CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_5_3_3/src/Alignment/CommonAlignmentParametrization/src/FrameToFrameDerivative.cc

Go to the documentation of this file.
00001 
00007 #include "Alignment/CommonAlignmentParametrization/interface/FrameToFrameDerivative.h"
00008 
00009 #include "Alignment/CommonAlignment/interface/Alignable.h"
00010 
00011 // already in header: #include "DataFormats/Math/interface/AlgebraicROOTObjects.h"
00012 #include "DataFormats/CLHEP/interface/Migration.h"
00013 
00014 //__________________________________________________________________________________________________
00015 AlgebraicMatrix 
00016 FrameToFrameDerivative::frameToFrameDerivative(const Alignable* object,
00017                                                const Alignable* composedObject) const
00018 {
00019 
00020   return getDerivative( object->globalRotation(),
00021                         composedObject->globalRotation(),
00022                         composedObject->globalPosition() - object->globalPosition() );
00023 
00024 }
00025 
00026 //__________________________________________________________________________________________________
00027 AlgebraicMatrix66 
00028 FrameToFrameDerivative::getDerivative(const align::RotationType &objectRot,
00029                                       const align::RotationType &composeRot,
00030                                       const align::GlobalPoint &objectPos,
00031                                       const align::GlobalPoint &composePos) const
00032 {
00033   return asSMatrix<6,6>(this->getDerivative(objectRot, composeRot, composePos - objectPos));
00034 }
00035 
00036 //__________________________________________________________________________________________________
00037 AlgebraicMatrix 
00038 FrameToFrameDerivative::getDerivative(const align::RotationType &objectRot,
00039                                       const align::RotationType &composeRot,
00040                                       const align::GlobalVector &posVec) const
00041 {
00042 
00043   AlgebraicMatrix rotDet   = transform(objectRot);
00044   AlgebraicMatrix rotCompO = transform(composeRot);
00045 
00046   AlgebraicVector diffVec(3);
00047 
00048   diffVec(1) = posVec.x();
00049   diffVec(2) = posVec.y();
00050   diffVec(3) = posVec.z();
00051 
00052   AlgebraicMatrix derivative(6,6);
00053 
00054   AlgebraicMatrix derivAA(3,3);
00055   AlgebraicMatrix derivAB(3,3);
00056   AlgebraicMatrix derivBB(3,3);
00057   
00058   derivAA = derivativePosPos( rotDet, rotCompO );
00059   derivAB = derivativePosRot( rotDet, rotCompO, diffVec );
00060   derivBB = derivativeRotRot( rotDet, rotCompO );
00061 
00062   derivative[0][0] = derivAA[0][0];
00063   derivative[0][1] = derivAA[0][1];
00064   derivative[0][2] = derivAA[0][2];
00065   derivative[0][3] = derivAB[0][0];                                
00066   derivative[0][4] = derivAB[0][1];                               
00067   derivative[0][5] = derivAB[0][2];                             
00068   derivative[1][0] = derivAA[1][0];
00069   derivative[1][1] = derivAA[1][1];
00070   derivative[1][2] = derivAA[1][2];
00071   derivative[1][3] = derivAB[1][0];                                 
00072   derivative[1][4] = derivAB[1][1];                             
00073   derivative[1][5] = derivAB[1][2];                           
00074   derivative[2][0] = derivAA[2][0];
00075   derivative[2][1] = derivAA[2][1];
00076   derivative[2][2] = derivAA[2][2];
00077   derivative[2][3] = derivAB[2][0];            
00078   derivative[2][4] = derivAB[2][1];
00079   derivative[2][5] = derivAB[2][2];
00080   derivative[3][0] = 0;
00081   derivative[3][1] = 0;
00082   derivative[3][2] = 0;
00083   derivative[3][3] = derivBB[0][0];
00084   derivative[3][4] = derivBB[0][1];
00085   derivative[3][5] = derivBB[0][2];
00086   derivative[4][0] = 0;
00087   derivative[4][1] = 0;
00088   derivative[4][2] = 0;
00089   derivative[4][3] = derivBB[1][0];
00090   derivative[4][4] = derivBB[1][1];
00091   derivative[4][5] = derivBB[1][2];
00092   derivative[5][0] = 0;
