00001
00002 #include "FWCore/MessageLogger/interface/MessageLogger.h"
00003 #include "MagneticField/Engine/interface/MagneticField.h"
00004
00005 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayEstimator.h"
00006 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayModel.h"
00007 #include "Alignment/TwoBodyDecay/interface/TwoBodyDecayDerivatives.h"
00008 #include "FWCore/Utilities/interface/isFinite.h"
00009
00010
00011 TwoBodyDecayEstimator::TwoBodyDecayEstimator( const edm::ParameterSet & config )
00012 :theNdf(0)
00013 {
00014 const edm::ParameterSet & estimatorConfig = config.getParameter< edm::ParameterSet >( "EstimatorParameters" );
00015
00016 theRobustificationConstant = estimatorConfig.getUntrackedParameter< double >( "RobustificationConstant", 1.0 );
00017 theMaxIterDiff = estimatorConfig.getUntrackedParameter< double >( "MaxIterationDifference", 1e-2 );
00018 theMaxIterations = estimatorConfig.getUntrackedParameter< int >( "MaxIterations", 100 );
00019 theUseInvariantMass = estimatorConfig.getUntrackedParameter< bool >( "UseInvariantMass", true );
00020 }
00021
00022
00023 TwoBodyDecay TwoBodyDecayEstimator::estimate( const std::vector< RefCountedLinearizedTrackState > & linTracks,
00024 const TwoBodyDecayParameters & linearizationPoint,
00025 const TwoBodyDecayVirtualMeasurement & vm ) const
00026 {
00027 if ( linTracks.size() != 2 )
00028 {
00029 edm::LogInfo( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::estimate"
00030 << "Need 2 linearized tracks, got " << linTracks.size() << ".\n";
00031 return TwoBodyDecay();
00032 }
00033
00034 AlgebraicVector vecM;
00035 AlgebraicSymMatrix matG;
00036 AlgebraicMatrix matA;
00037
00038 bool check = constructMatrices( linTracks, linearizationPoint, vm, vecM, matG, matA );
00039 if ( !check ) return TwoBodyDecay();
00040
00041 AlgebraicSymMatrix matGPrime;
00042 AlgebraicSymMatrix invAtGPrimeA;
00043 AlgebraicVector vecEstimate;
00044 AlgebraicVector res;
00045
00046 int nIterations = 0;
00047 bool stopIteration = false;
00048
00049
00050 int checkInversion = 0;
00051 double chi2 = 0.;
00052 double oldChi2 = 0.;
00053 bool isValid = true;
00054
00055 while( !stopIteration )
00056 {
00057 matGPrime = matG;
00058
00059
00060 if ( nIterations > 0 )
00061 {
00062 for ( int i = 0; i < 10; i++ )
00063 {
00064 double sigma = 1./sqrt( matG[i][i] );
00065 double sigmaTimesR = sigma*theRobustificationConstant;
00066 double absRes = fabs( res[i] );
00067 if ( absRes > sigmaTimesR ) matGPrime[i][i] *= sigmaTimesR/absRes;
00068 }
00069 }
00070
00071
00072 invAtGPrimeA = ( matGPrime.similarityT(matA) ).inverse( checkInversion );
00073 if ( checkInversion != 0 )
00074 {
00075 LogDebug( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::estimate"
00076 << "Matrix At*G'*A not invertible (in iteration " << nIterations
00077 << ", ifail = " << checkInversion << ").\n";
00078 isValid = false;
00079 break;
00080 }
00081 vecEstimate = invAtGPrimeA*matA.T()*matGPrime*vecM;
00082 res = matA*vecEstimate - vecM;
00083 chi2 = dot( res, matGPrime*res );
