00001 #ifndef GeometryVector_Basic3DVectorLD_h
00002 #define GeometryVector_Basic3DVectorLD_h
00003
00004 #ifdef __clang__
00005 #pragma clang diagnostic push
00006 #pragma clang diagnostic ignored "-Wunused-private-field"
00007 #endif
00008
00009
00010 template <>
00011 class Basic3DVector<long double> {
00012 public:
00013
00014
00015 typedef long double T;
00016 typedef T ScalarType;
00017 typedef Geom::Cylindrical2Cartesian<T> Cylindrical;
00018 typedef Geom::Spherical2Cartesian<T> Spherical;
00019 typedef Spherical Polar;
00020
00021 typedef Basic3DVector<T> MathVector;
00022
00027 Basic3DVector() : theX(0), theY(0), theZ(0), theW(0) {}
00028
00030 Basic3DVector( const Basic3DVector & p) :
00031 theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
00032
00034 template <class U>
00035 Basic3DVector( const Basic3DVector<U> & p) :
00036 theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
00037
00039 Basic3DVector( const Basic2DVector<T> & p) :
00040 theX(p.x()), theY(p.y()), theZ(0), theW(0) {}
00041
00050 template <class OtherPoint>
00051 explicit Basic3DVector( const OtherPoint& p) :
00052 theX(p.x()), theY(p.y()), theZ(p.z()), theW(0) {}
00053
00054
00055 #ifndef __REFLEX__
00056
00057 template<typename U>
00058 Basic3DVector(mathSSE::Vec4<U> const& iv) :
00059 theX(iv.arr[0]), theY(iv.arr[1]), theZ(iv.arr[2]), theW(0) {}
00060 #endif
00061
00063 Basic3DVector( const T& x, const T& y, const T& z) :
00064 theX(x), theY(y), theZ(z), theW(0) {}
00065
00070 template <typename U>
00071 Basic3DVector( const Geom::Theta<U>& theta,
00072 const Geom::Phi<U>& phi, const T& r) {
00073 Polar p( theta.value(), phi.value(), r);
00074 theX = p.x(); theY = p.y(); theZ = p.z();
00075 }
00076
00078 T x() const { return theX;}
00079
00081 T y() const { return theY;}
00082
00084 T z() const { return theZ;}
00085
00086 Basic2DVector<T> xy() const { return Basic2DVector<T>(theX,theY);}
00087
00088
00089
00090 bool operator==(const Basic3DVector& rh) const {
00091 return x()==rh.x() && y()==rh.y() && z()==rh.z();
00092 }
00093
00095 T mag2() const { return x()*x() + y()*y()+z()*z();}
00096
00098 T mag() const { return std::sqrt( mag2());}
00099
00101 T perp2() const { return x()*x() + y()*y();}
00102
00104 T perp() const { return std::sqrt( perp2());}
00105
00107 T transverse() const { return perp();}
00108
00113 T barePhi() const {return std::atan2(y(),x());}
00114 Geom::Phi<T> phi() const {return Geom::Phi<T>(barePhi());}
00115
00120 T bareTheta() const {return std::atan2(perp(),z());}
00121 Geom::Theta<T> theta() const {return Geom::Theta<T>(std::atan2(perp(),z()));}
00122
00127
00128 T eta() const { return detailsBasic3DVector::eta(x(),y(),z());}
00129
00130
00134 Basic3DVector unit() const {
00135 T my_mag = mag2();
00136 if (my_mag==0) return *this;
00137 my_mag = T(1)/std::sqrt(my_mag);
00138 Basic3DVector ret(*this);
00139 return ret*=my_mag;
00140 }
00141
00144 template <class U>
00145 Basic3DVector& operator+= ( const Basic3DVector<U>& p) {
00146 theX += p.x();
00147 theY += p.y();
00148 theZ += p.z();
00149 return *this;
00150 }
00151
00154 template <class U>
00155 Basic3DVector& operator-= ( const Basic3DVector<U>& p) {
00156 theX -= p.x();
00157 theY -= p.y();
00158 theZ -= p.z();
00159 return *this;
00160 }
00161
00163 Basic3DVector operator-() const { return Basic3DVector(-x(),-y(),-z());}
00164
00166 Basic3DVector& operator*= ( T t) {
00167 theX *= t;
00168 theY *= t;
00169 theZ *= t;
00170 return *this;
00171 }
00172
00174 Basic3DVector& operator/= ( T t) {
00175 t = T(1)/t;
00176 theX *= t;
00177 theY *= t;
00178 theZ *= t;
00179 return *this;
00180 }
00181
00183 T dot( const Basic3DVector& v) const {
00184 return x()*v.x() + y()*v.y() + z()*v.z();
00185 }
00186
00192 template <class U>
00193 typename PreciseFloatType<T,U>::Type dot( const Basic3DVector<U>& v) const {
00194 return x()*v.x() + y()*v.y() + z()*v.z();
00195 }
00196
00198 Basic3DVector cross( const Basic3DVector& v) const {
00199 return Basic3DVector( y()*v.z() - v.y()*z(),
00200 z()*v.x() - v.z()*x(),
00201 x()*v.y() - v.x()*y());
00202 }
00203
00204