00093   derivative[5][1] = 0;
00094   derivative[5][2] = 0;
00095   derivative[5][3] = derivBB[2][0];
00096   derivative[5][4] = derivBB[2][1];
00097   derivative[5][5] = derivBB[2][2];
00098   
00099   return(derivative.T());
00100 
00101 }
00102 
00103 
00104 //__________________________________________________________________________________________________
00105 AlgebraicMatrix 
00106 FrameToFrameDerivative::derivativePosPos(const AlgebraicMatrix &RotDet,
00107                                          const AlgebraicMatrix &RotRot) const
00108 {
00109 
00110   return RotDet * RotRot.T();
00111 
00112 }
00113 
00114 
00115 //__________________________________________________________________________________________________
00116 AlgebraicMatrix 
00117 FrameToFrameDerivative::derivativePosRot(const AlgebraicMatrix &RotDet,
00118                                          const AlgebraicMatrix &RotRot,
00119                                          const AlgebraicVector &S) const
00120 {
00121 
00122  AlgebraicVector dEulerA(3);
00123  AlgebraicVector dEulerB(3);
00124  AlgebraicVector dEulerC(3);
00125  AlgebraicMatrix RotDa(3,3);
00126  AlgebraicMatrix RotDb(3,3);
00127  AlgebraicMatrix RotDc(3,3);
00128  
00129  RotDa[1][2] =  1; RotDa[2][1] = -1;
00130  RotDb[0][2] = -1; RotDb[2][0] =  1; // New beta sign
00131  RotDc[0][1] =  1; RotDc[1][0] = -1;
00132  
00133  dEulerA = RotDet*( RotRot.T()*RotDa*RotRot*S );
00134  dEulerB = RotDet*( RotRot.T()*RotDb*RotRot*S );
00135  dEulerC = RotDet*( RotRot.T()*RotDc*RotRot*S );
00136 
00137  AlgebraicMatrix eulerDeriv(3,3);
00138  eulerDeriv[0][0] = dEulerA[0];
00139  eulerDeriv[1][0] = dEulerA[1];
00140  eulerDeriv[2][0] = dEulerA[2];
00141  eulerDeriv[0][1] = dEulerB[0];
00142  eulerDeriv[1][1] = dEulerB[1];
00143  eulerDeriv[2][1] = dEulerB[2];
00144  eulerDeriv[0][2] = dEulerC[0];
00145  eulerDeriv[1][2] = dEulerC[1];
00146  eulerDeriv[2][2] = dEulerC[2];
00147 
00148  return eulerDeriv;
00149 
00150 }
00151 
00152 
00153 //__________________________________________________________________________________________________
00154 AlgebraicMatrix 
00155 FrameToFrameDerivative::derivativeRotRot(const AlgebraicMatrix &RotDet,
00156                                          const AlgebraicMatrix &RotRot) const
00157 {
00158 
00159  AlgebraicVector dEulerA(3);
00160  AlgebraicVector dEulerB(3);
00161  AlgebraicVector dEulerC(3);
00162  AlgebraicMatrix RotDa(3,3);
00163  AlgebraicMatrix RotDb(3,3);
00164  AlgebraicMatrix RotDc(3,3);
00165 
00166  RotDa[1][2] =  1; RotDa[2][1] = -1;
00167  RotDb[0][2] = -1; RotDb[2][0] =  1; // New beta sign
00168  RotDc[0][1] =  1; RotDc[1][0] = -1;
00169 
00170  dEulerA = linearEulerAngles( RotDet*RotRot.T()*RotDa*RotRot*RotDet.T() );
00171  dEulerB = linearEulerAngles( RotDet*RotRot.T()*RotDb*RotRot*RotDet.T() );
00172  dEulerC = linearEulerAngles( RotDet*RotRot.T()*RotDc*RotRot*RotDet.T() );
00173 
00174  AlgebraicMatrix eulerDeriv(3,3);
00175 
00176  eulerDeriv[0][0] = dEulerA[0];
00177  eulerDeriv[1][0] = dEulerA[1];
00178  eulerDeriv[2][0] = dEulerA[2];
00179  eulerDeriv[0][1] = dEulerB[0];
00180  eulerDeriv[1][1] = dEulerB[1];
00181  eulerDeriv[2][1] = dEulerB[2];
00182  eulerDeriv[0][2] = dEulerC[0];
00183  eulerDeriv[1][2] = dEulerC[1];
00184  eulerDeriv[2][2] = dEulerC[2];
00185 
00186  return eulerDeriv;
00187 
00188 }
00189 
00190 
00191 
00192 //__________________________________________________________________________________________________
00193 AlgebraicVector 
00194 FrameToFrameDerivative::linearEulerAngles(const AlgebraicMatrix &rotDelta ) const
00195 {
00196   
00197   AlgebraicMatrix eulerAB(3,3);
00198   AlgebraicVector aB(3);
00199   eulerAB[0][1] =  1; 
00200   eulerAB[1][0] = -1; // New beta sign
00201   aB[2] = 1;
00202 
00203   AlgebraicMatrix eulerC(3,3);
00204   AlgebraicVector C(3);
00205   eulerC[2][0] = 1;
00206   C[1] = 1;
00207 
00208   AlgebraicVector eulerAngles(3);
00209   eulerAngles = eulerAB*rotDelta*aB + eulerC*rotDelta*C;
00210   return eulerAngles;
00211 
00212 }
00213