CMS 3D CMS Logo

/afs/cern.ch/work/a/aaltunda/public/www/CMSSW_5_3_14/src/MagneticField/Interpolation/src/RectangularCartesianMFGrid.cc

Go to the documentation of this file.
00001 #include "RectangularCartesianMFGrid.h"
00002 #include "binary_ifstream.h"
00003 #include "LinearGridInterpolator3D.h"
00004 
00005 #include <iostream>
00006 
00007 using namespace std;
00008 
00009 RectangularCartesianMFGrid::RectangularCartesianMFGrid( binary_ifstream& inFile,
00010                                                         const GloballyPositioned<float>& vol)
00011   : MFGrid3D(vol)
00012 {
00013 
00014   // The parameters read from the data files are given in global coordinates.
00015   // In version 85l, local frame has the same orientation of global frame for the reference
00016   // volume, i.e. the r.f. transformation is only a translation.
00017   // There is therefore no need to convert the field values to local coordinates.
00018   // Check this assumption: 
00019   GlobalVector localXDir(frame().toGlobal(LocalVector(1,0,0)));
00020   GlobalVector localYDir(frame().toGlobal(LocalVector(0,1,0)));
00021 
00022   if (localXDir.dot(GlobalVector(1,0,0)) > 0.999999 &&
00023       localYDir.dot(GlobalVector(0,1,0)) > 0.999999) {
00024     // "null" rotation - requires no conversion...
00025   } else {
00026     cout << "ERROR: RectangularCartesianMFGrid: unexpected orientation: x: " 
00027          << localXDir << " y: " << localYDir << endl;
00028   }
00029 
00030   int n1, n2, n3;
00031   inFile >> n1 >> n2 >> n3;
00032   double xref, yref, zref;
00033   inFile >> xref >> yref >> zref;
00034   double stepx, stepy, stepz;
00035   inFile >> stepx    >> stepy    >> stepz;
00036 
00037   vector<BVector> fieldValues;
00038   float Bx, By, Bz;
00039   int nLines = n1*n2*n3;
00040   fieldValues.reserve(nLines);
00041   for (int iLine=0; iLine<nLines; ++iLine){
00042     inFile >> Bx >> By >> Bz;
00043     fieldValues.push_back(BVector(Bx,By,Bz));
00044   }
00045   // check completeness
00046   string lastEntry;
00047   inFile >> lastEntry;
00048   if (lastEntry != "complete"){
00049     cout << "ERROR during file reading: file is not complete" << endl;
00050   }
00051 
00052   GlobalPoint grefp( xref, yref, zref);
00053   LocalPoint lrefp = frame().toLocal( grefp);
00054 
00055   Grid1D gridX( lrefp.x(), lrefp.x() + stepx*(n1-1), n1);
00056   Grid1D gridY( lrefp.y(), lrefp.y() + stepy*(n2-1), n2);
00057   Grid1D gridZ( lrefp.z(), lrefp.z() + stepz*(n3-1), n3);
00058   grid_ = GridType( gridX, gridY, gridZ, fieldValues);
00059   
00060   // Activate/deactivate timers
00061 //   static SimpleConfigurable<bool> timerOn(false,"MFGrid:timing");
00062 //   (*TimingReport::current()).switchOn("MagneticFieldProvider::valueInTesla(RectangularCartesianMFGrid)",timerOn);
00063 
00064 }
00065 
00066 void RectangularCartesianMFGrid::dump() const
00067 {
00068   cout << endl << "Dump of RectangularCartesianMFGrid" << endl;
00069 //   cout << "Number of points from file   " 
00070 //        << n1 << " " << n2 << " " << n3 << endl;
00071   cout << "Number of points from Grid1D " 
00072        << grid_.grida().nodes() << " " << grid_.gridb().nodes() << " " << grid_.gridc().nodes() << endl;
00073 
00074 //   cout << "Reference Point from file   " 
00075 //        << xref << " " << yref << " " << zref << endl;
00076   cout << "Reference Point from Grid1D " 
00077        << grid_.grida().lower() << " " << grid_.gridb().lower() << " " << grid_.gridc().lower() << endl;
00078 
00079 //   cout << "Basic Distance from file   " 
00080 //        <<  stepx << " " << stepy << " " << stepz << endl;
00081   cout << "Basic Distance from Grid1D "
00082        << grid_.grida().step() << " " << grid_.gridb().step() << " " << grid_.gridc().step() << endl;
00083 
00084 
00085   cout << "Dumping " << grid_.data().size() << " field values " << endl;
00086   // grid_.dump();
00087 }
00088 
00089 MFGrid::LocalVector 
00090 RectangularCartesianMFGrid::uncheckedValueInTesla( const LocalPoint& p) const
00091 {
00092 //   static TimingReport::Item & timer= (*TimingReport::current())["MagneticFieldProvider::valueInTesla(RectangularCartesianMFGrid)"];
00093 //   TimeMe t(timer,false);
00094 
00095   LinearGridInterpolator3D interpol( grid_);
00096   GridType::ReturnType value = interpol.interpolate( p.x(), p.y(), p.z());
00097   return LocalVector(value);
00098 }
00099 
00100 void RectangularCartesianMFGrid::toGridFrame( const LocalPoint& p, 
00101                                               double& a, double& b, double& c) const
00102 {
00103   a = p.x();
00104   b = p.y();
00105   c = p.z();
00106 }
00107  
00108 MFGrid::LocalPoint RectangularCartesianMFGrid::fromGridFrame( double a, double b, double c) const
00109 {
00110   return LocalPoint( a, b, c);
00111 }