00084
00085 if ( ( nIterations > 0 ) && ( fabs( chi2 - oldChi2 ) < theMaxIterDiff ) ) stopIteration = true;
00086 if ( nIterations == theMaxIterations ) stopIteration = true;
00087
00088 oldChi2 = chi2;
00089 nIterations++;
00090 }
00091
00092 if ( isValid )
00093 {
00094 AlgebraicSymMatrix pullsCov = matGPrime.inverse( checkInversion ) - invAtGPrimeA.similarity( matA );
00095 thePulls = AlgebraicVector( matG.num_col(), 0 );
00096 for ( int i = 0; i < pullsCov.num_col(); i++ ) thePulls[i] = res[i]/sqrt( pullsCov[i][i] );
00097 }
00098
00099 theNdf = matA.num_row() - matA.num_col();
00100
00101 return TwoBodyDecay( TwoBodyDecayParameters( vecEstimate, invAtGPrimeA ), chi2, isValid, vm );
00102 }
00103
00104
00105 bool TwoBodyDecayEstimator::constructMatrices( const std::vector< RefCountedLinearizedTrackState > & linTracks,
00106 const TwoBodyDecayParameters & linearizationPoint,
00107 const TwoBodyDecayVirtualMeasurement & vm,
00108 AlgebraicVector & vecM, AlgebraicSymMatrix & matG, AlgebraicMatrix & matA ) const
00109 {
00110
00111 PerigeeLinearizedTrackState* linTrack1 = dynamic_cast<PerigeeLinearizedTrackState*>( linTracks[0].get() );
00112 PerigeeLinearizedTrackState* linTrack2 = dynamic_cast<PerigeeLinearizedTrackState*>( linTracks[1].get() );
00113
00114 if (!linTrack1 || !linTrack2) return false;
00115
00116 AlgebraicVector trackParam1 = asHepVector( linTrack1->predictedStateParameters() );
00117 AlgebraicVector trackParam2 = asHepVector( linTrack2->predictedStateParameters() );
00118
00119 if ( checkValues( trackParam1 ) || checkValues( trackParam2 ) || checkValues( linearizationPoint.parameters() ) ) return false;
00120
00121 AlgebraicVector vecLinParam = linearizationPoint.sub( TwoBodyDecayParameters::px,
00122 TwoBodyDecayParameters::mass );
00123
00124 double zMagField = linTrack1->track().field()->inInverseGeV( linTrack1->linearizationPoint() ).z();
00125
00126 int checkInversion = 0;
00127
00128 TwoBodyDecayDerivatives tpeDerivatives( linearizationPoint[TwoBodyDecayParameters::mass], vm.secondaryMass() );
00129 std::pair< AlgebraicMatrix, AlgebraicMatrix > derivatives = tpeDerivatives.derivatives( linearizationPoint );
00130
00131 TwoBodyDecayModel decayModel( linearizationPoint[TwoBodyDecayParameters::mass], vm.secondaryMass() );
00132 std::pair< AlgebraicVector, AlgebraicVector > linCartMomenta = decayModel.cartesianSecondaryMomenta( linearizationPoint );
00133
00134
00135 AlgebraicMatrix matA1 = asHepMatrix( linTrack1->positionJacobian() );
00136 AlgebraicMatrix matB1 = asHepMatrix( linTrack1->momentumJacobian() );
00137 AlgebraicVector vecC1 = asHepVector( linTrack1->constantTerm() );
00138
00139 AlgebraicVector curvMomentum1 = asHepVector( linTrack1->predictedStateMomentumParameters() );
00140 AlgebraicMatrix curv2cart1 = decayModel.curvilinearToCartesianJacobian( curvMomentum1, zMagField );
00141
00142 AlgebraicVector cartMomentum1 = decayModel.convertCurvilinearToCartesian( curvMomentum1, zMagField );
00143 vecC1 += matB1*( curvMomentum1 - curv2cart1*cartMomentum1 );
