CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_5_3_6/src/DataFormats/GeometryVector/interface/newBasic2DVector.h

Go to the documentation of this file.
00001 #ifndef GeometryVector_newBasic2DVector_h
00002 #define GeometryVector_newBasic2DVector_h
00003 
00004 #include "DataFormats/GeometryVector/interface/Phi.h"
00005 #include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
00006 #include "DataFormats/GeometryVector/interface/CoordinateSets.h"
00007 #include "DataFormats/Math/interface/SSEVec.h"
00008 
00009 
00010 #include <cmath>
00011 #include <iosfwd>
00012 
00013 
00014 template < class T> 
00015 class Basic2DVector {
00016 public:
00017 
00018   typedef T    ScalarType;
00019   typedef mathSSE::Vec2<T> VectorType;
00020   typedef mathSSE::Vec2<T> MathVector;
00021   typedef Geom::Polar2Cartesian<T>        Polar;
00022 
00027   Basic2DVector() {}
00028 
00030   Basic2DVector( const Basic2DVector & p) : v(p.v) {}
00031 
00032   template<typename U>
00033   Basic2DVector( const Basic2DVector<U> & p) : v(p.v) {}
00034 
00035 
00043   template <class Other> 
00044   explicit Basic2DVector( const Other& p) : v(p.x(),p.y()) {}
00045 
00047   Basic2DVector( const T& x, const T& y) : v(x,y) {}
00048 
00049   // constructor from Vec2 or vec4
00050   template<typename U>
00051   Basic2DVector(mathSSE::Vec2<U> const& iv) : v(iv){}
00052   template<typename U>
00053   Basic2DVector(mathSSE::Vec4<U> const& iv) : v(iv.xy()){}
00054 
00055   MathVector const & mathVector() const { return v;}
00056   MathVector & mathVector() { return v;}
00057 
00058 
00060   T x() const { return v[0];}
00061 
00063   T y() const { return v[1];}
00064 
00066   T mag2() const { return ::dot(v,v);}
00067 
00069   T mag() const  { return std::sqrt( mag2());}
00070 
00072   T r() const    { return mag();}
00073 
00078   T barePhi() const {return std::atan2(y(),x());}
00079   Geom::Phi<T> phi() const {return Geom::Phi<T>(atan2(y(),x()));}
00080 
00084   Basic2DVector unit() const {
00085     T my_mag = mag();
00086     return my_mag == 0 ? *this : *this / my_mag;
00087   }
00088 
00091   template <class U> 
00092   Basic2DVector& operator+= ( const Basic2DVector<U>& p) {
00093     v = v + p.v;
00094     return *this;
00095   } 
00096 
00099   template <class U> 
00100   Basic2DVector& operator-= ( const Basic2DVector<U>& p) {
00101     v = v - p.v;
00102     return *this;
00103   } 
00104 
00106   Basic2DVector operator-() const { return Basic2DVector(-v);}
00107 
00109   Basic2DVector& operator*= ( T t) {
00110     v = v*t;
00111     return *this;
00112   } 
00113 
00115   Basic2DVector& operator/= ( T t) {
00116     t = T(1)/t;
00117     v = v*t;
00118     return *this;
00119   } 
00120 
00122   T dot( const Basic2DVector& lh) const { return ::dot(v,lh.v);}
00123 
00129   template <class U> 
00130   typename PreciseFloatType<T,U>::Type dot( const Basic2DVector<U>& lh) const { 
00131     return Basic2DVector<typename PreciseFloatType<T,U>::Type>(*this)
00132       .dot(Basic2DVector<typename PreciseFloatType<T,U>::Type>(lh));
00133   }
00134 
00136   T cross( const Basic2DVector& lh) const { return ::cross(v,lh.v);}
00137 
00143   template <class U> 
00144   typename PreciseFloatType<T,U>::Type cross( const Basic2DVector<U>& lh) const { 
00145     return Basic2DVector<typename PreciseFloatType<T,U>::Type>(*this)
00146       .cross(Basic2DVector<typename PreciseFloatType<T,U>::Type>(lh));
00147   }
00148 
00149 
00150 public:
00151 
00152   mathSSE::Vec2<T> v;
00153 
00154 };
00155 
00156 
00157 namespace geometryDetails {
00158   std::ostream & print2D(std::ostream& s, double x, double y);
00159 
00160 }
00161 
00163 template <class T>
00164 inline std::ostream & operator<<( std::ostream& s, const Basic2DVector<T>& v) {
00165   return geometryDetails::print2D(s, v.x(),v.y());
00166 }
00167 
00168 
00170 template <class T>
00171 inline Basic2DVector<T>
00172 operator+( const Basic2DVector<T>& a, const Basic2DVector<T>& b) {
00173   return a.v+b.v;
00174 }
00175 template <class T>
00176 inline Basic2DVector<T>
00177 operator-( const Basic2DVector<T>& a, const Basic2DVector<T>& b) {
00178   return a.v-b.v;
00179 }
00180 
00181 template <class T, class U>
00182 inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
00183 operator+( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
00184   typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
00185   return RT(a) + RT(b);
00186 }
00187 
00188 template <class T, class U>
00189 inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
00190 operator-( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
00191   typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
00192   return RT(a)-RT(b);
00193 }
00194 
00195 
00196 
00197 
00198 // scalar product of vectors of same precision
00199 template <class T>
00200 inline T operator*( const Basic2DVector<T>& v1, const Basic2DVector<T>& v2) {
00201   return v1.dot(v2);
00202 }
00203 
00205 template <class T, class U>
00206 inline typename PreciseFloatType<T,U>::Type operator*( const Basic2DVector<T>& v1, 
00207                                                        const Basic2DVector<U>& v2) {
00208   return v1.dot(v2);
00209 }
00210 
00211 
00215 template <class T>
00216 inline Basic2DVector<T> operator*( const Basic2DVector<T>& v, T t) {
00217   return v.v*t;
00218 }
00219 
00221 template <class T>
00222 inline Basic2DVector<T> operator*(T t, const Basic2DVector<T>& v) {
00223   return v.v*t;
00224 }
00225 
00226 
00227 
00228 template <class T, class Scalar>
00229 inline Basic2DVector<T> operator*( const Basic2DVector<T>& v, const Scalar& s) {
00230   T t = static_cast<T>(s);
00231   return v*t;
00232 }
00233 
00235 template <class T, class Scalar>
00236 inline Basic2DVector<T> operator*( const Scalar& s, const Basic2DVector<T>& v) {
00237   T t = static_cast<T>(s);
00238   return v*t;
00239 }
00240 
00244 template <class T>
00245 inline Basic2DVector<T> operator/(const Basic2DVector<T>& v, T t) {
00246   return v.v/t;
00247 }
00248 
00249 template <class T, class Scalar>
00250 inline Basic2DVector<T> operator/( const Basic2DVector<T>& v, const Scalar& s) {
00251   //   T t = static_cast<T>(Scalar(1)/s); return v*t;
00252    T t = static_cast<T>(s);
00253   return v/t;
00254 }
00255 
00256 typedef Basic2DVector<float> Basic2DVectorF;
00257 typedef Basic2DVector<double> Basic2DVectorD;
00258 
00259 
00260 #endif // GeometryVector_Basic2DVector_h