00775 BestSlope = -1 * Charge[mTrianglePeakTS] / (iTS - mTrianglePeakTS);
00776 if(BestSlope < -1 * Charge[mTrianglePeakTS] / (iTS - 1 - mTrianglePeakTS))
00777 BestSlope = -1 * Charge[mTrianglePeakTS] / (iTS - 1 - mTrianglePeakTS);
00778 }
00779 else
00780 {
00781 if(BestSlope < -1 * Charge[mTrianglePeakTS] / (iTS - 1 - mTrianglePeakTS))
00782 BestSlope = -1 * Charge[mTrianglePeakTS] / (iTS - 1 - mTrianglePeakTS);
00783 }
00784
00785
00786
00787
00788
00789
00790 double Chi2 = 0;
00791 for(int i = mTrianglePeakTS + 1; i < iTS; i++)
00792 Chi2 += (Charge[mTrianglePeakTS] - Charge[i] + (i - mTrianglePeakTS) * BestSlope)
00793 * (Charge[mTrianglePeakTS] - Charge[i] + (i - mTrianglePeakTS) * BestSlope);
00794 for(int i = iTS; i < DigiSize; i++)
00795 Chi2 += Charge[i] * Charge[i];
00796
00797 if(Chi2 < MinimumRightChi2)
00798 {
00799 MinimumRightChi2 = Chi2;
00800 result.RightSlope = BestSlope;
00801 }
00802 }
00803
00804
00805 double MinimumLeftChi2 = 1000000;
00806
00807 for(int iTS = 0; iTS < (int)mTrianglePeakTS; iTS++)
00808 {
00809
00810 Numerator = 0;
00811 Denominator = 0;
00812 for(int i = iTS; i < (int)mTrianglePeakTS; i++)
00813 {
00814 Numerator = Numerator + (i - mTrianglePeakTS) * (Charge[i] - Charge[mTrianglePeakTS]);
00815 Denominator = Denominator + (i - mTrianglePeakTS) * (i - mTrianglePeakTS);
00816 }
00817
00818 double BestSlope = Numerator / Denominator;
00819 if(BestSlope < 0)
00820 BestSlope = 0;
00821
00822
00823 if(iTS != 0)
00824 {
00825 if(BestSlope > Charge[mTrianglePeakTS] / (mTrianglePeakTS - iTS))
00826 BestSlope = Charge[mTrianglePeakTS] / (mTrianglePeakTS - iTS);
00827 if(BestSlope < Charge[mTrianglePeakTS] / (mTrianglePeakTS + 1 - iTS))
00828 BestSlope = Charge[mTrianglePeakTS] / (mTrianglePeakTS + 1 - iTS);
00829 }
00830 else
00831 {
00832 if(BestSlope > Charge[mTrianglePeakTS] / (mTrianglePeakTS - iTS))
00833 BestSlope = Charge[mTrianglePeakTS] / (mTrianglePeakTS - iTS);
00834 }
00835
00836
00837 double Chi2 = 0;
00838 for(int i = 0; i < iTS; i++)
00839 Chi2 += Charge[i] * Charge[i];
00840 for(int i = iTS; i < (int)mTrianglePeakTS; i++)
00841 Chi2 += (Charge[mTrianglePeakTS] - Charge[i] + (i - mTrianglePeakTS) * BestSlope)
00842 * (Charge[mTrianglePeakTS] - Charge[i] + (i - mTrianglePeakTS) * BestSlope);
00843
00844 if(MinimumLeftChi2 > Chi2)
00845 {
00846 MinimumLeftChi2 = Chi2;
00847 result.LeftSlope = BestSlope;
00848 }
00849 }
00850
00851 result.Chi2 = MinimumLeftChi2 + MinimumRightChi2;
00852
00853 return result;
00854 }
00855
00856 void HcalNoiseMonitor::ReadHcalPulse()
00857 {
00858 std::vector<double> PulseShape;
00859
00860 HcalPulseShapes Shapes;
00861 HcalPulseShapes::Shape HPDShape = Shapes.hbShape();
00862
00863 PulseShape.reserve(350);
00864 for(int i = 0; i < 200; i++)
00865 PulseShape.push_back(HPDShape.at(i));
00866 PulseShape.insert(PulseShape.begin(), 150, 0);
00867
00868 CumulativeIdealPulse.reserve(350);
00869 CumulativeIdealPulse.clear();
00870 CumulativeIdealPulse.push_back(0);
00871 for(unsigned int i = 1; i < PulseShape.size(); i++)
00872 CumulativeIdealPulse.push_back(CumulativeIdealPulse[i-1] + PulseShape[i]);
00873 }
00874
00875 DEFINE_FWK_MODULE(HcalNoiseMonitor);
00876