#include <EBRawDataTask.h>
Definition at line 20 of file EBRawDataTask.h.
enum EBRawDataTask::activeEVM [private] |
EBRawDataTask::EBRawDataTask | ( | const edm::ParameterSet & | ps | ) |
Constructor.
Definition at line 33 of file EBRawDataTask.cc.
References calibrationBX_, dqmStore_, EcalRawDataCollection_, enableCleanup_, FEDRawDataCollection_, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), init_, meEBBunchCrossingDCCErrors_, meEBBunchCrossingFEErrors_, meEBBunchCrossingSRPErrors_, meEBBunchCrossingTCCErrors_, meEBCalibrationEventErrors_, meEBCRCErrors_, meEBEventTypeCalibrationBX_, meEBEventTypePostCalibrationBX_, meEBEventTypePreCalibrationBX_, meEBL1ADCCErrors_, meEBL1AFEErrors_, meEBL1ASRPErrors_, meEBL1ATCCErrors_, meEBOrbitNumberErrors_, meEBRunNumberErrors_, meEBSynchronizationErrorsByLumi_, meEBSynchronizationErrorsTrend_, meEBTriggerTypeErrors_, mergeRuns_, cppFunctionSkipper::operator, prefixME_, AlCaHLTBitMon_QueryRunRegistry::string, and subfolder_.
{ init_ = false; dqmStore_ = edm::Service<DQMStore>().operator->(); prefixME_ = ps.getUntrackedParameter<std::string>("prefixME", ""); subfolder_ = ps.getUntrackedParameter<std::string>("subfolder", ""); enableCleanup_ = ps.getUntrackedParameter<bool>("enableCleanup", false); mergeRuns_ = ps.getUntrackedParameter<bool>("mergeRuns", false); FEDRawDataCollection_ = ps.getParameter<edm::InputTag>("FEDRawDataCollection"); EcalRawDataCollection_ = ps.getParameter<edm::InputTag>("EcalRawDataCollection"); meEBEventTypePreCalibrationBX_ = 0; meEBEventTypeCalibrationBX_ = 0; meEBEventTypePostCalibrationBX_ = 0; meEBCRCErrors_ = 0; meEBRunNumberErrors_ = 0; meEBOrbitNumberErrors_ = 0; meEBTriggerTypeErrors_ = 0; meEBCalibrationEventErrors_ = 0; meEBL1ADCCErrors_ = 0; meEBBunchCrossingDCCErrors_ = 0; meEBL1AFEErrors_ = 0; meEBBunchCrossingFEErrors_ = 0; meEBL1ATCCErrors_ = 0; meEBBunchCrossingTCCErrors_ = 0; meEBL1ASRPErrors_ = 0; meEBBunchCrossingSRPErrors_ = 0; meEBSynchronizationErrorsByLumi_ = 0; meEBSynchronizationErrorsTrend_ = 0; calibrationBX_ = 3490; }
EBRawDataTask::~EBRawDataTask | ( | ) | [virtual] |
void EBRawDataTask::analyze | ( | const edm::Event & | e, |
const edm::EventSetup & | c | ||
) | [protected, virtual] |
Analyze.
Implements edm::EDAnalyzer.
Definition at line 418 of file EBRawDataTask.cc.
References edm::EventBase::bunchCrossing(), calibrationBX_, EcalDCCHeaderBlock::COSMIC, EcalDCCHeaderBlock::COSMICS_GLOBAL, EcalDCCHeaderBlock::COSMICS_LOCAL, FEDRawData::data(), EcalBarrel, EcalRawDataCollection_, edm::EventBase::experimentType(), fatalErrors_, FEDRawDataCollection_, MonitorElement::Fill(), edm::Event::getByLabel(), H_BX_MASK, H_L1_MASK, H_ORBITCOUNTER_MASK, H_TTYPE_MASK, i, edm::EventBase::id(), ievt_, Numbers::iSM(), ecalpyutils::ism(), edm::EventBase::isRealData(), ls_, FEDHeader::lvl1ID(), MAX_TCC_SIZE, meEBBunchCrossingDCCErrors_, meEBBunchCrossingFEErrors_, meEBBunchCrossingSRPErrors_, meEBBunchCrossingTCCErrors_, meEBCalibrationEventErrors_, meEBCRCErrors_, meEBEventTypeCalibrationBX_, meEBEventTypePostCalibrationBX_, meEBEventTypePreCalibrationBX_, meEBL1ADCCErrors_, meEBL1AFEErrors_, meEBL1ASRPErrors_, meEBL1ATCCErrors_, meEBOrbitNumberErrors_, meEBRunNumberErrors_, meEBSynchronizationErrorsByLumi_, meEBSynchronizationErrorsTrend_, meEBTriggerTypeErrors_, EcalDCCHeaderBlock::MTCC, edm::EventBase::orbitNumber(), EcalDCCHeaderBlock::PHYSICS_GLOBAL, EcalDCCHeaderBlock::PHYSICS_LOCAL, edm::EventID::run(), FEDRawData::size(), ntuplemaker::status, and Numbers::subDet().
