CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_5_3_9_patch3/src/Calibration/HcalAlCaRecoProducers/src/AlCaHOCalibProducer.cc

Go to the documentation of this file.
00001 // -*- C++ -*-
00002 //
00003 // Feb09 2009
00004 // Move the initialisation of SteppingHelixPropagator from ::beginJob() to ::produce()
00005 //
00006 // Oct3 2008
00007 // Difference in tag V00-02-45 with previous code
00008 
00009 // 1. One new object on data format, which was realised in  
00010 //     CRUZET data analysis.
00011 //2.  Remove all histogram and cout in the code
00012 //3. An upgrade in code, which increases the acceptance of 
00013 //    muon near the edge (this also realised in CRUZET data).
00014 // Difference in wrt V00-02-45
00015 // 1. initialisation tmpHOCalib.htime = -1000;
00016 // 2. By mistake HLT was commented out
00017 
00018 // Package:    AlCaHOCalibProducer
00019 // Class:      AlCaHOCalibProducer
00020 // 
00053 //
00054 // Original Author:  Gobinda Majumder
00055 //         Created:  Fri Jul  6 17:17:21 CEST 2007
00056 // $Id: AlCaHOCalibProducer.cc,v 1.25 2011/11/12 09:39:12 eulisse Exp $
00057 //
00058 //
00059 
00060 
00061 // system include files
00062 #include <memory>
00063 
00064 // user include files
00065 #include "FWCore/Framework/interface/Frameworkfwd.h"
00066 #include "FWCore/Framework/interface/EDProducer.h"
00067 
00068 #include "FWCore/Framework/interface/Event.h"
00069 #include "FWCore/Framework/interface/MakerMacros.h"
00070 #include "FWCore/Framework/interface/EventSetup.h"
00071 #include "FWCore/Framework/interface/ESHandle.h"
00072 #include "DataFormats/FWLite/interface/Handle.h"
00073 #include "FWCore/ParameterSet/interface/ParameterSet.h"
00074 
00075 #include "DataFormats/HcalDigi/interface/HcalDigiCollections.h"
00076 #include "FWCore/Utilities/interface/InputTag.h"
00077 #include "DataFormats/TrackReco/interface/Track.h"
00078 #include "DataFormats/TrackReco/interface/TrackFwd.h"
00079 
00080 #include "Geometry/Records/interface/IdealGeometryRecord.h"
00081 #include "Geometry/CaloGeometry/interface/CaloSubdetectorGeometry.h"
00082 #include "Geometry/CaloGeometry/interface/CaloGeometry.h"
00083 #include "Geometry/CaloGeometry/interface/CaloCellGeometry.h"
00084 #include "DataFormats/HcalDetId/interface/HcalDetId.h"
00085 #include "DataFormats/HcalDetId/interface/HcalSubdetector.h"
00086 
00087 #include "Geometry/Records/interface/MuonGeometryRecord.h"
00088 #include "Geometry/DTGeometry/interface/DTGeometry.h"
00089 #include "Geometry/DTGeometry/interface/DTLayer.h"
00090 #include "Geometry/DTGeometry/interface/DTSuperLayer.h"
00091 #include "DataFormats/DTRecHit/interface/DTRecHitCollection.h"
00092 
00093 
00094 #include "CalibFormats/HcalObjects/interface/HcalDbService.h"
00095 #include "CalibFormats/HcalObjects/interface/HcalDbRecord.h"
00096 
00097 #include "CalibCalorimetry/HcalAlgos/interface/HcalAlgoUtils.h"
00098 #include "CalibCalorimetry/HcalAlgos/interface/HcalDbASCIIIO.h"
00099 #include "CalibFormats/HcalObjects/interface/HcalCalibrations.h"
00100 #include "CalibFormats/HcalObjects/interface/HcalCalibrationWidths.h"
00101 
00102 //08/07/07 #include "CondTools/Hcal/interface/HcalDbPool.h"
00103 //#include "CondFormats/HcalObjects/interface/HcalPedestals.h"
00104 //#include "CondFormats/HcalObjects/interface/HcalPedestalWidths.h"
00105 
00106 
00107 // #include "TrackingTools/GeomPropagators/interface/HelixArbitraryPlaneCrossing.h"
00108 #include "DataFormats/TrajectorySeed/interface/PropagationDirection.h"
00109 #include "DataFormats/GeometrySurface/interface/PlaneBuilder.h"
00110 
00111 #include "MagneticField/Engine/interface/MagneticField.h"
00112 #include "MagneticField/Records/interface/IdealMagneticFieldRecord.h"
00113 
00114 #include "DataFormats/HcalCalibObjects/interface/HOCalibVariables.h"
00115 #include "DataFormats/Math/interface/Error.h"
00116 #include "CLHEP/Vector/LorentzVector.h"
00117 
00118 #include "DataFormats/TrajectorySeed/interface/TrajectorySeedCollection.h"
00119 #include "DataFormats/CaloTowers/interface/CaloTowerCollection.h"
00120 
00121 #include "DataFormats/HcalRecHit/interface/HcalRecHitCollections.h"
00122 #include "DataFormats/Math/interface/Error.h"
00123 #include "TrackingTools/TrajectoryState/interface/FreeTrajectoryState.h"
00124 #include "TrackPropagation/SteppingHelixPropagator/interface/SteppingHelixPropagator.h"
00125 //#include "TrackPropagation/SteppingHelixPropagator/interface/SteppingHelixStateInfo.h"
00126 
00127 #include "FWCore/ServiceRegistry/interface/Service.h"
00128 #include "CommonTools/UtilAlgos/interface/TFileService.h"
00129 
00130 #include "DataFormats/L1GlobalTrigger/interface/L1GlobalTriggerReadoutRecord.h"
00131 #include "DataFormats/Common/interface/TriggerResults.h"
00132 #include "FWCore/Common/interface/TriggerNames.h"
00133 
00134 
00135 #include "TFile.h"
00136 #include "TH1F.h"
00137 #include "TH2F.h"
00138 #include "TProfile.h"
00139 #include "TTree.h"
00140 /* C++ Headers */
00141 #include <string>
00142 
00143 #include <iostream>
00144 #include <fstream>
00145 //
00146 // class decleration
00147 //
00148 using namespace std;
00149 using namespace edm;
00150 using namespace reco;
00151 
00152 const int netabin= 16;  
00153 const int nphimx = 72;
00154 const int netamx = 32;
00155 const int nchnmx = 10;
00156 const int ncidmx = 5;
00157 
00158 //GMA #ifdef DEBUG_OFFLINE_GM
00159 const int nsigpk = 7;
00160 const int nstrbn = 0;
00161 const int ntrgp_gm = 11;
00162 
00163 
00164 const int netahbmx = 60;
00165 const int netahb3mx = 32;
00166 
00167 static const unsigned int nL1trg = 200;
00168 
00169 static const unsigned int nL1mx=140;
00170 static const unsigned int nHLTmx=140;
00171 //GMA #endif
00172 
00173 class AlCaHOCalibProducer : public edm::EDProducer {
00174    public:
00175       explicit AlCaHOCalibProducer(const edm::ParameterSet&);
00176       ~AlCaHOCalibProducer();
00177 
00178     typedef Basic3DVector<float>   PositionType;
00179     typedef Basic3DVector<float>   DirectionType;
00180     typedef Basic3DVector<float>   RotationType;
00181 
00182 
00183    private:
00184       void findHOEtaPhi(int iphsect, int& ietaho, int& iphiho);
00185       virtual void beginJob() ;
00186       virtual void produce(edm::Event&, const edm::EventSetup&);
00187       virtual void endJob() ;
00188 
00189       // ----------member data ---------------------------
00190 
00191   float  xhor0; //x-position in ring 0
00192   float  yhor0; //y-position in ring 0
00193   float  xhor1; //x-position in ring 1
00194   float  yhor1; //y-position in ring 1   
00195   int iring;    //Ring number -2,-1,0,1,2
00196 
00197   float  localxhor0; //local x-distance from edege in ring 0
00198   float  localyhor0; //local y-distance from edege in ring 0
00199   float  localxhor1; //local x-distance from edege in ring 1
00200   float  localyhor1; //local y-distance from edege in ring 1
00201 
00202   float pedestal[netamx][nphimx][ncidmx]; 
00203 
00204   std::string digiLabel;
00205   
00206   bool debug;
00207   std::string theRootFileName;
00208 
