1 #ifndef IOPool_Streamer_DQMEventMsgBuilder_h
2 #define IOPool_Streamer_DQMEventMsgBuilder_h
55 const char* host_name,
56 std::string
const& releaseTag,
57 std::string
const& topFolderName,
void setFUProcessId(uint32)
uint32 bufferSize() const
DQMEventMsgBuilder(void *buf, uint32 bufSize, uint32 run, uint32 event, edm::Timestamp timeStamp, uint32 lumiSection, uint32 updateNumber, uint32 adler32_chksum, const char *host_name, std::string const &releaseTag, std::string const &topFolderName, DQMEvent::TObjectTable monitorElementsBySubFolder)
uint8 * eventAddress() const
void setMergeCount(uint32)
How EventSelector::AcceptEvent() decides whether to accept an event for output otherwise it is excluding the probing of A single or multiple positive and the trigger will pass if any such matching triggers are PASS or EXCEPTION[A criterion thatmatches no triggers at all is detected and causes a throw.] A single negative with an expectation of appropriate bit checking in the decision and the trigger will pass if any such matching triggers are FAIL or EXCEPTION A wildcarded negative criterion that matches more than one trigger in the trigger but the state exists so we define the behavior If all triggers are the negative crieriion will lead to accepting the event(this again matches the behavior of"!*"before the partial wildcard feature was incorporated).The per-event"cost"of each negative criterion with multiple relevant triggers is about the same as!*was in the past
void setCompressionFlag(uint32)
void setEventLength(uint32 len)
uint8 * startAddress() const
std::map< std::string, std::vector< TObject * > > TObjectTable
std::string timeStamp(TimePoint_t)
uint32 headerSize() const