{ ievt_++; // fill bin 0 with number of events in the lumi if ( meEBSynchronizationErrorsByLumi_ ) meEBSynchronizationErrorsByLumi_->Fill(0.); float errorsInEvent(0.); int evt_runNumber = e.id().run(); int GT_L1A=0, GT_OrbitNumber=0, GT_BunchCrossing=0, GT_TriggerType=0; edm::Handle<FEDRawDataCollection> allFedRawData; int gtFedDataSize = 0; int ECALDCC_L1A_MostFreqId = -1; int ECALDCC_OrbitNumber_MostFreqId = -1; int ECALDCC_BunchCrossing_MostFreqId = -1; int ECALDCC_TriggerType_MostFreqId = -1; if ( e.getByLabel(FEDRawDataCollection_, allFedRawData) ) { // GT FED data const FEDRawData& gtFedData = allFedRawData->FEDData(812); gtFedDataSize = gtFedData.size()/sizeof(uint64_t); if ( gtFedDataSize > 0 ) { FEDHeader header(gtFedData.data()); #define H_L1_MASK 0xFFFFFF #define H_ORBITCOUNTER_MASK 0xFFFFFFFF #define H_BX_MASK 0xFFF #define H_TTYPE_MASK 0xF GT_L1A = header.lvl1ID() & H_L1_MASK; GT_OrbitNumber = e.orbitNumber() & H_ORBITCOUNTER_MASK; GT_BunchCrossing = e.bunchCrossing() & H_BX_MASK; GT_TriggerType = e.experimentType() & H_TTYPE_MASK; } else { // use the most frequent among the ECAL FEDs std::map<int,int> ECALDCC_L1A_FreqMap; std::map<int,int> ECALDCC_OrbitNumber_FreqMap; std::map<int,int> ECALDCC_BunchCrossing_FreqMap; std::map<int,int> ECALDCC_TriggerType_FreqMap; int ECALDCC_L1A_MostFreqCounts = 0; int ECALDCC_OrbitNumber_MostFreqCounts = 0; int ECALDCC_BunchCrossing_MostFreqCounts = 0; int ECALDCC_TriggerType_MostFreqCounts = 0; edm::Handle<EcalRawDataCollection> dcchs; if ( e.getByLabel(EcalRawDataCollection_, dcchs) ) { for ( EcalRawDataCollection::const_iterator dcchItr = dcchs->begin(); dcchItr != dcchs->end(); ++dcchItr ) { if ( Numbers::subDet( *dcchItr ) != EcalBarrel ) continue; int ECALDCC_L1A = dcchItr->getLV1(); int ECALDCC_OrbitNumber = dcchItr->getOrbit(); int ECALDCC_BunchCrossing = dcchItr->getBX(); int ECALDCC_TriggerType = dcchItr->getBasicTriggerType(); ++ECALDCC_L1A_FreqMap[ECALDCC_L1A]; ++ECALDCC_OrbitNumber_FreqMap[ECALDCC_OrbitNumber]; ++ECALDCC_BunchCrossing_FreqMap[ECALDCC_BunchCrossing]; ++ECALDCC_TriggerType_FreqMap[ECALDCC_TriggerType]; if ( ECALDCC_L1A_FreqMap[ECALDCC_L1A] > ECALDCC_L1A_MostFreqCounts ) { ECALDCC_L1A_MostFreqCounts = ECALDCC_L1A_FreqMap[ECALDCC_L1A]; ECALDCC_L1A_MostFreqId = ECALDCC_L1A; } if ( ECALDCC_OrbitNumber_FreqMap[ECALDCC_OrbitNumber] > ECALDCC_OrbitNumber_MostFreqCounts ) { ECALDCC_OrbitNumber_MostFreqCounts = ECALDCC_OrbitNumber_FreqMap[ECALDCC_OrbitNumber]; ECALDCC_OrbitNumber_MostFreqId = ECALDCC_OrbitNumber; } if ( ECALDCC_BunchCrossing_FreqMap[ECALDCC_BunchCrossing] > ECALDCC_BunchCrossing_MostFreqCounts ) { ECALDCC_BunchCrossing_MostFreqCounts = ECALDCC_BunchCrossing_FreqMap[ECALDCC_BunchCrossing]; ECALDCC_BunchCrossing_MostFreqId = ECALDCC_BunchCrossing; } if ( ECALDCC_TriggerType_FreqMap[ECALDCC_TriggerType] > ECALDCC_TriggerType_MostFreqCounts ) { ECALDCC_TriggerType_MostFreqCounts = ECALDCC_TriggerType_FreqMap[ECALDCC_TriggerType]; ECALDCC_TriggerType_MostFreqId = ECALDCC_TriggerType; } } } else { edm::LogWarning("EBRawDataTask") << EcalRawDataCollection_ << " not available"; } } // ECAL barrel FEDs int EBFirstFED=610; for(int i=0; i<36; i++) { const FEDRawData& fedData = allFedRawData->FEDData(EBFirstFED+i); int length = fedData.size()/sizeof(uint64_t); if ( length > 0 ) { uint64_t * pData = (uint64_t *)(fedData.data()); uint64_t * fedTrailer = pData + (length - 1); bool crcError = (*fedTrailer >> 2 ) & 0x1; if (crcError) meEBCRCErrors_->Fill( i+1 ); } } } else { edm::LogWarning("EBRawDataTask") << FEDRawDataCollection_ << " not available"; } edm::Handle<EcalRawDataCollection> dcchs; if ( e.getByLabel(EcalRawDataCollection_, dcchs) ) { for ( EcalRawDataCollection::const_iterator dcchItr = dcchs->begin(); dcchItr != dcchs->end(); ++dcchItr ) { if ( Numbers::subDet( *dcchItr ) != EcalBarrel ) continue; int ism = Numbers::iSM( *dcchItr, EcalBarrel ); float xism = ism+0.5; int ECALDCC_runNumber = dcchItr->getRunNumber(); int ECALDCC_L1A = dcchItr->getLV1(); int ECALDCC_OrbitNumber = dcchItr->getOrbit(); int ECALDCC_BunchCrossing = dcchItr->getBX(); int ECALDCC_TriggerType = dcchItr->getBasicTriggerType(); if ( evt_runNumber != ECALDCC_runNumber ) meEBRunNumberErrors_->Fill( xism ); if ( gtFedDataSize > 0 ) { if ( GT_L1A != ECALDCC_L1A ) meEBL1ADCCErrors_->Fill( xism ); if ( GT_BunchCrossing != ECALDCC_BunchCrossing ) meEBBunchCrossingDCCErrors_->Fill( xism ); if ( GT_TriggerType != ECALDCC_TriggerType ) meEBTriggerTypeErrors_->Fill ( xism ); } else { if ( ECALDCC_L1A_MostFreqId != ECALDCC_L1A ) meEBL1ADCCErrors_->Fill( xism ); if ( ECALDCC_BunchCrossing_MostFreqId != ECALDCC_BunchCrossing ) meEBBunchCrossingDCCErrors_->Fill( xism ); if ( ECALDCC_TriggerType_MostFreqId != ECALDCC_TriggerType ) meEBTriggerTypeErrors_->Fill ( xism ); } if ( gtFedDataSize == 0 ) { if ( GT_OrbitNumber != ECALDCC_OrbitNumber ) meEBOrbitNumberErrors_->Fill ( xism ); } else { if ( ECALDCC_OrbitNumber_MostFreqId != ECALDCC_OrbitNumber ) meEBOrbitNumberErrors_->Fill ( xism ); } // DCC vs. FE,TCC, SRP syncronization const std::vector<short> feBxs = dcchItr->getFEBxs(); const std::vector<short> tccBx = dcchItr->getTCCBx(); const short srpBx = dcchItr->getSRPBx(); const std::vector<short> status = dcchItr->getFEStatus(); std::vector<int> BxSynchStatus; BxSynchStatus.reserve((int)feBxs.size()); for(int fe=0; fe<(int)feBxs.size(); fe++) { // look for ACTIVE towers only if(status[fe] != 0) continue; if(feBxs[fe] != ECALDCC_BunchCrossing && feBxs[fe] != -1 && ECALDCC_BunchCrossing != -1) { meEBBunchCrossingFEErrors_->Fill( xism, 1/(float)feBxs.size() ); BxSynchStatus[fe] = 0; } else BxSynchStatus[fe] = 1; } // vector of TCC channels has 4 elements for both EB and EE. // EB uses [0], EE uses [0-3]. if(tccBx.size() == MAX_TCC_SIZE) { if(tccBx[0] != ECALDCC_BunchCrossing && tccBx[0] != -1 && ECALDCC_BunchCrossing != -1) meEBBunchCrossingTCCErrors_->Fill( xism ); } if(srpBx != ECALDCC_BunchCrossing && srpBx != -1 && ECALDCC_BunchCrossing != -1) meEBBunchCrossingSRPErrors_->Fill( xism ); const std::vector<short> feLv1 = dcchItr->getFELv1(); const std::vector<short> tccLv1 = dcchItr->getTCCLv1(); const short srpLv1 = dcchItr->getSRPLv1(); // Lv1 in TCC,SRP,FE are limited to 12 bits(LSB), while in the DCC Lv1 has 24 bits int ECALDCC_L1A_12bit = ECALDCC_L1A & 0xfff; int feLv1Offset = ( e.isRealData() ) ? 1 : 0; // in MC FE Lv1A counter starts from 1, in data from 0 for(int fe=0; fe<(int)feLv1.size(); fe++) { // look for ACTIVE towers only if(status[fe] != 0) continue; if(feLv1[fe]+feLv1Offset != ECALDCC_L1A_12bit && feLv1[fe] != -1 && ECALDCC_L1A_12bit - 1 != -1) { meEBL1AFEErrors_->Fill( xism, 1/(float)feLv1.size() ); meEBSynchronizationErrorsByLumi_->Fill( xism, 1/(float)feLv1.size() ); errorsInEvent += 1. / feLv1.size(); } else if( BxSynchStatus[fe]==0 ){ meEBSynchronizationErrorsByLumi_->Fill( xism, 1/(float)feLv1.size() ); errorsInEvent += 1. / feLv1.size(); } } // vector of TCC channels has 4 elements for both EB and EE. // EB uses [0], EE uses [0-3]. if(tccLv1.size() == MAX_TCC_SIZE) { if(tccLv1[0] != ECALDCC_L1A_12bit && tccLv1[0] != -1 && ECALDCC_L1A_12bit - 1 != -1) meEBL1ATCCErrors_->Fill( xism ); } if(srpLv1 != ECALDCC_L1A_12bit && srpLv1 != -1 && ECALDCC_L1A_12bit - 1 != -1) meEBL1ASRPErrors_->Fill( xism ); if ( gtFedDataSize == 0 ) { if ( GT_OrbitNumber != ECALDCC_OrbitNumber ) meEBOrbitNumberErrors_->Fill ( xism ); } else { if ( ECALDCC_OrbitNumber_MostFreqId != ECALDCC_OrbitNumber ) meEBOrbitNumberErrors_->Fill ( xism ); } float evtType = dcchItr->getRunType(); if ( evtType < 0 || evtType > 22 ) evtType = -1; if ( ECALDCC_BunchCrossing < calibrationBX_ ) meEBEventTypePreCalibrationBX_->Fill( evtType+0.5, 1./36. ); if ( ECALDCC_BunchCrossing == calibrationBX_ ) meEBEventTypeCalibrationBX_->Fill( evtType+0.5, 1./36. ); if ( ECALDCC_BunchCrossing > calibrationBX_ ) meEBEventTypePostCalibrationBX_->Fill ( evtType+0.5, 1./36. ); if ( ECALDCC_BunchCrossing != calibrationBX_ ) { if ( evtType != EcalDCCHeaderBlock::COSMIC && evtType != EcalDCCHeaderBlock::MTCC && evtType != EcalDCCHeaderBlock::COSMICS_GLOBAL && evtType != EcalDCCHeaderBlock::PHYSICS_GLOBAL && evtType != EcalDCCHeaderBlock::COSMICS_LOCAL && evtType != EcalDCCHeaderBlock::PHYSICS_LOCAL && evtType != -1 ) meEBCalibrationEventErrors_->Fill( xism ); } else { if ( evtType == EcalDCCHeaderBlock::COSMIC || evtType == EcalDCCHeaderBlock::MTCC || evtType == EcalDCCHeaderBlock::COSMICS_GLOBAL || evtType == EcalDCCHeaderBlock::PHYSICS_GLOBAL || evtType == EcalDCCHeaderBlock::COSMICS_LOCAL || evtType == EcalDCCHeaderBlock::PHYSICS_LOCAL ) meEBCalibrationEventErrors_->Fill( xism ); } } } else { edm::LogWarning("EBRawDataTask") << EcalRawDataCollection_ << " not available"; } if(errorsInEvent > 0.){ meEBSynchronizationErrorsTrend_->Fill(ls_ - 0.5, errorsInEvent); fatalErrors_ += errorsInEvent; } }
void EBRawDataTask::beginJob | ( | void | ) | [protected, virtual] |
BeginJob.
Reimplemented from edm::EDAnalyzer.
Definition at line 78 of file EBRawDataTask.cc.
References dqmStore_, ievt_, prefixME_, DQMStore::rmdir(), DQMStore::setCurrentFolder(), and subfolder_.
{ ievt_ = 0; if ( dqmStore_ ) { dqmStore_->setCurrentFolder(prefixME_ + "/EBRawDataTask"); if(subfolder_.size()) dqmStore_->setCurrentFolder(prefixME_ + "/EBRawDataTask/" + subfolder_); dqmStore_->rmdir(prefixME_ + "/EBRawDataTask"); } }
void EBRawDataTask::beginLuminosityBlock | ( | const edm::LuminosityBlock & | lumiBlock, |
const edm::EventSetup & | iSetup | ||
) | [protected, virtual] |
BeginLuminosityBlock.
Reimplemented from edm::EDAnalyzer.
Definition at line 91 of file EBRawDataTask.cc.
References newFWLiteAna::bin, fatalErrors_, MonitorElement::getTH1(), init_, ls_, edm::LuminosityBlockBase::luminosityBlock(), meEBSynchronizationErrorsByLumi_, meEBSynchronizationErrorsTrend_, MonitorElement::Reset(), MonitorElement::setBinContent(), and setup().
{ if ( ! init_ ) this->setup(); ls_ = _lumi.luminosityBlock(); if ( meEBSynchronizationErrorsByLumi_ ) meEBSynchronizationErrorsByLumi_->Reset(); if ( meEBSynchronizationErrorsTrend_ ){ int bin(meEBSynchronizationErrorsTrend_->getTH1()->GetXaxis()->FindBin(ls_ - 0.5)); meEBSynchronizationErrorsTrend_->setBinContent(bin - 1, fatalErrors_); meEBSynchronizationErrorsTrend_->getTH1()->SetEntries(fatalErrors_); } }
void EBRawDataTask::beginRun | ( | const edm::Run & | r, |
const edm::EventSetup & | c | ||
) | [protected, virtual] |
BeginRun.
Reimplemented from edm::EDAnalyzer.
Definition at line 107 of file EBRawDataTask.cc.
References fatalErrors_, MonitorElement::getTH1(), Numbers::initGeometry(), meEBSynchronizationErrorsTrend_, mergeRuns_, and reset().