00209   //GMA #ifdef DEBUG_OFFLINE_GM
00210 
00211   TH1F* libhoped;
00212   TH1F* libhoped1;
00213 
00214   TH1F* allhotime;
00215   TH1F* hotime[ntrgp_gm+1];
00216   TH1F* hopedtime;
00217 
00218   TProfile* hopedpr;  
00219   TH1F* hopedrms;  
00220   TH1F* hst_hopedrms;    
00221 
00222   TProfile* hopeak[ntrgp_gm+1];
00223   TProfile* horatio;
00224 
00225   TH1F* Nallhotime;
00226   TH1F* Nhotime[ntrgp_gm+1];
00227   TH1F* Nhopedtime;
00228 
00229   TH1F* allhb1;
00230   TH1F* allhb2;
00231   TH1F* allhb3;
00232 
00233   TH1F* Nallhb1;
00234   TH1F* Nallhb2;
00235   TH1F* Nallhb3;
00236 
00237   TProfile* hb1pedpr;  
00238   TH1F* hb1pedrms;  
00239   TH1F* hst_hb1pedrms;    
00240 
00241   TH1F* ho_occupency[5];  
00242 
00243   bool m_hotime;
00244   //GM #endif
00245 
00246   edm::InputTag muonTags_;   // cosmicMuons or standAloneMuons
00247   edm::InputTag hbheLabel_;
00248   edm::InputTag hoLabel_;
00249   edm::InputTag hltLabel_;
00250   edm::InputTag l1Label_;  
00251   edm::InputTag towerLabel_;    
00252 
00253   bool m_digiInput;            // digi (true) or rechit (false)
00254   bool m_hbinfo;
00255   int m_startTS;
00256   int m_endTS;    
00257   double m_magscale;
00258   double m_sigma;
00259 
00260   typedef math::Error<5>::type CovarianceMatrix;  
00261   //#ifdef DEBUG_OFFLINE_GM
00262   //  int Nevents;
00263   int Noccu;
00264   //  int Npass;
00265   int nRuns;
00266   //#endif
00267 
00268   int irunold;
00269   //  SteppingHelixPropagator* stepProp;
00270   FreeTrajectoryState getFreeTrajectoryState( const reco::Track& tk, const MagneticField* field, int itag, bool dir);
00271 
00272   edm::ESHandle<HcalDbService> conditions_;
00273   const HcalQIEShape* m_shape;
00274   const HcalQIECoder* m_coder;
00275 
00276   HcalCalibrations calibped;
00277   HcalCalibrationWidths calibwidth;
00278 
00279   unsigned int Ntp; // # of HLT trigger paths (should be the same for all events!)
00280   std::map<std::string, bool> fired; 
00281 
00282 };
00283 
00284 //
00285 // constants, enums and typedefs
00286 //
00287 
00288 //
00289 // static data member definitions
00290 //
00291 
00292 //
00293 // constructors and destructor
00294 //
00295 AlCaHOCalibProducer::AlCaHOCalibProducer(const edm::ParameterSet& iConfig)
00296   :  muonTags_(iConfig.getUntrackedParameter<edm::InputTag>("muons"))
00297 
00298 {
00299    //register your products
00300 
00301   theRootFileName = iConfig.getUntrackedParameter<string>("RootFileName","tmp.root");
00302   m_digiInput = iConfig.getUntrackedParameter<bool>("digiInput", true);
00303   m_hbinfo = iConfig.getUntrackedParameter<bool>("hbinfo", false);
00304   m_startTS = iConfig.getUntrackedParameter<int>("firstTS", 4);
00305 
00306   m_hotime = iConfig.getUntrackedParameter<bool>("hotime", false);
00307 
00308   if(m_startTS<0) m_startTS=0;
00309   m_endTS = iConfig.getUntrackedParameter<int>("lastTS", 7);
00310   if (m_endTS < m_startTS) m_endTS = m_startTS + 3;
00311   if (m_endTS >9) m_endTS=9;
00312   m_magscale = iConfig.getUntrackedParameter<double>("m_scale", 4.0);
00313   m_sigma = iConfig.getUntrackedParameter<double>("sigma", 1.0);
00314   
00315   hoLabel_ = iConfig.getParameter<edm::InputTag>("hoInput");
00316   hbheLabel_ = iConfig.getParameter<edm::InputTag>("hbheInput");
00317   hltLabel_ = iConfig.getParameter<edm::InputTag>("hltInput");
00318   l1Label_ = iConfig.getParameter<edm::InputTag>("l1Input");
00319   towerLabel_ = iConfig.getParameter<edm::InputTag>("towerInput");  
00320   
00321   produces<HOCalibVariableCollection>("HOCalibVariableCollection").setBranchAlias("HOCalibVariableCollection");
00322   
00323   
00324   if (m_hotime) {
00325     edm::Service<TFileService> fs;
00326     
00327     char title[200];
00328     if ( m_digiInput) {
00329       libhoped = fs->make<TH1F>("libhoped", "libhoped", ncidmx*netamx*nphimx, -0.5, ncidmx*netamx*nphimx-0.5);
00330       libhoped1 = fs->make<TH1F>("libhoped1", "libhoped1", nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00331       allhotime = fs->make<TH1F>("allhotime", "allhotime", nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00332       for (int ij=0; ij<=ntrgp_gm; ij++) {
00333         sprintf(title, "hotime_trgp_%i", ij+1);
00334         hotime[ij] = fs->make<TH1F>(title, title, nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00335         sprintf(title, "hopeak_trgp_%i", ij+1);
00336         hopeak[ij] = fs->make<TProfile>(title, title,netamx*nphimx, -0.5, netamx*nphimx-0.5);    
00337       }
00338       
00339       horatio = fs->make<TProfile>("horatio", "horatio",netamx*nphimx, -0.5, netamx*nphimx-0.5);    
00340       hopedtime = fs->make<TH1F>("hopedtime", "hopedtime", nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00341       
00342       Nallhotime = fs->make<TH1F>("Nallhotime", "Nallhotime", nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00343       hopedpr = fs->make<TProfile>("hopedpr", "hopedpr", nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00344       hopedrms = fs->make<TH1F>("hopedrms", "hopedrms", nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00345       hst_hopedrms = fs->make<TH1F>("hst_hopedrms", "hst_hopedrms", 100, 0.0, 0.1);
00346       for (int ij=0; ij<=ntrgp_gm; ij++) {
00347         sprintf(title, "Nhotime_trgp_%i", ij+1);
00348         Nhotime[ij] = fs->make<TH1F>(title, title, nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00349       }
00350       Nhopedtime = fs->make<TH1F>("Nhopedtime", "Nhopedtime", nchnmx*netamx*nphimx, -0.5, nchnmx*netamx*nphimx-0.5);
00351       allhb1 = fs->make<TH1F>("allhb1", "allhb1", nchnmx*netahbmx*nphimx, -0.5, nchnmx*netahbmx*nphimx-0.5);
00352       allhb2 = fs->make<TH1F>("allhb2", "allhb2", nchnmx*netahb3mx*nphimx, -0.5, nchnmx*netahb3mx*nphimx-0.5); 
00353       allhb3 = fs->make<TH1F>("allhb3", "allhb3", nchnmx*netahb3mx*nphimx, -0.5, nchnmx*netahb3mx*nphimx-0.5); 
00354       Nallhb1 = fs->make<TH1F>("Nallhb1", "Nallhb1", nchnmx*netahbmx*nphimx, -0.5, nchnmx*netahbmx*nphimx-0.5);
00355       Nallhb2 = fs->make<TH1F>("Nallhb2", "Nallhb2", nchnmx*netahb3mx*nphimx, -0.5, nchnmx*netahb3mx*nphimx-0.5);
00356       Nallhb3 = fs->make<TH1F>("Nallhb3", "Nallhb3", nchnmx*netahb3mx*nphimx, -0.5, nchnmx*netahb3mx*nphimx-0.5);  
00357       hb1pedpr = fs->make<TProfile>("hb1pedpr", "hb1pedpr", nchnmx*netahbmx*nphimx, -0.5, nchnmx*netahbmx*nphimx-0.5);
00358       hb1pedrms = fs->make<TH1F>("hb1pedrms", "hb1pedrms", nchnmx*netahbmx*nphimx, -0.5, nchnmx*netahbmx*nphimx-0.5);
00359       hst_hb1pedrms = fs->make<TH1F>("hst_hb1pedrms", "hst_hb1pedrms", 100, 0., 0.1);
00360       
00361     }
00362     for (int i=0; i<5; i++) {
00363       sprintf(title, "ho_occupency (>%i #sigma)", i+2); 
00364       ho_occupency[i] = fs->make<TH1F>(title, title, netamx*nphimx, -0.5, netamx*nphimx-0.5); 
00365     }
00366   }
00367 
00368 }
00369 
00370 AlCaHOCalibProducer::~AlCaHOCalibProducer()
00371 {
00372  
00373   // do anything here that needs to be done at desctruction time
00374   // (e.g. close files, deallocate resources etc.)