00144 matB1 = matB1*curv2cart1;
00145
00146 AlgebraicMatrix matF1 = derivatives.first;
00147 AlgebraicVector vecD1 = linCartMomenta.first - matF1*vecLinParam;
00148 AlgebraicVector vecM1 = trackParam1 - vecC1 - matB1*vecD1;
00149 AlgebraicSymMatrix covM1 = asHepMatrix( linTrack1->predictedStateError() );
00150
00151
00152 AlgebraicSymMatrix matG1 = covM1.inverse( checkInversion );
00153 if ( checkInversion != 0 )
00154 {
00155 LogDebug( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::constructMatrices"
00156 << "Matrix covM1 not invertible.";
00157 return false;
00158 }
00159
00160
00161 AlgebraicMatrix matU1 = diagonalize( &matG1 ).T();
00162
00163
00164 AlgebraicMatrix matA2 = asHepMatrix( linTrack2->positionJacobian() );
00165 AlgebraicMatrix matB2 = asHepMatrix( linTrack2->momentumJacobian() );
00166 AlgebraicVector vecC2 = asHepVector( linTrack2->constantTerm() );
00167
00168 AlgebraicVector curvMomentum2 = asHepVector( linTrack2->predictedStateMomentumParameters() );
00169 AlgebraicMatrix curv2cart2 = decayModel.curvilinearToCartesianJacobian( curvMomentum2, zMagField );
00170
00171 AlgebraicVector cartMomentum2 = decayModel.convertCurvilinearToCartesian( curvMomentum2, zMagField );
00172 vecC2 += matB2*( curvMomentum2 - curv2cart2*cartMomentum2 );
00173 matB2 = matB2*curv2cart2;
00174
00175 AlgebraicMatrix matF2 = derivatives.second;
00176 AlgebraicVector vecD2 = linCartMomenta.second - matF2*vecLinParam;
00177 AlgebraicVector vecM2 = trackParam2 - vecC2 - matB2*vecD2;
00178 AlgebraicSymMatrix covM2 = asHepMatrix( linTrack2->predictedStateError() );
00179
00180 AlgebraicSymMatrix matG2 = covM2.inverse( checkInversion );
00181 if ( checkInversion != 0 )
00182 {
00183 LogDebug( "Alignment" ) << "@SUB=TwoBodyDecayEstimator::constructMatrices"
00184 << "Matrix covM2 not invertible.";
00185 return false;
00186 }
00187
00188
00189 AlgebraicMatrix matU2 = diagonalize( &matG2 ).T();
00190
00191
00192 vecM = AlgebraicVector( 14, 0 );
00193 vecM.sub( 1, matU1*vecM1 );
00194 vecM.sub( 6, matU2*vecM2 );
00195
00196 vecM( 11 ) = vm.primaryMass();
00197
00198 vecM.sub( 12, vm.beamSpotPosition() );
00199
00200
00201 matG = AlgebraicSymMatrix( 14, 0 );
00202 matG.sub( 1, matG1 );
00203 matG.sub( 6, matG2 );
00204
00205 matG[10][10] = 1./( vm.primaryWidth()*vm.primaryWidth() );
00206
00207 matG.sub( 12, vm.beamSpotError().inverse( checkInversion ) );
00208
00209
00210 matA = AlgebraicMatrix( 14, 9, 0 );
00211 matA.sub( 1, 1, matU1*matA1 );
00212 matA.sub( 6, 1, matU2*matA2 );
00213 matA.sub( 1, 4, matU1*matB1*matF1 );
00214 matA.sub( 6, 4, matU2*matB2*matF2 );
00215 matA( 11, 9 ) = 1.;
00216 matA( 12, 1 ) = 1.;
00217 matA( 13, 2 ) = 1.;
00218 matA( 14, 3 ) = 1.;
00219
00220 return true;
00221 }
00222
00223
00224 bool TwoBodyDecayEstimator::checkValues( const AlgebraicVector & vec ) const
00225 {
00226 bool isNotFinite = false;
00227
00228 for ( int i = 0; i < vec.num_col(); ++i )
00229 isNotFinite |= edm::isNotFinite( vec[i] );
00230
00231 return isNotFinite;
00232 }