Go to the documentation of this file.00001 #ifndef GeometryVector_newBasic2DVector_h
00002 #define GeometryVector_newBasic2DVector_h
00003
00004 #include "DataFormats/GeometryVector/interface/Phi.h"
00005 #include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
00006 #include "DataFormats/GeometryVector/interface/CoordinateSets.h"
00007 #include "DataFormats/Math/interface/SSEVec.h"
00008
00009
00010 #include <cmath>
00011 #include <iosfwd>
00012
00013
00014 template < class T>
00015 class Basic2DVector {
00016 public:
00017
00018 typedef T ScalarType;
00019 typedef mathSSE::Vec2<T> VectorType;
00020 typedef mathSSE::Vec2<T> MathVector;
00021 typedef Geom::Polar2Cartesian<T> Polar;
00022
00027 Basic2DVector() {}
00028
00030 Basic2DVector( const Basic2DVector & p) : v(p.v) {}
00031
00032 template<typename U>
00033 Basic2DVector( const Basic2DVector<U> & p) : v(p.v) {}
00034
00035
00043 template <class Other>
00044 explicit Basic2DVector( const Other& p) : v(p.x(),p.y()) {}
00045
00047 Basic2DVector( const T& x, const T& y) : v(x,y) {}
00048
00049
00050 template<typename U>
00051 Basic2DVector(mathSSE::Vec2<U> const& iv) : v(iv){}
00052 template<typename U>
00053 Basic2DVector(mathSSE::Vec4<U> const& iv) : v(iv.xy()){}
00054
00055 MathVector const & mathVector() const { return v;}
00056 MathVector & mathVector() { return v;}
00057
00058 T operator[](int i) const { return v[i];}
00059 T & operator[](int i) { return v[i];}
00060
00062 T x() const { return v[0];}
00063
00065 T y() const { return v[1];}
00066
00068 T mag2() const { return ::dot(v,v);}
00069
00071 T mag() const { return std::sqrt( mag2());}
00072
00074 T r() const { return mag();}
00075
00080 T barePhi() const {return std::atan2(y(),x());}
00081 Geom::Phi<T> phi() const {return Geom::Phi<T>(atan2(y(),x()));}
00082
00086 Basic2DVector unit() const {
00087 T my_mag = mag();
00088 return my_mag == 0 ? *this : *this / my_mag;
00089 }
00090
00093 template <class U>
00094 Basic2DVector& operator+= ( const Basic2DVector<U>& p) {
00095 v = v + p.v;
00096 return *this;
00097 }
00098
00101 template <class U>
00102 Basic2DVector& operator-= ( const Basic2DVector<U>& p) {
00103 v = v - p.v;
00104 return *this;
00105 }
00106
00108 Basic2DVector operator-() const { return Basic2DVector(-v);}
00109
00111 Basic2DVector& operator*= ( T t) {
00112 v = v*t;
00113 return *this;
00114 }
00115
00117 Basic2DVector& operator/= ( T t) {
00118 t = T(1)/t;
00119 v = v*t;
00120 return *this;
00121 }
00122
00124 T dot( const Basic2DVector& lh) const { return ::dot(v,lh.v);}
00125
00131 template <class U>
00132 typename PreciseFloatType<T,U>::Type dot( const Basic2DVector<U>& lh) const {
00133 return Basic2DVector<typename PreciseFloatType<T,U>::Type>(*this)
00134 .dot(Basic2DVector<typename PreciseFloatType<T,U>::Type>(lh));
00135 }
00136
00138 T cross( const Basic2DVector& lh) const { return ::cross(v,lh.v);}
00139
00145 template <class U>
00146 typename PreciseFloatType<T,U>::Type cross( const Basic2DVector<U>& lh) const {
00147 return Basic2DVector<typename PreciseFloatType<T,U>::Type>(*this)
00148 .cross(Basic2DVector<typename PreciseFloatType<T,U>::Type>(lh));
00149 }
00150
00151
00152 public:
00153
00154 mathSSE::Vec2<T> v;
00155
00156 };
00157
00158
00159 namespace geometryDetails {
00160 std::ostream & print2D(std::ostream& s, double x, double y);
00161
00162 }
00163
00165 template <class T>
00166 inline std::ostream & operator<<( std::ostream& s, const Basic2DVector<T>& v) {
00167 return geometryDetails::print2D(s, v.x(),v.y());
00168 }
00169
00170
00172 template <class T>
00173 inline Basic2DVector<T>
00174 operator+( const Basic2DVector<T>& a, const Basic2DVector<T>& b) {
00175 return a.v+b.v;
00176 }
00177 template <class T>
00178 inline Basic2DVector<T>
00179 operator-( const Basic2DVector<T>& a, const Basic2DVector<T>& b) {
00180 return a.v-b.v;
00181 }
00182
00183 template <class T, class U>
00184 inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
00185 operator+( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
00186 typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
00187 return RT(a) + RT(b);
00188 }
00189
00190 template <class T, class U>
00191 inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
00192 operator-( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
00193 typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
00194 return RT(a)-RT(b);
00195 }
00196
00197
00198
00199
00200
00201 template <class T>
00202 inline T operator*( const Basic2DVector<T>& v1, const Basic2DVector<T>& v2) {
00203 return v1.dot(v2);
00204 }
00205
00207 template <class T, class U>
00208 inline typename PreciseFloatType<T,U>::Type operator*( const Basic2DVector<T>& v1,
00209 const Basic2DVector<U>& v2) {
00210 return v1.dot(v2);
00211 }
00212
00213
00217 template <class T>
00218 inline Basic2DVector<T> operator*( const Basic2DVector<T>& v, T t) {
00219 return v.v*t;
00220 }
00221
00223 template <class T>
00224 inline Basic2DVector<T> operator*(T t, const Basic2DVector<T>& v) {
00225 return v.v*t;
00226 }
00227
00228
00229
00230 template <class T, class Scalar>
00231 inline Basic2DVector<T> operator*( const Basic2DVector<T>& v, const Scalar& s) {
00232 T t = static_cast<T>(s);
00233 return v*t;
00234 }
00235
00237 template <class T, class Scalar>
00238 inline Basic2DVector<T> operator*( const Scalar& s, const Basic2DVector<T>& v) {
00239 T t = static_cast<T>(s);
00240 return v*t;
00241 }
00242
00246 template <class T>
00247 inline Basic2DVector<T> operator/(const Basic2DVector<T>& v, T t) {
00248 return v.v/t;
00249 }
00250
00251 template <class T, class Scalar>
00252 inline Basic2DVector<T> operator/( const Basic2DVector<T>& v, const Scalar& s) {
00253
00254 T t = static_cast<T>(s);
00255 return v/t;
00256 }
00257
00258 typedef Basic2DVector<float> Basic2DVectorF;
00259 typedef Basic2DVector<double> Basic2DVectorD;
00260
00261
00262 #endif // GeometryVector_Basic2DVector_h