00375 
00376   if (m_hotime) {
00377     //  Write the histos to file
00378     if ( m_digiInput) {
00379       allhotime->Divide(Nallhotime);
00380       for (int ij=0; ij<=ntrgp_gm; ij++) {
00381         hotime[ij]->Divide(Nhotime[ij]);
00382       }
00383       hopedtime->Divide(Nhopedtime);
00384       libhoped->Scale(1./max(1,nRuns));
00385       libhoped1->Scale(1./max(1,nRuns));   
00386       for (int i=0; i<nchnmx*netamx*nphimx; i++) {
00387         float xx = hopedpr->GetBinError(i+1);
00388         if (hopedpr->GetBinEntries(i+1) >0) {
00389           hopedrms->Fill(i, xx);
00390           hst_hopedrms->Fill(xx);
00391         }
00392       }
00393       allhb1->Divide(Nallhb1);
00394       allhb2->Divide(Nallhb2);
00395       allhb3->Divide(Nallhb3);
00396       for (int i=0; i<nchnmx*netahbmx*nphimx; i++) {
00397         float xx = hb1pedpr->GetBinError(i+1);
00398         if (hb1pedpr->GetBinEntries(i+1) >0) {
00399           hb1pedrms->Fill(i, xx);
00400           hst_hb1pedrms->Fill(xx);
00401         }
00402       }  
00403     }
00404     for (int i=0; i<5; i++) {
00405       ho_occupency[i]->Scale(1./max(1,Noccu));
00406     }
00407   }
00408 
00409 }
00410 
00411 
00412 //
00413 // member functions
00414 //
00415 
00416 // ------------ method called to produce the data  ------------
00417 void
00418 AlCaHOCalibProducer::produce(edm::Event& iEvent, const edm::EventSetup& iSetup)
00419 {
00420 
00421   using namespace edm;
00422   int irun = iEvent.id().run();
00423   if (m_digiInput) {
00424     if (irunold !=irun)  { 
00425       iSetup.get<HcalDbRecord>().get(conditions_);
00426       m_shape = (*conditions_).getHcalShape();
00427 
00428       for (int i=0; i<netamx; i++) {
00429         for (int j=0; j<nphimx; j++) {
00430           for (int k=0; k<ncidmx; k++) {
00431             pedestal[i][j][k]=0.0;
00432           }
00433         }
00434       }     
00435     }
00436   }
00437 
00438   //  if (m_hotime && m_digiInput) {
00439   if (m_digiInput) {
00440     if (irunold !=irun) {
00441       nRuns++;
00442       for (int i =-netabin+1; i<=netabin-1; i++) {
00443         if (i==0) continue;
00444         int tmpeta1 =  (i>0) ? i -1 : -i +14; 
00445         if (tmpeta1 <0 || tmpeta1 >netamx) continue;
00446         for (int j=0; j<nphimx; j++) {
00447           
00448           HcalDetId id(HcalOuter, i, j+1, 4);
00449           calibped = conditions_->getHcalCalibrations(id);
00450           
00451           for (int k =0; k<ncidmx-1; k++) {
00452             pedestal[tmpeta1][j][k] = calibped.pedestal(k); // pedm->getValue(k);
00453             pedestal[tmpeta1][j][ncidmx-1] += (1./(ncidmx-1))*pedestal[tmpeta1][j][k];
00454           }
00455           
00456           if (m_hotime) {
00457             for (int k =0; k<ncidmx; k++) {
00458               libhoped->Fill(nphimx*ncidmx*tmpeta1 + ncidmx*j + k, pedestal[tmpeta1][j][k]);
00459             }
00460             for (int k =0; k<nchnmx; k++) {
00461               libhoped1->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*j + k, pedestal[tmpeta1][j][min(k,ncidmx-1)]);
00462             }
00463           }
00464 
00465         }
00466       }
00467     }
00468   }
00469 
00470   //  Nevents++;
00471   irunold = irun;
00472 
00473   //GMA  if (Nevents%500==1) 
00474   //GMA  cout <<"AlCaHOCalibProducer Processing event # "<<Nevents<<" "<<Npass<<" "<<Noccu<<" "<<irun<<" "<<iEvent.id().event()<<endl;
00475 
00476   std::auto_ptr<HOCalibVariableCollection> hostore (new HOCalibVariableCollection);
00477 
00478   edm::Handle<HODigiCollection> ho;   
00479   
00480   edm::Handle<HBHEDigiCollection> hbhe; 
00481 
00482   if (m_digiInput) {
00483       iEvent.getByLabel(hoLabel_,ho);
00484       iEvent.getByLabel(hbheLabel_,hbhe);
00485   }
00486   
00487   if (m_hotime && m_digiInput) {
00488     if ((*ho).size()>0) {
00489       for (HODigiCollection::const_iterator j=(*ho).begin(); j!=(*ho).end(); j++){
00490         HcalDetId id =(*j).id();
00491         int tmpeta= id.ieta();
00492         int tmpphi= id.iphi();
00493         m_coder = (*conditions_).getHcalCoder(id);
00494         float tmpdata[nchnmx];
00495         int tmpeta1 = (tmpeta>0) ? tmpeta -1 : -tmpeta +14; 
00496         for (int i=0; i<(*j).size() && i<nchnmx; i++) {
00497           tmpdata[i] = m_coder->charge(*m_shape,(*j).sample(i).adc(),(*j).sample(i).capid());
00498           allhotime->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, tmpdata[i]);
00499           Nallhotime->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, 1.);
00500         }
00501       }
00502     }
00503     if ((*hbhe).size()>0) {
00504       for (HBHEDigiCollection::const_iterator j=(*hbhe).begin(); j!=(*hbhe).end(); j++){
00505         HcalDetId id =(*j).id();
00506         int tmpeta= id.ieta();
00507         int tmpphi= id.iphi();
00508         int tmpdepth =id.depth();
00509         m_coder = (*conditions_).getHcalCoder(id);
00510         int tmpeta1 =  (tmpeta>0) ? tmpeta -15 : -tmpeta + 1; 
00511         if (tmpdepth==1) tmpeta1 =  (tmpeta>0) ? tmpeta -1 : -tmpeta +29;  
00512         for (int i=0; i<(*j).size() && i<nchnmx; i++) {
00513           float signal = m_coder->charge(*m_shape,(*j).sample(i).adc(),(*j).sample(i).capid());
00514           if (tmpdepth==1) { 
00515             allhb1->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, signal);
00516             Nallhb1->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, 1);
00517             hb1pedpr->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, signal);}
00518           if (tmpdepth==2) { 
00519             allhb2->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, signal);
00520             Nallhb2->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, 1);}
00521           if (tmpdepth==3) { 
00522             allhb3->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, signal);
00523             Nallhb3->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, 1);}
00524         }
00525       }
00526     }
00527   }
00528 
00529   double pival = acos(-1.);
00530   
00531   Handle<reco::TrackCollection> cosmicmuon;
00532   iEvent.getByLabel(muonTags_, cosmicmuon);
00533   
00534   if (cosmicmuon->size()>0) { 
00535     
00536     int l1trg = 0;
00537     int hlttr = 0;
00538     
00539     int ntrgpas_gm[ntrgp_gm]={0,0,0,0,0,0,0,0,0,0};
00540  
00541     /*   
00542     //L1 trigger
00543     Handle<L1GlobalTriggerReadoutRecord> L1GTRR;
00544     iEvent.getByLabel(l1Label_,L1GTRR);  //gtDigis
00545     
00546     if ( L1GTRR.isValid()) {
00547       const unsigned int n(L1GTRR->decisionWord().size());
00548       const bool accept(L1GTRR->decision());
00549       if (accept) {
00550         for (unsigned int i=0; i!=n && i<32; ++i) {
00551           //    for (unsigned int i=0; i!=n ; ++i) {
00552           int il1trg = (L1GTRR->decisionWord()[i]) ? 1 : 0;
00553           if (il1trg>0 && i<32) l1trg +=int(std::pow(2., double(i%32))*il1trg);
00554         }
00555       }
00556     }// else { return;}
00557     
00558     //HLT 
00559 
00560     Handle<edm::TriggerResults> trigRes;    
00561     iEvent.getByLabel(hltLabel_, trigRes);
00562 
00563 
00564     unsigned int size = trigRes->size();
00565     edm::TriggerNames triggerNames(*trigRes);
00566     
00567     // loop over all paths, get trigger decision
00568     for(unsigned i = 0; i != size && i<32; ++i) {
00569       std::string name = triggerNames.triggerName(i);
00570       fired[name] = trigRes->accept(i);