{ Numbers::initGeometry(c, false); if ( ! mergeRuns_ ) this->reset(); fatalErrors_ = 0.; if ( meEBSynchronizationErrorsTrend_ ){ meEBSynchronizationErrorsTrend_->getTH1()->GetXaxis()->SetLimits(0., 50.); } }
void EBRawDataTask::cleanup | ( | void | ) | [protected] |
Cleanup.
Definition at line 330 of file EBRawDataTask.cc.
References dqmStore_, MonitorElement::getName(), init_, meEBBunchCrossingDCCErrors_, meEBBunchCrossingFEErrors_, meEBBunchCrossingSRPErrors_, meEBBunchCrossingTCCErrors_, meEBCalibrationEventErrors_, meEBCRCErrors_, meEBEventTypeCalibrationBX_, meEBEventTypePostCalibrationBX_, meEBEventTypePreCalibrationBX_, meEBL1ADCCErrors_, meEBL1AFEErrors_, meEBL1ASRPErrors_, meEBL1ATCCErrors_, meEBOrbitNumberErrors_, meEBRunNumberErrors_, meEBSynchronizationErrorsByLumi_, meEBSynchronizationErrorsTrend_, meEBTriggerTypeErrors_, prefixME_, DQMStore::removeElement(), DQMStore::setCurrentFolder(), and subfolder_.
Referenced by endJob().
{ if ( ! init_ ) return; if ( dqmStore_ ) { dqmStore_->setCurrentFolder(prefixME_ + "/EBRawDataTask"); if(subfolder_.size()) dqmStore_->setCurrentFolder(prefixME_ + "/EBRawDataTask/" + subfolder_); if ( meEBEventTypePreCalibrationBX_ ) dqmStore_->removeElement( meEBEventTypePreCalibrationBX_->getName() ); meEBEventTypePreCalibrationBX_ = 0; if ( meEBEventTypeCalibrationBX_ ) dqmStore_->removeElement( meEBEventTypeCalibrationBX_->getName() ); meEBEventTypeCalibrationBX_ = 0; if ( meEBEventTypePostCalibrationBX_ ) dqmStore_->removeElement( meEBEventTypePostCalibrationBX_->getName() ); meEBEventTypePostCalibrationBX_ = 0; if ( meEBCRCErrors_ ) dqmStore_->removeElement( meEBCRCErrors_->getName() ); meEBCRCErrors_ = 0; if ( meEBRunNumberErrors_ ) dqmStore_->removeElement( meEBRunNumberErrors_->getName() ); meEBRunNumberErrors_ = 0; if ( meEBOrbitNumberErrors_ ) dqmStore_->removeElement( meEBOrbitNumberErrors_->getName() ); meEBOrbitNumberErrors_ = 0; if ( meEBTriggerTypeErrors_ ) dqmStore_->removeElement( meEBTriggerTypeErrors_->getName() ); meEBTriggerTypeErrors_ = 0; if ( meEBCalibrationEventErrors_ ) dqmStore_->removeElement( meEBCalibrationEventErrors_->getName() ); meEBCalibrationEventErrors_ = 0; if ( meEBL1ADCCErrors_ ) dqmStore_->removeElement( meEBL1ADCCErrors_->getName() ); meEBL1ADCCErrors_ = 0; if ( meEBBunchCrossingDCCErrors_ ) dqmStore_->removeElement( meEBBunchCrossingDCCErrors_->getName() ); meEBBunchCrossingDCCErrors_ = 0; if ( meEBL1AFEErrors_ ) dqmStore_->removeElement( meEBL1AFEErrors_->getName() ); meEBL1AFEErrors_ = 0; if ( meEBBunchCrossingFEErrors_ ) dqmStore_->removeElement( meEBBunchCrossingFEErrors_->getName() ); meEBBunchCrossingFEErrors_ = 0; if ( meEBL1ATCCErrors_ ) dqmStore_->removeElement( meEBL1ATCCErrors_->getName() ); meEBL1ATCCErrors_ = 0; if ( meEBBunchCrossingTCCErrors_ ) dqmStore_->removeElement( meEBBunchCrossingTCCErrors_->getName() ); meEBBunchCrossingTCCErrors_ = 0; if ( meEBL1ASRPErrors_ ) dqmStore_->removeElement( meEBL1ASRPErrors_->getName() ); meEBL1ASRPErrors_ = 0; if ( meEBBunchCrossingSRPErrors_ ) dqmStore_->removeElement( meEBBunchCrossingSRPErrors_->getName() ); meEBBunchCrossingSRPErrors_ = 0; if ( meEBSynchronizationErrorsByLumi_ ) dqmStore_->removeElement( meEBSynchronizationErrorsByLumi_->getName() ); meEBSynchronizationErrorsByLumi_ = 0; if ( meEBSynchronizationErrorsTrend_ ) dqmStore_->removeElement( meEBSynchronizationErrorsTrend_->getName() ); meEBSynchronizationErrorsTrend_ = 0; } init_ = false; }
void EBRawDataTask::endJob | ( | void | ) | [protected, virtual] |
EndJob.
Reimplemented from edm::EDAnalyzer.
Definition at line 410 of file EBRawDataTask.cc.
References cleanup(), enableCleanup_, and ievt_.
