CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
G4MonopoleEquation.cc
Go to the documentation of this file.
1 //
2 // ********************************************************************
3 // * License and Disclaimer *
4 // * *
5 // * The Geant4 software is copyright of the Copyright Holders of *
6 // * the Geant4 Collaboration. It is provided under the terms and *
7 // * conditions of the Geant4 Software License, included in the file *
8 // * LICENSE and available at http://cern.ch/geant4/license . These *
9 // * include a list of copyright holders. *
10 // * *
11 // * Neither the authors of this software system, nor their employing *
12 // * institutes,nor the agencies providing financial support for this *
13 // * work make any representation or warranty, express or implied, *
14 // * regarding this software system or assume any liability for its *
15 // * use. Please see the license in the file LICENSE and URL above *
16 // * for the full disclaimer and the limitation of liability. *
17 // * *
18 // * This code implementation is the result of the scientific and *
19 // * technical work of the GEANT4 collaboration. *
20 // * By using, copying, modifying or distributing the software (or *
21 // * any work based on the software) you agree to acknowledge its *
22 // * use in resulting scientific publications, and indicate your *
23 // * acceptance of all terms of the Geant4 Software license. *
24 // ********************************************************************
25 //
26 // $Id: G4MonopoleEquation.cc,v 1.2 2010/12/12 18:02:24 sunanda Exp $
27 // GEANT4 tag $Name: CMSSW_5_3_11_patch3 $
28 //
29 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
30 //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo......
31 //
32 //
33 // class G4MonopoleEquation
34 //
35 // Class description:
36 //
37 //
38 // This is the standard right-hand side for equation of motion.
39 //
40 // The only case another is required is when using a moving reference
41 // frame ... or extending the class to include additional Forces,
42 // eg an electric field
43 //
44 // 10.11.98 V.Grichine
45 //
46 // 30.04.10 S.Burdin (modified to use for the monopole trajectories).
47 //
48 // 15.06.10 B.Bozsogi (replaced the hardcoded magnetic charge with
49 // the one passed by G4MonopoleTransportation)
50 // +workaround to pass the electric charge.
51 //
52 // 12.07.10 S.Burdin (added equations for the electric charges)
53 // -------------------------------------------------------------------
54 
55 #include "SimG4Core/MagneticField/interface/G4MonopoleEquation.hh"
56 #include "globals.hh"
57 #include <iomanip>
58 
59 G4MonopoleEquation::G4MonopoleEquation(G4ElectroMagneticField *emField )
60  : G4EquationOfMotion( emField ) {
61 }
62 
63 void
64 G4MonopoleEquation::SetChargeMomentumMass(G4double particleMagneticCharge, // e+ units
65  G4double particleElectricCharge,
66  G4double particleMass)
67 {
68  // fElCharge = particleElectricCharge;
69  fElCharge =eplus* particleElectricCharge*c_light;
70 
71 
72  fMagCharge = eplus*particleMagneticCharge*c_light ;
73 
74 // G4cout << " G4MonopoleEquation: ElectricCharge=" << particleElectricCharge
75 // << "; MagneticCharge=" << particleMagneticCharge
76 // << G4endl;
77 
78 
79  fMassCof = particleMass*particleMass ;
80 }
81 
82 void
83 G4MonopoleEquation::EvaluateRhsGivenB(const G4double y[],
84  const G4double Field[],
85  G4double dydx[] ) const
86 {
87 
88  // Components of y:
89  // 0-2 dr/ds,
90  // 3-5 dp/ds - momentum derivatives
91 
92  G4double pSquared = y[3]*y[3] + y[4]*y[4] + y[5]*y[5] ;
93 
94  G4double Energy = std::sqrt( pSquared + fMassCof );
95 
96  // G4double pModuleInverse = (pSquared <= 0.0) ? 0.0 : 1.0/std::sqrt(pSquared);
97  G4double pModuleInverse = 1.0/std::sqrt(pSquared);
98 
99  G4double inverse_velocity = Energy * pModuleInverse / c_light;
100 
101  G4double cofEl = fElCharge * pModuleInverse ;
102  G4double cofMag = fMagCharge * Energy * pModuleInverse;
103 
104 
105  dydx[0] = y[3]*pModuleInverse ;
106  dydx[1] = y[4]*pModuleInverse ;
107  dydx[2] = y[5]*pModuleInverse ;
108 
109  // G4double magCharge = twopi * hbar_Planck / (eplus * mu0);
110  // magnetic charge in SI units A*m convention
111  // see http://en.wikipedia.org/wiki/Magnetic_monopole
112  // G4cout << "Magnetic charge: " << magCharge << G4endl;
113 
114  // dp/ds = dp/dt * dt/ds = dp/dt / v = Force / velocity
115 
116  // dydx[3] = fMagCharge * Field[0] * inverse_velocity * c_light; // multiplied by c_light to convert to MeV/mm
117  // dydx[4] = fMagCharge * Field[1] * inverse_velocity * c_light;
118  // dydx[5] = fMagCharge * Field[2] * inverse_velocity * c_light;
119 
120  dydx[3] = cofMag * Field[0] + cofEl * (y[4]*Field[2] - y[5]*Field[1]);
121  dydx[4] = cofMag * Field[1] + cofEl * (y[5]*Field[0] - y[3]*Field[2]);
122  dydx[5] = cofMag * Field[2] + cofEl * (y[3]*Field[1] - y[4]*Field[0]);
123 
124 // G4cout << std::setprecision(5)<< "E=" << Energy
125 // << "; p="<< 1/pModuleInverse
126 // << "; mC="<< magCharge
127 // <<"; x=" << y[0]
128 // <<"; y=" << y[1]
129 // <<"; z=" << y[2]
130 // <<"; dydx[3]=" << dydx[3]
131 // <<"; dydx[4]=" << dydx[4]
132 // <<"; dydx[5]=" << dydx[5]
133 // << G4endl;
134 
135  dydx[6] = 0.;//not used
136 
138 
139  // Lab Time of flight
140  dydx[7] = inverse_velocity;
141  return ;
142 }
T sqrt(T t)
Definition: SSEVec.h:46