00571       int ihlt =  trigRes->accept(i);
00572       if (m_hotime){ 
00573         if (ihlt >0 && i < (int)ntrgp_gm) { ntrgpas_gm[i] = 1;}
00574       }
00575       if (i<32 && ihlt>0) hlttr += int(std::pow(2., double(i%32))*ihlt);
00576     }
00577 
00578     */
00579 
00580     int Noccu_old = Noccu;
00581     
00582     for(reco::TrackCollection::const_iterator ncosm = cosmicmuon->begin();
00583         ncosm != cosmicmuon->end();  ++ncosm) {
00584       
00585       if ((*ncosm).ndof() < 15) continue;
00586       if ((*ncosm).normalizedChi2() >30.0) continue;
00587 
00588       HOCalibVariables tmpHOCalib;
00589       
00590       tmpHOCalib.trig1 = l1trg;
00591       tmpHOCalib.trig2 = hlttr;    
00592       
00593       int charge = ncosm->charge();  
00594       
00595       double innerr = (*ncosm).innerPosition().Perp2();
00596       double outerr = (*ncosm).outerPosition().Perp2();
00597       int iiner = (innerr <outerr) ? 1 : 0;
00598       
00599       //---------------------------------------------------
00600       //             in_to_out  Dir         in_to_out  Dir
00601       //   StandAlone ^         ^     Cosmic    ^    |
00602       //              |         |               |    v
00603       //---------------------------------------------------Y=0
00604       //   StandAlone |         |     Cosmic    ^    |
00605       //              v         v               |    v
00606       //----------------------------------------------------
00607       
00608       double posx, posy, posz;
00609       double momx, momy, momz;
00610       
00611       if (iiner==1) {
00612         posx = (*ncosm).innerPosition().X();
00613         posy = (*ncosm).innerPosition().Y();
00614         posz = (*ncosm).innerPosition().Z();
00615         
00616         momx = (*ncosm).innerMomentum().X();
00617         momy = (*ncosm).innerMomentum().Y();
00618         momz = (*ncosm).innerMomentum().Z();
00619         
00620       } else {
00621         posx = (*ncosm).outerPosition().X();
00622         posy = (*ncosm).outerPosition().Y();
00623         posz = (*ncosm).outerPosition().Z();
00624         
00625         momx = (*ncosm).outerMomentum().X();
00626         momy = (*ncosm).outerMomentum().Y();
00627         momz = (*ncosm).outerMomentum().Z();
00628       }
00629       
00630       
00631       PositionType trkpos(posx, posy, posz);
00632       
00633       CLHEP::Hep3Vector tmpmuon3v(posx, posy, posz);
00634       CLHEP::Hep3Vector tmpmuondir(momx, momy, momz);
00635       
00636       bool samedir = (tmpmuon3v.dot(tmpmuondir) >0) ? true : false;
00637       for (int i=0; i<3; i++) {tmpHOCalib.caloen[i] = 0.0;}
00638       int inearbymuon = 0;
00639       for(reco::TrackCollection::const_iterator ncosmcor = cosmicmuon->begin();
00640           ncosmcor != cosmicmuon->end();  ++ncosmcor) {
00641         if (ncosmcor==ncosm) continue;
00642         
00643         CLHEP::Hep3Vector tmpmuon3vcor;
00644         CLHEP::Hep3Vector tmpmom3v;
00645         if (iiner==1) {
00646           tmpmuon3vcor = CLHEP::Hep3Vector((*ncosmcor).innerPosition().X(),(*ncosmcor).innerPosition().Y(),(*ncosmcor).innerPosition().Z());
00647           tmpmom3v = CLHEP::Hep3Vector((*ncosmcor).innerMomentum().X(),(*ncosmcor).innerMomentum().Y(),(*ncosmcor).innerMomentum().Z());
00648         } else {
00649           tmpmuon3vcor = CLHEP::Hep3Vector((*ncosmcor).outerPosition().X(),(*ncosmcor).outerPosition().Y(),(*ncosmcor).outerPosition().Z());
00650           tmpmom3v = CLHEP::Hep3Vector((*ncosmcor).outerMomentum().X(),(*ncosmcor).outerMomentum().Y(),(*ncosmcor).outerMomentum().Z());        
00651           
00652         }
00653         if (tmpmom3v.mag()<0.2 || (*ncosmcor).ndof()<5) continue;
00654         
00655         double angle = tmpmuon3v.angle(tmpmuon3vcor);
00656         if (angle < 7.5*pival/180.) {inearbymuon=1;} //  break;}
00657 
00658         if (muonTags_.label() =="cosmicMuons") {
00659           if (angle <7.5*pival/180.) { tmpHOCalib.caloen[0] +=1.;}
00660           if (angle <15.0*pival/180.) { tmpHOCalib.caloen[1] +=1.;}
00661           if (angle <35.0*pival/180.) { tmpHOCalib.caloen[2] +=1.;}
00662         }
00663       }
00664       
00665       localxhor0 = localyhor0 = 20000;  //GM for 22OCT07 data
00666       
00667       if (muonTags_.label() =="standAloneMuons") {
00668         
00669         Handle<CaloTowerCollection> calotower;
00670         iEvent.getByLabel(towerLabel_, calotower);
00671 
00672         for (CaloTowerCollection::const_iterator calt = calotower->begin();
00673              calt !=calotower->end(); calt++) {
00674           //CMSSW_2_1_x const math::XYZVector towermom = (*calt).momentum();
00675           double ith = (*calt).momentum().theta();
00676           double iph = (*calt).momentum().phi();
00677           
00678           CLHEP::Hep3Vector calo3v(sin(ith)*cos(iph), sin(ith)*sin(iph), cos(ith));
00679           
00680           double angle = tmpmuon3v.angle(calo3v);
00681           
00682           if (angle < 7.5*pival/180.) {tmpHOCalib.caloen[0] += calt->emEnergy()+calt->hadEnergy();}
00683           if (angle < 15*pival/180.) {tmpHOCalib.caloen[1] += calt->emEnergy()+calt->hadEnergy();}
00684           if (angle < 35*pival/180.) {tmpHOCalib.caloen[2] += calt->emEnergy()+calt->hadEnergy();}
00685         }
00686         
00687         
00688       }
00689       if (tmpHOCalib.caloen[0] >10.0) continue;
00690       
00691       GlobalPoint glbpt(posx, posy, posz);
00692       
00693       double mom = sqrt(momx*momx + momy*momy +momz*momz);
00694       
00695       momx /= mom;
00696       momy /= mom;
00697       momz /= mom;
00698       
00699       DirectionType trkdir(momx, momy, momz);
00700       
00701       tmpHOCalib.trkdr = (*ncosm).d0();
00702       tmpHOCalib.trkdz = (*ncosm).dz();
00703       
00704       tmpHOCalib.nmuon = cosmicmuon->size();
00705       tmpHOCalib.trkvx = glbpt.x();
00706       tmpHOCalib.trkvy = glbpt.y();
00707       tmpHOCalib.trkvz = glbpt.z();
00708       tmpHOCalib.trkmm = mom*charge;
00709       tmpHOCalib.trkth = trkdir.theta();
00710       tmpHOCalib.trkph = trkdir.phi();
00711       
00712       tmpHOCalib.ndof  = (inearbymuon ==0) ? (int)(*ncosm).ndof() : -(int)(*ncosm).ndof();
00713       tmpHOCalib.chisq = (*ncosm).normalizedChi2(); // max(1.,tmpHOCalib.ndof);
00714       tmpHOCalib.therr = 0.;
00715       tmpHOCalib.pherr = 0.;
00716       
00717       if (iiner==1) {
00718         reco::TrackBase::CovarianceMatrix innercov = (*ncosm).innerStateCovariance();
00719         tmpHOCalib.therr = innercov(1,1); //thetaError();
00720         tmpHOCalib.pherr = innercov(2,2); //phi0Error();
00721       } else {
00722         reco::TrackBase::CovarianceMatrix outercov = (*ncosm).outerStateCovariance();
00723         tmpHOCalib.therr = outercov(1,1); //thetaError();
00724         tmpHOCalib.pherr = outercov(2,2); //phi0Error();
00725       }
00726       
00727       ESHandle<MagneticField> theMagField;
00728       iSetup.get<IdealMagneticFieldRecord>().get(theMagField );     
00729 
00730       SteppingHelixPropagator myHelix(&*theMagField,anyDirection);
00731       myHelix.setMaterialMode(false);
00732       myHelix.applyRadX0Correction(true);
00733 
00734       double phiho = trkpos.phi();
00735       if (phiho<0) phiho +=2*pival;
00736       
00737       int iphisect_dt=int(6*(phiho+pival/18.)/pival); //for u 18/12/06
00738       if (iphisect_dt>=12) iphisect_dt=0;
00739 
00740       int iphisect = -1;
00741 
00742       bool ipath = false;