{ edm::LogInfo("EBRawDataTask") << "analyzed " << ievt_ << " events"; if ( enableCleanup_ ) this->cleanup(); }
void EBRawDataTask::endLuminosityBlock | ( | const edm::LuminosityBlock & | lumiBlock, |
const edm::EventSetup & | iSetup | ||
) | [protected, virtual] |
EndLuminosityBlock.
Reimplemented from edm::EDAnalyzer.
Definition at line 398 of file EBRawDataTask.cc.
References MonitorElement::getBinContent(), MonitorElement::getTH1(), ls_, meEBSynchronizationErrorsTrend_, and MonitorElement::setBinContent().
{ MonitorElement* me(meEBSynchronizationErrorsTrend_); if(!me) return; if(ls_ >= 50){ for(int ix(1); ix <= 50; ix++) me->setBinContent(ix, me->getBinContent(ix + 1)); me->getTH1()->GetXaxis()->SetLimits(ls_ - 49, ls_ + 1); } }
void EBRawDataTask::endRun | ( | const edm::Run & | r, |
const edm::EventSetup & | c | ||
) | [protected, virtual] |
void EBRawDataTask::reset | ( | void | ) | [protected] |
Reset.
Definition at line 123 of file EBRawDataTask.cc.
References meEBBunchCrossingDCCErrors_, meEBBunchCrossingFEErrors_, meEBBunchCrossingSRPErrors_, meEBBunchCrossingTCCErrors_, meEBCalibrationEventErrors_, meEBCRCErrors_, meEBEventTypeCalibrationBX_, meEBEventTypePostCalibrationBX_, meEBEventTypePreCalibrationBX_, meEBL1ADCCErrors_, meEBL1AFEErrors_, meEBL1ASRPErrors_, meEBL1ATCCErrors_, meEBOrbitNumberErrors_, meEBRunNumberErrors_, meEBSynchronizationErrorsByLumi_, meEBSynchronizationErrorsTrend_, meEBTriggerTypeErrors_, and MonitorElement::Reset().
Referenced by beginRun().
{ if ( meEBEventTypePreCalibrationBX_ ) meEBEventTypePreCalibrationBX_->Reset(); if ( meEBEventTypeCalibrationBX_ ) meEBEventTypeCalibrationBX_->Reset(); if ( meEBEventTypePostCalibrationBX_ ) meEBEventTypePostCalibrationBX_->Reset(); if ( meEBCRCErrors_ ) meEBCRCErrors_->Reset(); if ( meEBRunNumberErrors_ ) meEBRunNumberErrors_->Reset(); if ( meEBOrbitNumberErrors_ ) meEBOrbitNumberErrors_->Reset(); if ( meEBTriggerTypeErrors_ ) meEBTriggerTypeErrors_->Reset(); if ( meEBCalibrationEventErrors_ ) meEBCalibrationEventErrors_->Reset(); if ( meEBL1ADCCErrors_ ) meEBL1ADCCErrors_->Reset(); if ( meEBBunchCrossingDCCErrors_ ) meEBBunchCrossingDCCErrors_->Reset(); if ( meEBL1AFEErrors_ ) meEBL1AFEErrors_->Reset(); if ( meEBBunchCrossingFEErrors_ ) meEBBunchCrossingFEErrors_->Reset(); if ( meEBL1ATCCErrors_ ) meEBL1ATCCErrors_->Reset(); if ( meEBBunchCrossingTCCErrors_ ) meEBBunchCrossingTCCErrors_->Reset(); if ( meEBL1ASRPErrors_ ) meEBL1ASRPErrors_->Reset(); if ( meEBBunchCrossingSRPErrors_ ) meEBBunchCrossingSRPErrors_->Reset(); if ( meEBSynchronizationErrorsByLumi_ ) meEBSynchronizationErrorsByLumi_->Reset(); if ( meEBSynchronizationErrorsTrend_ ) meEBSynchronizationErrorsTrend_->Reset(); }
void EBRawDataTask::setup | ( | void | ) | [protected] |
Setup.
Definition at line 145 of file EBRawDataTask.cc.
References EcalDCCHeaderBlock::BEAMH2, EcalDCCHeaderBlock::BEAMH4, DQMStore::book1D(), EcalDCCHeaderBlock::COSMIC, EcalDCCHeaderBlock::COSMICS_GLOBAL, EcalDCCHeaderBlock::COSMICS_LOCAL, dqmStore_, EcalDCCHeaderBlock::HALO_GLOBAL, EcalDCCHeaderBlock::HALO_LOCAL, i, init_, EcalDCCHeaderBlock::LASER_DELAY_SCAN, EcalDCCHeaderBlock::LASER_GAP, EcalDCCHeaderBlock::LASER_POWER_SCAN, EcalDCCHeaderBlock::LASER_STD, EcalDCCHeaderBlock::LED_GAP, EcalDCCHeaderBlock::LED_STD, meEBBunchCrossingDCCErrors_, meEBBunchCrossingFEErrors_, meEBBunchCrossingSRPErrors_, meEBBunchCrossingTCCErrors_, meEBCalibrationEventErrors_, meEBCRCErrors_, meEBEventTypeCalibrationBX_, meEBEventTypePostCalibrationBX_, meEBEventTypePreCalibrationBX_, meEBL1ADCCErrors_, meEBL1AFEErrors_, meEBL1ASRPErrors_, meEBL1ATCCErrors_, meEBOrbitNumberErrors_, meEBRunNumberErrors_, meEBSynchronizationErrorsByLumi_, meEBSynchronizationErrorsTrend_, meEBTriggerTypeErrors_, EcalDCCHeaderBlock::MTCC, mergeVDriftHistosByStation::name, EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, EcalDCCHeaderBlock::PEDESTAL_GAP, EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, EcalDCCHeaderBlock::PEDESTAL_STD, EcalDCCHeaderBlock::PHYSICS_GLOBAL, EcalDCCHeaderBlock::PHYSICS_LOCAL, prefixME_, Numbers::sEB(), MonitorElement::setAxisTitle(), MonitorElement::setBinLabel(), DQMStore::setCurrentFolder(), MonitorElement::setLumiFlag(), AlCaHLTBitMon_QueryRunRegistry::string, subfolder_, EcalDCCHeaderBlock::TESTPULSE_GAP, EcalDCCHeaderBlock::TESTPULSE_MGPA, and EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM.
