CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_5_3_3/src/DataFormats/GeometryVector/interface/oldBasic2DVector.h

Go to the documentation of this file.
00001 #ifndef GeometryVector_oldBasic2DVector_h
00002 #define GeometryVector_oldBasic2DVector_h
00003 #if defined(__CINT__)  && !defined(__REFLEX__)
00004 #define __REFLEX__
00005 #endif
00006 
00007 #include "DataFormats/GeometryVector/interface/Phi.h"
00008 #include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
00009 #include "DataFormats/GeometryVector/interface/CoordinateSets.h"
00010 #ifndef __REFLEX__ 
00011 #include "DataFormats/Math/interface/SSEVec.h"
00012 #endif
00013 
00014 
00015 #include <cmath>
00016 #include <iosfwd>
00017 
00018 
00019 template < class T> 
00020 class Basic2DVector {
00021 public:
00022   typedef  Basic2DVector<T> MathVector;
00023 
00024   typedef T    ScalarType;
00025   typedef Geom::Polar2Cartesian<T>        Polar;
00026 
00031   Basic2DVector() : theX(0), theY(0) {}
00032 
00034   Basic2DVector( const Basic2DVector & p) : 
00035     theX(p.x()), theY(p.y()) {}
00036 
00044   template <class Other> 
00045   explicit Basic2DVector( const Other& p) : theX(p.x()), theY(p.y()) {}
00046 
00048   Basic2DVector( const T& x, const T& y) : theX(x), theY(y) {}
00049 
00050 
00051 #ifndef __REFLEX__
00052   // constructor from Vec2 or vec4
00053   template<typename U>
00054   Basic2DVector(mathSSE::Vec2<U> const& iv) :
00055     theX(iv.arr[0]), theY(iv.arr[1]) {}
00056   template<typename U>
00057   Basic2DVector(mathSSE::Vec4<U> const& iv) :
00058     theX(iv.arr[0]), theY(iv.arr[1]) {}
00059 #endif  
00060 
00061 
00063   T x() const { return theX;}
00064 
00066   T y() const { return theY;}
00067 
00069   T mag2() const { return theX*theX + theY*theY;}
00070 
00072   T mag() const  { return std::sqrt( mag2());}
00073 
00075   T r() const    { return mag();}
00076 
00081   T barePhi() const {return std::atan2(theY,theX);}
00082   Geom::Phi<T> phi() const {return Geom::Phi<T>(atan2(theY,theX));}
00083 
00087   Basic2DVector unit() const {
00088     T my_mag = mag();
00089     return my_mag == 0 ? *this : *this / my_mag;
00090   }
00091 
00094   template <class U> 
00095   Basic2DVector& operator+= ( const Basic2DVector<U>& p) {
00096     theX += p.x();
00097     theY += p.y();
00098     return *this;
00099   } 
00100 
00103   template <class U> 
00104   Basic2DVector& operator-= ( const Basic2DVector<U>& p) {
00105     theX -= p.x();
00106     theY -= p.y();
00107     return *this;
00108   } 
00109 
00111   Basic2DVector operator-() const { return Basic2DVector(-x(),-y());}
00112 
00114   Basic2DVector& operator*= ( const T& t) {
00115     theX *= t;
00116     theY *= t;
00117     return *this;
00118   } 
00119 
00121   Basic2DVector& operator/= ( const T& t) {
00122     theX /= t;
00123     theY /= t;
00124     return *this;
00125   } 
00126 
00128   T dot( const Basic2DVector& v) const { return x()*v.x() + y()*v.y();}
00129 
00135   template <class U> 
00136   typename PreciseFloatType<T,U>::Type dot( const Basic2DVector<U>& v) const { 
00137     return x()*v.x() + y()*v.y();
00138   }
00139 
00140 
00141 
00143   T cross( const Basic2DVector& v) const { return x()*v.y() - y()*v.x();}
00144 
00150   template <class U> 
00151   typename PreciseFloatType<T,U>::Type cross( const Basic2DVector<U>& v) const { 
00152     return x()*v.y() - y()*v.x();
00153   }
00154 
00155 
00156 private:
00157   T theX;
00158   T theY;
00159 };
00160 
00161 
00162 namespace geometryDetails {
00163   std::ostream & print2D(std::ostream& s, double x, double y);
00164 
00165 }
00166 
00168 template <class T>
00169 inline std::ostream & operator<<( std::ostream& s, const Basic2DVector<T>& v) {
00170   return geometryDetails::print2D(s, v.x(),v.y());
00171 }
00172 
00173 
00175 template <class T, class U>
00176 inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
00177 operator+( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
00178   typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
00179   return RT(a.x()+b.x(), a.y()+b.y());
00180 }
00181 
00182 template <class T, class U>
00183 inline Basic2DVector<typename PreciseFloatType<T,U>::Type>
00184 operator-( const Basic2DVector<T>& a, const Basic2DVector<U>& b) {
00185   typedef Basic2DVector<typename PreciseFloatType<T,U>::Type> RT;
00186   return RT(a.x()-b.x(), a.y()-b.y());
00187 }
00188 
00189 
00190 
00191 
00192 // scalar product of vectors of same precision
00193 template <class T>
00194 inline T operator*( const Basic2DVector<T>& v1, const Basic2DVector<T>& v2) {
00195   return v1.dot(v2);
00196 }
00197 
00199 template <class T, class U>
00200 inline typename PreciseFloatType<T,U>::Type operator*( const Basic2DVector<T>& v1, 
00201                                                        const Basic2DVector<U>& v2) {
00202   return v1.x()*v2.x() + v1.y()*v2.y();
00203 }
00204 
00208 template <class T, class Scalar>
00209 inline Basic2DVector<T> operator*( const Basic2DVector<T>& v, const Scalar& s) {
00210   T t = static_cast<T>(s);
00211   return Basic2DVector<T>(v.x()*t, v.y()*t);
00212 }
00213 
00215 template <class T, class Scalar>
00216 inline Basic2DVector<T> operator*( const Scalar& s, const Basic2DVector<T>& v) {
00217   T t = static_cast<T>(s);
00218   return Basic2DVector<T>(v.x()*t, v.y()*t);
00219 }
00220 
00224 template <class T, class Scalar>
00225 inline Basic2DVector<T> operator/( const Basic2DVector<T>& v, const Scalar& s) {
00226   T t = static_cast<T>(s);
00227   return Basic2DVector<T>(v.x()/t, v.y()/t);
00228 }
00229 
00230 
00231 typedef Basic2DVector<float> Basic2DVectorF;
00232 typedef Basic2DVector<double> Basic2DVectorD;
00233 
00234 #endif // GeometryVector_Basic2DVector_h