00743       for (int kl = 0; kl<=2; kl++) {
00744 
00745         int iphisecttmp = (kl<2) ? iphisect_dt + kl : iphisect_dt - 1;
00746         if (iphisecttmp <0) iphisecttmp = 11;
00747         if (iphisecttmp >=12) iphisecttmp = 0;
00748         
00749         double phipos = iphisecttmp*pival/6.;
00750         double phirot = phipos;
00751         
00752         GlobalVector xLocal(-sin(phirot), cos(phirot), 0.);
00753         
00754         GlobalVector yLocal(0., 0., 1.);
00755         GlobalVector zLocal = xLocal.cross(yLocal).unit();
00756         //    GlobalVector zLocal(cos(phirot), sin(phirot), 0.0); 
00757         
00758 
00759         FreeTrajectoryState freetrajectorystate_ = getFreeTrajectoryState(*ncosm,&(*theMagField), iiner, samedir);
00760         
00761         Surface::RotationType rot(xLocal, yLocal, zLocal);
00762         
00763         for (int ik=1; ik>=0; ik--) { //propagate track in two HO layers
00764           
00765           double radial = 407.0;
00766           if (ik==0) radial = 382.0;
00767 
00768           Surface::PositionType pos(radial*cos(phipos), radial*sin(phipos), 0.);
00769           PlaneBuilder::ReturnType aPlane = PlaneBuilder().plane(pos,rot);
00770 
00771           Surface* aPlane2 = new Plane(pos,rot);
00772 
00773           SteppingHelixStateInfo steppingHelixstateinfo_ = myHelix.propagate(freetrajectorystate_, (*aPlane2));
00774 
00775           if (steppingHelixstateinfo_.isValid()) {
00776 
00777             GlobalVector hotrkpos2(steppingHelixstateinfo_.position().x(), steppingHelixstateinfo_.position().y(), steppingHelixstateinfo_.position().z());
00778             CLHEP::Hep3Vector hotrkdir2(steppingHelixstateinfo_.momentum().x(), steppingHelixstateinfo_.momentum().y(),steppingHelixstateinfo_.momentum().z());
00779             
00780             LocalVector lclvt0 = (*aPlane).toLocal(hotrkpos2);
00781             
00782             double xx = lclvt0.x();
00783             double yy = lclvt0.y();
00784             
00785             if (ik ==1) {
00786               if ((std::abs(yy) < 130 && xx >-64.7 && xx <138.2)
00787                   ||(std::abs(yy) > 130 && std::abs(yy) <700 && xx >-76.3 && xx <140.5)) {
00788                 ipath = true;  //Only look for tracks which as hits in layer 1
00789                 iphisect = iphisecttmp;
00790               }
00791             }
00792             
00793             if (iphisect != iphisecttmp) continue; //Look for ring-0 only when ring1 is accepted for that sector
00794             
00795             switch (ik) 
00796               {
00797               case 0 : 
00798                 xhor0 = xx; //lclvt0.x();
00799                 yhor0 = yy; //lclvt0.y();
00800                 break;
00801               case 1 :
00802                 xhor1 = xx; //lclvt0.x();
00803                 yhor1 = yy; //lclvt0.y();
00804                 
00805                 tmpHOCalib.hoang = CLHEP::Hep3Vector(zLocal.x(),zLocal.y(),zLocal.z()).dot(hotrkdir2.unit());
00806                 break;
00807               default : break;
00808               }
00809           } else {
00810             break;
00811           }
00812         }
00813         if (ipath) break;
00814       }
00815       if (ipath) { //If muon crossed HO laeyrs
00816         
00817         int ietaho = 50;
00818         int iphiho = -1;
00819         
00820         for (int i=0; i<9; i++) {tmpHOCalib.hosig[i]=-100.0;}
00821         for (int i=0; i<18; i++) {tmpHOCalib.hocorsig[i]=-100.0;}
00822         for (int i=0; i<9; i++) {tmpHOCalib.hbhesig[i]=-100.0;}
00823         tmpHOCalib.hocro = -100;
00824         tmpHOCalib.htime = -1000;
00825         
00826         int isect = 0;
00827 
00828         findHOEtaPhi(iphisect, ietaho, iphiho);
00829         
00830         if (ietaho !=0 && iphiho !=0 && std::abs(iring)<=2) { //Muon passed through a tower
00831           isect = 100*std::abs(ietaho+30)+std::abs(iphiho);
00832           if (std::abs(ietaho) >=netabin || iphiho<0) isect *=-1; //Not extrapolated to any tower
00833           if (std::abs(ietaho) >=netabin) isect -=1000000;  //not matched with eta
00834           if (iphiho<0)        isect -=2000000; //not matched with phi
00835           tmpHOCalib.isect = isect;
00836           
00837           tmpHOCalib.hodx = localxhor1;
00838           tmpHOCalib.hody = localyhor1;      
00839           
00840           if (iring==0) {
00841             tmpHOCalib.hocorsig[8] = localxhor0;
00842             tmpHOCalib.hocorsig[9] = localyhor0;
00843           }
00844           
00845           int etamn=-4;
00846           int etamx=4;
00847           if (iring==1) {etamn=5; etamx = 10;}
00848           if (iring==2) {etamn=11; etamx = 16;}
00849           if (iring==-1){etamn=-10; etamx = -5;}
00850           if (iring==-2){etamn=-16; etamx = -11;}
00851           
00852           int phimn = 1;
00853           int phimx = 2;
00854           if (iring ==0) {
00855             phimx =2*int((iphiho+1)/2.);
00856             phimn = phimx - 1;
00857           } else {
00858             phimn = 3*int((iphiho+1)/3.) - 1; 
00859             phimx = phimn + 2;
00860           }
00861           
00862           if (phimn <1) phimn += nphimx;
00863           if (phimx >72) phimx -= nphimx;
00864           
00865           int sigstr = m_startTS; // 5;
00866           int sigend = m_endTS; // 8;
00867           
00868           //      if (iphiho <=nphimx/2) { //GMA310508
00869           //        sigstr -=1; //GMA300608
00870           //        sigend -=1;
00871           //      }
00872           
00873           if (m_hbinfo) {
00874             for (int i=0; i<9; i++) {tmpHOCalib.hbhesig[i]=-100.0;}
00875             
00876             if (m_digiInput) {
00877               if ((*hbhe).size() >0) {
00878                 for (HBHEDigiCollection::const_iterator j=(*hbhe).begin(); j!=(*hbhe).end(); j++){
00879                   //              const HBHEDataFrame digi = (const HBHEDataFrame)(*j);
00880                   //              HcalDetId id =digi.id();
00881                   HcalDetId id =(*j).id();
00882                   int tmpeta= id.ieta();
00883                   int tmpphi= id.iphi();
00884                   m_coder = (*conditions_).getHcalCoder(id);
00885                   calibped = conditions_->getHcalCalibrations(id);
00886                   
00887                   int deta = tmpeta-ietaho;
00888                   if (tmpeta==-1 && ietaho== 1) deta = -1;
00889                   if (tmpeta== 1 && ietaho==-1) deta =  1;
00890                   int dphi = tmpphi-iphiho;
00891                   if (phimn >phimx) {
00892                     if (dphi==71) dphi=-1;
00893                     if (dphi==-71) dphi=1;
00894                   }
00895                   
00896                   int ipass2 = (std::abs(deta) <=1 && std::abs(dphi)<=1) ? 1 : 0; //NEED correction in full CMS detector
00897                   
00898                   if (ipass2 ==0 ) continue;
00899                   
00900                   float tmpdata[nchnmx];
00901                   for (int i=0; i<(*j).size() && i<nchnmx; i++) {
00902                     tmpdata[i] = m_coder->charge(*m_shape,(*j).sample(i).adc(),(*j).sample(i).capid());
00903                   }
00904                   
00905                   float signal = 0;
00906                   for (int i=1; i<(*j).size() && i<=8; i++) {
00907                     signal += tmpdata[i] - calibped.pedestal((*j).sample(i).capid());; 
00908                   }