Referenced by beginLuminosityBlock().
{ init_ = true; std::string name; if ( dqmStore_ ) { dqmStore_->setCurrentFolder(prefixME_ + "/EBRawDataTask"); if(subfolder_.size()) dqmStore_->setCurrentFolder(prefixME_ + "/EBRawDataTask/" + subfolder_); name = "EBRDT event type pre calibration BX"; meEBEventTypePreCalibrationBX_ = dqmStore_->book1D(name, name, 31, -1., 30.); meEBEventTypePreCalibrationBX_->setBinLabel(1, "UNKNOWN", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMIC, "COSMIC", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH4, "BEAMH4", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH2, "BEAMH2", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::MTCC, "MTCC", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_STD, "LASER_STD", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_POWER_SCAN, "LASER_POWER_SCAN", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_DELAY_SCAN, "LASER_DELAY_SCAN", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM, "TESTPULSE_SCAN_MEM", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_MGPA, "TESTPULSE_MGPA", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_STD, "PEDESTAL_STD", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, "PEDESTAL_OFFSET_SCAN", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, "PEDESTAL_25NS_SCAN", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_STD, "LED_STD", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_GLOBAL, "PHYSICS_GLOBAL", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_GLOBAL, "COSMICS_GLOBAL", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_GLOBAL, "HALO_GLOBAL", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_GAP, "LASER_GAP", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_GAP, "TESTPULSE_GAP"); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_GAP, "PEDESTAL_GAP"); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_GAP, "LED_GAP", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_LOCAL, "PHYSICS_LOCAL", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_LOCAL, "COSMICS_LOCAL", 1); meEBEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_LOCAL, "HALO_LOCAL", 1); name = "EBRDT event type calibration BX"; meEBEventTypeCalibrationBX_ = dqmStore_->book1D(name, name, 31, -1., 30.); meEBEventTypeCalibrationBX_->setBinLabel(1, "UNKNOWN", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMIC, "COSMIC", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH4, "BEAMH4", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH2, "BEAMH2", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::MTCC, "MTCC", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_STD, "LASER_STD", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_POWER_SCAN, "LASER_POWER_SCAN", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_DELAY_SCAN, "LASER_DELAY_SCAN", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM, "TESTPULSE_SCAN_MEM", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_MGPA, "TESTPULSE_MGPA", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_STD, "PEDESTAL_STD", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, "PEDESTAL_OFFSET_SCAN", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, "PEDESTAL_25NS_SCAN", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_STD, "LED_STD", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_GLOBAL, "PHYSICS_GLOBAL", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_GLOBAL, "COSMICS_GLOBAL", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_GLOBAL, "HALO_GLOBAL", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_GAP, "LASER_GAP", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_GAP, "TESTPULSE_GAP"); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_GAP, "PEDESTAL_GAP"); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_GAP, "LED_GAP", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_LOCAL, "PHYSICS_LOCAL", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_LOCAL, "COSMICS_LOCAL", 1); meEBEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_LOCAL, "HALO_LOCAL", 1); name = "EBRDT event type post calibration BX"; meEBEventTypePostCalibrationBX_ = dqmStore_->book1D(name, name, 31, -1., 30.); meEBEventTypePostCalibrationBX_->setBinLabel(1, "UNKNOWN", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMIC, "COSMIC", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH4, "BEAMH4", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH2, "BEAMH2", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::MTCC, "MTCC", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_STD, "LASER_STD", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_POWER_SCAN, "LASER_POWER_SCAN", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_DELAY_SCAN, "LASER_DELAY_SCAN", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM, "TESTPULSE_SCAN_MEM", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_MGPA, "TESTPULSE_MGPA", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_STD, "PEDESTAL_STD", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, "PEDESTAL_OFFSET_SCAN", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, "PEDESTAL_25NS_SCAN", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_STD, "LED_STD", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_GLOBAL, "PHYSICS_GLOBAL", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_GLOBAL, "COSMICS_GLOBAL", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_GLOBAL, "HALO_GLOBAL", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_GAP, "LASER_GAP", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_GAP, "TESTPULSE_GAP"); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_GAP, "PEDESTAL_GAP"); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_GAP, "LED_GAP", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_LOCAL, "PHYSICS_LOCAL", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_LOCAL, "COSMICS_LOCAL", 1); meEBEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_LOCAL, "HALO_LOCAL", 1); name = "EBRDT CRC