00210 template <class U>
00211 Basic3DVector<typename PreciseFloatType<T,U>::Type>
00212 cross( const Basic3DVector<U>& v) const {
00213 return Basic3DVector<typename PreciseFloatType<T,U>::Type>( y()*v.z() - v.y()*z(),
00214 z()*v.x() - v.z()*x(),
00215 x()*v.y() - v.x()*y());
00216 }
00217
00218 private:
00219 T theX;
00220 T theY;
00221 T theZ;
00222 T theW;
00223 }
00224 #ifndef __CINT__
00225 __attribute__ ((aligned (16)))
00226 #endif
00227 ;
00228
00229
00231 inline Basic3DVector<long double>
00232 operator+( const Basic3DVector<long double>& a, const Basic3DVector<long double>& b) {
00233 typedef Basic3DVector<long double> RT;
00234 return RT(a.x()+b.x(), a.y()+b.y(), a.z()+b.z());
00235 }
00236 inline Basic3DVector<long double>
00237 operator-( const Basic3DVector<long double>& a, const Basic3DVector<long double>& b) {
00238 typedef Basic3DVector<long double> RT;
00239 return RT(a.x()-b.x(), a.y()-b.y(), a.z()-b.z());
00240 }
00241
00242
00243
00244 template <class U>
00245 inline Basic3DVector<typename PreciseFloatType<long double,U>::Type>
00246 operator+( const Basic3DVector<long double>& a, const Basic3DVector<U>& b) {
00247 typedef Basic3DVector<typename PreciseFloatType<long double,U>::Type> RT;
00248 return RT(a.x()+b.x(), a.y()+b.y(), a.z()+b.z());
00249 }
00250
00251 template <class U>
00252 inline Basic3DVector<typename PreciseFloatType<long double,U>::Type>
00253 operator+(const Basic3DVector<U>& a, const Basic3DVector<long double>& b) {
00254 typedef Basic3DVector<typename PreciseFloatType<long double,U>::Type> RT;
00255 return RT(a.x()+b.x(), a.y()+b.y(), a.z()+b.z());
00256 }
00257
00258
00259 template <class U>
00260 inline Basic3DVector<typename PreciseFloatType<long double,U>::Type>
00261 operator-( const Basic3DVector<long double>& a, const Basic3DVector<U>& b) {
00262 typedef Basic3DVector<typename PreciseFloatType<long double,U>::Type> RT;
00263 return RT(a.x()-b.x(), a.y()-b.y(), a.z()-b.z());
00264 }
00265
00266 template <class U>
00267 inline Basic3DVector<typename PreciseFloatType<long double,U>::Type>
00268 operator-(const Basic3DVector<U>& a, const Basic3DVector<long double>& b) {
00269 typedef Basic3DVector<typename PreciseFloatType<long double,U>::Type> RT;
00270 return RT(a.x()-b.x(), a.y()-b.y(), a.z()-b.z());
00271 }
00272
00274
00275 inline long double operator*( const Basic3DVector<long double>& v1, const Basic3DVector<long double>& v2) {
00276 return v1.dot(v2);
00277 }
00278
00280 template <class U>
00281 inline typename PreciseFloatType<long double,U>::Type operator*( const Basic3DVector<long double>& v1,
00282 const Basic3DVector<U>& v2) {
00283 return v1.x()*v2.x() + v1.y()*v2.y() + v1.z()*v2.z();
00284 }
00285
00286 template <class U>
00287 inline typename PreciseFloatType<long double,U>::Type operator*(const Basic3DVector<U>& v1,
00288 const Basic3DVector<long double>& v2 ) {
00289 return v1.x()*v2.x() + v1.y()*v2.y() + v1.z()*v2.z();
00290 }
00291
00292
00296
00297 inline Basic3DVector<long double> operator*( const Basic3DVector<long double>& v, long double t) {
00298 return Basic3DVector<long double>(v.x()*t, v.y()*t, v.z()*t);
00299 }
00300
00302
00303 inline Basic3DVector<long double> operator*(long double t, const Basic3DVector<long double>& v) {
00304 return Basic3DVector<long double>(v.x()*t, v.y()*t, v.z()*t);
00305 }
00306
00307 template <typename S>
00308 inline Basic3DVector<long double> operator*(S t, const Basic3DVector<long double>& v) {
00309 return static_cast<long double>(t)*v;
00310 }
00311
00312 template <typename S>
00313 inline Basic3DVector<long double> operator*(const Basic3DVector<long double>& v, S t) {
00314 return static_cast<long double>(t)*v;
00315 }
00316
00317
00321 template <typename S>
00322 inline Basic3DVector<long double> operator/( const Basic3DVector<long double>& v, S s) {
00323 long double t = 1/s;
00324 return v*t;
00325 }
00326
00327
00328 typedef Basic3DVector<long double> Basic3DVectorLD;
00329
00330 #ifdef __clang__
00331 #pragma clang diagnostic pop
00332 #endif
00333
00334 #endif // GeometryVector_Basic3DVectorLD_h
00335
00336
00337