00909                   
00910                   if (ipass2 == 1) {
00911                     if (3*(deta+1)+dphi+1<9)  tmpHOCalib.hbhesig[3*(deta+1)+dphi+1] = signal;
00912                   }
00913                 }
00914               }
00915               
00916             } else {
00917               
00918               edm::Handle<HBHERecHitCollection> hbheht;// iEvent.getByType(hbheht);
00919               iEvent.getByLabel(hbheLabel_,hbheht);
00920 
00921               
00922               if ((*hbheht).size()>0) {
00923                 if(!(*hbheht).size()) throw (int)(*hbheht).size();
00924                 
00925                 for (HBHERecHitCollection::const_iterator j=(*hbheht).begin(); j!=(*hbheht).end(); j++){
00926                   //              const HBHERecHit hbhehtrec = (const HBHERecHit)(*j);
00927                   //              HcalDetId id =hbhehtrec.id();
00928                   HcalDetId id =(*j).id();
00929                   int tmpeta= id.ieta();
00930                   int tmpphi= id.iphi();
00931                   
00932                   int deta = tmpeta-ietaho;
00933                   if (tmpeta==-1 && ietaho== 1) deta = -1;
00934                   if (tmpeta== 1 && ietaho==-1) deta =  1;
00935                   int dphi = tmpphi-iphiho;
00936                   if (phimn >phimx) {
00937                     if (dphi==71) dphi=-1;
00938                     if (dphi==-71) dphi=1;
00939                   }
00940                   
00941                   int ipass2 = (std::abs(deta) <=1 && std::abs(dphi)<=1) ? 1 : 0; //NEED correction in full CMS detector
00942                   if ( ipass2 ==0 ) continue;
00943                   
00944                   float signal = (*j).energy();
00945                   
00946                   if (3*(deta+1)+dphi+1<9)  tmpHOCalib.hbhesig[3*(deta+1)+dphi+1] = signal;
00947                 }
00948               }
00949               
00950             } //else m_digilevel
00951             
00952           } //m_hbinfo #endif
00953           
00954           if (m_digiInput) {
00955             if ((*ho).size()>0) {
00956               int isFilled[netamx*nphimx]; 
00957               for (int j=0; j<netamx*nphimx; j++) {isFilled[j]=0;}
00958               
00959               double sumEt = 0;
00960               double sumE  = 0;
00961               
00962               for (HODigiCollection::const_iterator j=(*ho).begin(); j!=(*ho).end(); j++){
00963                 //              const HODataFrame digi = (const HODataFrame)(*j);
00964                 //              HcalDetId id =digi.id();
00965 
00966                 HcalDetId id =(*j).id();                
00967                 int tmpeta= id.ieta();
00968                 int tmpphi= id.iphi();
00969                 m_coder = (*conditions_).getHcalCoder(id);
00970                 
00971                 int ipass1 =0;
00972                 if (tmpeta >=etamn && tmpeta <=etamx) {
00973                   if (phimn < phimx) {
00974                     ipass1 = (tmpphi >=phimn && tmpphi <=phimx ) ? 1 : 0;
00975                   } else {
00976                     ipass1 = (tmpphi==71 || tmpphi ==72 || tmpphi==1) ? 1 : 0;
00977                   }
00978                 }
00979                 
00980                 int deta = tmpeta-ietaho;
00981                 if (tmpeta==-1 && ietaho== 1) deta = -1;
00982                 if (tmpeta== 1 && ietaho==-1) deta =  1;
00983                 
00984                 int dphi = tmpphi -iphiho;
00985                 if (phimn>phimx) {
00986                   if (dphi==71) dphi=-1;
00987                   if (dphi==-71) dphi=1;
00988                 }
00989                 
00990                 int ipass2 = (std::abs(deta) <=1 && std::abs(dphi)<=1) ? 1 : 0;
00991                 
00992                 int tmpeta1 = (tmpeta>0) ? tmpeta -1 : -tmpeta +14; 
00993                 
00994                 float tmpdata[nchnmx]={0,0,0,0,0,0,0,0,0,0};
00995                 float sigvall[nsigpk]={0,0,0,0,0,0,0};
00996              
00997                 for (int i=0; i<(*j).size() && i<nchnmx; i++) {
00998                   tmpdata[i] = m_coder->charge(*m_shape,(*j).sample(i).adc(),(*j).sample(i).capid());
00999                   if (deta==0 && dphi==0) { 
01000                     double tmpE = tmpdata[i] - pedestal[tmpeta1][tmpphi-1][(*j).sample(i).capid()];
01001                     if (tmpE >0) {
01002                       sumEt += i*tmpE;
01003                       sumE  += tmpE;
01004                     }
01005                     if (m_hotime) {
01006                       //calculate signals in 4 time slices, 0-3,.. 6-9
01007                       if (i>=7-nsigpk) {
01008                         for (int ncap=0; ncap<nsigpk; ncap++) {
01009                           if (i-ncap >= nstrbn && i-ncap <= nstrbn+3) { 
01010                             sigvall[ncap] +=tmpdata[i];
01011                           }
01012                         }
01013                         }
01014                       if (i==(*j).size()-1) {
01015                         float mxled=-1;
01016                         int imxled = 0;
01017                         for (int ij=0; ij<nsigpk; ij++) {
01018                           if (sigvall[ij] > mxled) {mxled = sigvall[ij]; imxled=ij;}
01019                         }
01020                         double pedx = 0.0;
01021                         for (int ij=0; ij<4; ij++) {
01022                           pedx +=pedestal[tmpeta1][tmpphi-1][ij];
01023                         }
01024                         if (mxled-pedx >2 && mxled-pedx <20 ) {
01025                           hopeak[ntrgp_gm]->Fill(nphimx*tmpeta1 + tmpphi-1, imxled+nstrbn);
01026                           for (int jk=0; jk<ntrgp_gm; jk++) {
01027                             if (ntrgpas_gm[jk]>0) {
01028                               hopeak[jk]->Fill(nphimx*tmpeta1 + tmpphi-1, imxled+nstrbn);
01029                             }
01030                           }
01031                           if (tmpdata[5]+tmpdata[6] >1) {
01032                             horatio->Fill(nphimx*tmpeta1 + tmpphi-1, (tmpdata[5]-tmpdata[6])/(tmpdata[5]+tmpdata[6]));
01033                           }
01034                           for (int ij=0; ij<(*j).size() && ij<nchnmx; ij++) {
01035                             hotime[ntrgp_gm]->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + ij, tmpdata[ij]);
01036                             Nhotime[ntrgp_gm]->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + ij, 1.);
01037                             for (int jk=0; jk<ntrgp_gm; jk++) {
01038                               if (ntrgpas_gm[jk]>0) {
01039                                 hotime[jk]->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + ij, tmpdata[ij]);
01040                                 Nhotime[jk]->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + ij, 1.);
01041                               }
01042                             }
01043                           }
01044                         }
01045                       }
01046                     }
01047                   }
01048                 }
01049 
01050                 if (std::abs(tmpeta) <=15 && deta==0 && dphi ==0) { 
01051                   float signal = 0;
01052                   size_t icnt = 0;
01053                   for (int i =0; i<nchnmx && i< (*j).size(); i++) {
01054                     if (i >=sigstr && i<=sigend) continue;