errors"; meEBCRCErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBCRCErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT run number errors"; meEBRunNumberErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBRunNumberErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT orbit number errors"; meEBOrbitNumberErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBOrbitNumberErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT trigger type errors"; meEBTriggerTypeErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBTriggerTypeErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT calibration event errors"; meEBCalibrationEventErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBCalibrationEventErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT L1A DCC errors"; meEBL1ADCCErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBL1ADCCErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT bunch crossing DCC errors"; meEBBunchCrossingDCCErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBBunchCrossingDCCErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT L1A FE errors"; meEBL1AFEErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBL1AFEErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT bunch crossing FE errors"; meEBBunchCrossingFEErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBBunchCrossingFEErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT L1A TCC errors"; meEBL1ATCCErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBL1ATCCErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT bunch crossing TCC errors"; meEBBunchCrossingTCCErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBBunchCrossingTCCErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT L1A SRP errors"; meEBL1ASRPErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBL1ASRPErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT bunch crossing SRP errors"; meEBBunchCrossingSRPErrors_ = dqmStore_->book1D(name, name, 36, 1, 37); for (int i = 0; i < 36; i++) { meEBBunchCrossingSRPErrors_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT FE synchronization errors by lumi"; meEBSynchronizationErrorsByLumi_ = dqmStore_->book1D(name, name, 36, 1, 37); meEBSynchronizationErrorsByLumi_->setLumiFlag(); for (int i = 0; i < 36; i++) { meEBSynchronizationErrorsByLumi_->setBinLabel(i+1, Numbers::sEB(i+1), 1); } name = "EBRDT accumulated FE synchronization errors"; meEBSynchronizationErrorsTrend_ = dqmStore_->book1D(name, name, 50, 0., 50.); meEBSynchronizationErrorsTrend_->setAxisTitle("LumiSection", 1); } }
float EBRawDataTask::calibrationBX_ [private] |
Definition at line 106 of file EBRawDataTask.h.
Referenced by analyze(), and EBRawDataTask().
DQMStore* EBRawDataTask::dqmStore_ [private] |
Definition at line 66 of file EBRawDataTask.h.
Referenced by beginJob(), cleanup(), EBRawDataTask(), and setup().
Definition at line 77 of file EBRawDataTask.h.
Referenced by analyze(), and EBRawDataTask().
bool EBRawDataTask::enableCleanup_ [private] |
Definition at line 72 of file EBRawDataTask.h.
Referenced by EBRawDataTask(), and endJob().
float EBRawDataTask::fatalErrors_ [private] |
Definition at line 102 of file EBRawDataTask.h.
Referenced by analyze(), beginLuminosityBlock(), and beginRun().
Definition at line 76 of file EBRawDataTask.h.
Referenced by analyze(), and EBRawDataTask().
int EBRawDataTask::ievt_ [private] |
Definition at line 64 of file EBRawDataTask.h.
Referenced by analyze(), beginJob(), and endJob().
bool EBRawDataTask::init_ [private] |
Definition at line 104 of file EBRawDataTask.h.
Referenced by beginLuminosityBlock(), cleanup(), EBRawDataTask(), and setup().
int EBRawDataTask::ls_ [private] |
Definition at line 100 of file EBRawDataTask.h.
Referenced by analyze(), beginLuminosityBlock(), and endLuminosityBlock().
Definition at line 88 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 90 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 94 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 92 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 86 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
MonitorElement* EBRawDataTask::meEBCRCErrors_ [private] |
Definition at line 79 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 81 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 82 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 80 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
MonitorElement* EBRawDataTask::meEBL1ADCCErrors_ [private] |
Definition at line 87 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
MonitorElement* EBRawDataTask::meEBL1AFEErrors_ [private] |
Definition at line 89 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
MonitorElement* EBRawDataTask::meEBL1ASRPErrors_ [private] |
Definition at line 93 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
MonitorElement* EBRawDataTask::meEBL1ATCCErrors_ [private] |
Definition at line 91 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 84 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 83 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 96 of file EBRawDataTask.h.
Referenced by analyze(), beginLuminosityBlock(), cleanup(), EBRawDataTask(), reset(), and setup().
Definition at line 98 of file EBRawDataTask.h.
Referenced by analyze(), beginLuminosityBlock(), beginRun(), cleanup(), EBRawDataTask(), endLuminosityBlock(), reset(), and setup().
Definition at line 85 of file EBRawDataTask.h.
Referenced by analyze(), cleanup(), EBRawDataTask(), reset(), and setup().
bool EBRawDataTask::mergeRuns_ [private] |
Definition at line 74 of file EBRawDataTask.h.
Referenced by beginRun(), and EBRawDataTask().
std::string EBRawDataTask::prefixME_ [private] |
Definition at line 68 of file EBRawDataTask.h.
Referenced by beginJob(), cleanup(), EBRawDataTask(), and setup().
std::string EBRawDataTask::subfolder_ [private] |
Definition at line 70 of file EBRawDataTask.h.
Referenced by beginJob(), cleanup(), EBRawDataTask(), and setup().