01055                     signal += tmpdata[i] - pedestal[tmpeta1][tmpphi-1][(*j).sample(i).capid()];
01056                     if (++icnt >=4) break;
01057                   }
01058                   tmpHOCalib.hocro = signal;
01059                 }
01060                 
01061                 if (m_hotime) { 
01062                   if (ipass1 ==0 && ipass2 ==0 && cosmicmuon->size()<=2) {
01063                     if (std::abs(ietaho) <=netabin && iphiho >0) {
01064                       if ((iphiho >=1 && iphiho<=nphimx/2 && tmpphi >=1 && tmpphi <=nphimx/2) ||
01065                           (iphiho >nphimx/2 && iphiho<=nphimx && tmpphi >nphimx/2 && tmpphi <=nphimx)) {
01066                         if (isFilled[nphimx*tmpeta1+tmpphi-1]==0) {
01067                           isFilled[nphimx*tmpeta1+tmpphi-1]=1;
01068                           for (int i=0; i<(*j).size() && i<nchnmx; i++) {
01069                             hopedtime->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, tmpdata[i]);
01070                             Nhopedtime->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, 1.); 
01071                             hopedpr->Fill(nphimx*nchnmx*tmpeta1 + nchnmx*(tmpphi-1) + i, tmpdata[i]);
01072                           }
01073                         } //isFilled
01074                       }
01075                     }
01076                   }
01077                 }
01078                 
01079                 if (ipass1 ==0 && ipass2 ==0 ) continue;
01080                 
01081                 float signal = 0;
01082                 for (int i=sigstr; i<(*j).size() && i<=sigend; i++) {
01083                   signal += tmpdata[i] - pedestal[tmpeta1][tmpphi-1][(*j).sample(i).capid()];
01084                 }
01085                 if (signal <-100 || signal >100000) signal = -100;
01086                 if (m_hotime) {
01087                   if (signal >-100 && Noccu == Noccu_old) {
01088                     for (int i=0; i<5; i++) {
01089                       if (signal >(i+2)*m_sigma) {
01090                         ho_occupency[i]->Fill(nphimx*tmpeta1+tmpphi-1);
01091                       }
01092                     }
01093                   }
01094                 }
01095 
01096                 if (ipass1 ==0 && ipass2 ==0 ) continue;
01097                 
01098                 if (ipass1 ==1) {
01099                   int tmpdph = tmpphi-phimn;
01100                   if (tmpdph<0) tmpdph = 2;  //only case of iphi==1, where phimn=71
01101                   
01102                   int ilog = 2*(tmpeta-etamn)+tmpdph;
01103                   if (iring !=0) { 
01104                     if (iring >0) {
01105                       ilog = 3*(tmpeta-etamn)+tmpdph; //Again CMS correction
01106                     } else {
01107                       ilog = 3*(etamx-tmpeta)+tmpdph; //Again CMS correction
01108                     }
01109                   }
01110                   if (ilog>-1 && ilog<18) { 
01111                     tmpHOCalib.hocorsig[ilog] = signal;
01112                   }
01113                 }             
01114                 
01115                 if (ipass2 ==1) {
01116                   if (3*(deta+1)+dphi+1<9) tmpHOCalib.hosig[3*(deta+1)+dphi+1] = signal; //Again CMS azimuthal near phi 1&72
01117                 }
01118                 
01119                 /*
01120                 // Possibility to store pedestal by shifting phi tower by 6
01121                 // But, due to missing tower at +-5, we do not have always proper
01122                 // statistics and also in pedestal subtracted data, we do not have
01123                 // signal in that tower
01124                 // 
01125                 if (deta==0 && dphi ==0) {
01126                   int crphi = tmpphi + 6;
01127                   if (crphi >72) crphi -=72;
01128                   
01129                   for (HODigiCollection::const_iterator jcr=(*ho).begin(); jcr!=(*ho).end(); jcr++){
01130                   //                const HODataFrame (*jcr) = (const HODataFrame)(*jcr);
01131                   //                HcalDetId idcr =(*jcr).id();
01132                   HcalDetId id =(*jcr).id();
01133                     int etacr= idcr.ieta();
01134                     int phicr= idcr.iphi();
01135                     m_coder = (*conditions_).getHcalCoder(idcr);
01136                     
01137                     if (tmpeta==etacr && crphi ==phicr) {
01138                       
01139                       float tmpdatacr[nchnmx];
01140                       for (int i=0; i<(*jcr).size() && i<nchnmx; i++) {
01141                         tmpdatacr[i] = m_coder->charge(*m_shape,(*jcr).sample(i).adc(),(*jcr).sample(i).capid());
01142                       }
01143                     }
01144                     }
01145                     }
01146                 */
01147                 
01148             }
01149             tmpHOCalib.htime = sumEt/max(sumE,1.e-6);
01150           } 
01151         } else {
01152           edm::Handle<HORecHitCollection> hoht;
01153           iEvent.getByLabel(hoLabel_,hoht);
01154             
01155           
01156           if ((*hoht).size()>0) {
01157             for (HORecHitCollection::const_iterator j=(*hoht).begin(); j!=(*hoht).end(); j++){
01158               //                const HORecHit hohtrec = (const HORecHit)(*j);
01159               //                HcalDetId id =hohtrec.id();
01160               HcalDetId id =(*j).id();
01161               int tmpeta= id.ieta();
01162               int tmpphi= id.iphi();
01163 
01164               int ipass1 =0;
01165               if (tmpeta >=etamn && tmpeta <=etamx) {
01166                 if (phimn < phimx) {
01167                   ipass1 = (tmpphi >=phimn && tmpphi <=phimx ) ? 1 : 0;
01168                 } else {
01169                   ipass1 = (tmpphi==71 || tmpphi ==72 || tmpphi==1) ? 1 : 0;
01170                 }
01171               }
01172               
01173               int deta = tmpeta-ietaho;
01174               if (tmpeta==-1 && ietaho== 1) deta = -1;
01175               if (tmpeta== 1 && ietaho==-1) deta =  1;
01176               
01177               int dphi = tmpphi -iphiho;
01178               if (phimn>phimx) {
01179                 if (dphi==71) dphi=-1;
01180                 if (dphi==-71) dphi=1;
01181               }
01182               
01183               float signal = (*j).energy();
01184               if (m_hotime) {
01185                 int tmpeta1 = (tmpeta>0) ? tmpeta -1 : -tmpeta +14; 
01186                 if (signal >-100 && Noccu == Noccu_old) {
01187                   for (int i=0; i<5; i++) {
01188                     if (signal >(i+2)*m_sigma) {
01189                       ho_occupency[i]->Fill(nphimx*tmpeta1+tmpphi-1);
01190                     }
01191                   }
01192                 }
01193               }
01194               
01195               int ipass2 = (std::abs(deta) <=1 && std::abs(dphi)<=1) ? 1 : 0;
01196               
01197               if (ipass1 ==0 && ipass2 ==0 ) continue;
01198               
01199               if (ipass1 ==1) {
01200                 int tmpdph = tmpphi-phimn;
01201                 if (tmpdph<0) tmpdph = 2;  //only case of iphi==1, where phimn=71
01202                   
01203                 int ilog = 2*(tmpeta-etamn)+tmpdph;
01204                 if (iring !=0) { 
01205                   if (iring >0) {
01206                     ilog = 3*(tmpeta-etamn)+tmpdph; //Again CMS correction
01207                   } else {
01208                     ilog = 3*(etamx-tmpeta)+tmpdph; //Again CMS correction
01209                   }
01210                 }
01211                 if (ilog>-1 && ilog<18) {
01212                   tmpHOCalib.hocorsig[ilog] = signal;
01213                 }
01214               }       
01215               
01216               if (ipass2 ==1) {
01217                 
01218                 if (3*(deta+1)+dphi+1<9) {
01219                   tmpHOCalib.hosig[3*(deta+1)+dphi+1] = signal; //Again CMS azimuthal near phi 1&72
01220                 }
01221               }
01222               
01223               if (deta==0 && dphi ==0) {
01224                 tmpHOCalib.htime = (*j).time();
01225                 int crphi = tmpphi + 6;
01226                 if (crphi >72) crphi -=72;
01227                 
01228                 for (HORecHitCollection::const_iterator jcr=(*hoht).begin(); jcr!=(*hoht).end(); jcr++){
01229                   const HORecHit reccr = (const HORecHit)(*jcr);
01230                   HcalDetId idcr =reccr.id();
01231                   int etacr= idcr.ieta();
01232                   int phicr= idcr.iphi();
01233                   if (tmpeta==etacr && crphi ==phicr) {
01234                     
01235                     tmpHOCalib.hocro = reccr.energy();
01236                     
01237                   }
01238                 }
01239               }
01240             }
01241           } 
01242         }
01243         
01244         //GMA     Npass++;
01245         if (Noccu == Noccu_old) Noccu++;
01246         hostore->push_back(tmpHOCalib); 
01247         
01248       }
01249     }
01250     
01251     } 
01252   } 
01253 
01254   iEvent.put(hostore, "HOCalibVariableCollection");
01255   
01256 }
01257 
01258 // ------------ method called once each job just before starting event loop  ------------
01259 void 
01260 AlCaHOCalibProducer::beginJob()
01261 {
01262   //GMA  Nevents = 0;
01263   //GMA  Npass = 0;
01264   //GMA  Noccu = 0;
01265 
01266   irunold = -1;
01267   nRuns = 0;
01268   //  edm::ESHandle<MagneticField> bField;
01269   //  iSetup.get<IdealMagneticFieldRecord>().get(bField);
01270   //  stepProp  = new SteppingHelixPropagator(&*bField,anyDirection);
01271   //  stepProp->setMaterialMode(false);
01272   //  stepProp->applyRadX0Correction(true);
01273   
01274   for (int i=0; i<netamx; i++) {
01275     for (int j=0; j<nphimx; j++) {
01276       for (int k=0; k<ncidmx; k++) {
01277         pedestal[i][j][k]=0.0;
01278       }
01279     }
01280   }
01281 
01282 
01283 }
01284 
01285 // ------------ method called once each job just after ending the event loop  ------------
01286 void 
01287 AlCaHOCalibProducer::endJob() {
01288 
01289 
01290 }
01291 
01292 void AlCaHOCalibProducer::findHOEtaPhi(int iphisect, int& ietaho, int& iphiho) {
01293   
01294   //18/12/06 : use only position, not angle phi
01295 
01296 double etalow[netabin]={   0.025,  35.195,  70.625, 106.595, 141.565, 180.765, 220.235, 261.385, 304.525, 349.975, 410.025, 452.085, 506.645, 565.025, 627.725, 660.25};
01297 double etahgh[netabin]={  35.145,  70.575, 106.545, 125.505, 180.715, 220.185, 261.335, 304.475, 349.925, 392.575, 452.035, 506.595, 564.975, 627.675, 661.075, 700.25};
01298 
01299   double philow[6]={-76.27, -35.11, 0.35, 35.81, 71.77, 108.93};  //Ring+/-1 & 2
01300   double phihgh[6]={-35.81, -0.35, 35.11, 71.07, 108.23, 140.49};
01301 
01302   double philow00[6]={-60.27, -32.91, 0.35, 33.61, 67.37, 102.23}; //Ring0 L0
01303   double phihgh00[6]={-33.61, -0.35, 32.91, 66.67, 101.53, 129.49};
01304 
01305   double philow01[6]={-64.67, -34.91, 0.35, 35.61, 71.37, 108.33}; //Ring0 L1
01306   double phihgh01[6]={-35.61, -0.35, 34.91, 70.67, 107.63, 138.19};
01307 
01308 
01309   iring = -10;
01310 
01311   double tmpdy =  std::abs(yhor1);
01312   for (int i=0; i<netabin; i++) {
01313     if (tmpdy >etalow[i] && tmpdy <etahgh[i]) {
01314       ietaho = i+1; 
01315       float tmp1 = fabs(tmpdy-etalow[i]);
01316       float tmp2 = fabs(tmpdy-etahgh[i]);
01317  
01318       localyhor1 = (tmp1 < tmp2) ? -tmp1 : tmp2;
01319 
01320       if (i<4) iring =0;
01321       if (i>=4 && i<10) iring=1;
01322       if (i>=10 && i<netabin) iring=2;
01323       break;
01324     }
01325   }
01326 
01327   int tmpphi = 0;
01328   int tmpphi0 = 0;
01329 
01330   if (ietaho >4) { //Ring 1 and 2
01331     for (int i=0; i<6; i++) {
01332       if (xhor1 >philow[i] && xhor1 <phihgh[i]) { 
01333         tmpphi=i+1; 
01334         float tmp1 = fabs(xhor1-philow[i]);
01335         float tmp2 = fabs(xhor1-phihgh[i]);
01336         localxhor1 = (tmp1 < tmp2) ? -tmp1 : tmp2;
01337         break;
01338       }
01339     }
01340   } else {  //Ring 0
01341     for (int i=0; i<6; i++) {
01342       if (xhor1 >philow01[i] && xhor1 <phihgh01[i]) { 
01343         tmpphi=i+1; 
01344         float tmp1 = fabs(xhor1-philow01[i]);
01345         float tmp2 = fabs(xhor1-phihgh01[i]);
01346         localxhor1 = (tmp1 < tmp2) ? -tmp1 : tmp2;
01347         break;
01348       }
01349     }
01350 
01351     for (int i=0; i<6; i++) {
01352       if (xhor0 >philow00[i] && xhor0 <phihgh00[i]) { 
01353         tmpphi0=i+1; 
01354         float tmp1 = fabs(xhor0-philow00[i]);
01355         float tmp2 = fabs(xhor0-phihgh00[i]);
01356         localxhor0 = (tmp1 < tmp2) ? -tmp1 : tmp2;
01357         if (tmpphi !=tmpphi0) localxhor0 +=10000.;
01358         break;
01359       }
01360     }
01361 
01362     double tmpdy =  std::abs(yhor0);
01363     for (int i=0; i<4; i++) {
01364       if (tmpdy >etalow[i] && tmpdy <etahgh[i]) {
01365         float tmp1 = fabs(tmpdy-etalow[i]);
01366         float tmp2 = fabs(tmpdy-etahgh[i]);
01367         localyhor0 = (tmp1 < tmp2) ? -tmp1 : tmp2;
01368         if (i+1 != ietaho)  localyhor0 +=10000.;
01369         break;
01370       }
01371     }
01372   }
01373 
01374   if (tmpphi!=0) { 
01375     iphiho = 6*iphisect -2 + tmpphi;
01376     if (iphiho <=0) iphiho +=nphimx;
01377     if (iphiho >nphimx) iphiho -=nphimx;
01378   }
01379 
01380   //  isect2 = 15*iring+iphisect+1;
01381 
01382   if (yhor1 <0) { 
01383     if (std::abs(ietaho) >netabin) { //Initialised with 50
01384       ietaho +=1; 
01385     } else {
01386       ietaho *=-1; 
01387     }
01388     //    isect2 *=-1; 
01389     iring *=-1;
01390   } 
01391 }
01392 
01393 FreeTrajectoryState AlCaHOCalibProducer::getFreeTrajectoryState( const reco::Track& tk, const MagneticField* field, int iiner, bool dir)
01394 {
01395 
01396   if (iiner ==0) {
01397     GlobalPoint gpos( tk.outerX(), tk.outerY(), tk.outerZ());
01398     GlobalVector gmom( tk.outerPx(), tk.outerPy(), tk.outerPz());
01399     if (dir) gmom *=-1.;
01400     GlobalTrajectoryParameters par( gpos, gmom, tk.charge(), field);
01401     CurvilinearTrajectoryError err( tk.extra()->outerStateCovariance());
01402     return FreeTrajectoryState( par, err);
01403   } else {
01404     GlobalPoint gpos( tk.innerPosition().X(), tk.innerPosition().Y(), tk.innerPosition().Z());
01405     GlobalVector gmom( tk.innerMomentum().X(), tk.innerMomentum().Y(), tk.innerMomentum().Z());
01406     if (dir) gmom *=-1.;
01407     GlobalTrajectoryParameters par( gpos, -gmom, tk.charge(), field);
01408     CurvilinearTrajectoryError err( tk.extra()->innerStateCovariance());
01409     return FreeTrajectoryState( par, err);
01410   }
01411 
01412 }
01413 
01414 #include "FWCore/Framework/interface/MakerMacros.h"
01415 
01416 //define this as a plug-in
01417 DEFINE_FWK_MODULE(AlCaHOCalibProducer);
01418