CMS 3D CMS Logo

/afs/cern.ch/work/a/aaltunda/public/www/CMSSW_5_3_14/src/RecoJets/FFTJetProducers/python/fftjetpatrecoproducer_cfi.py

Go to the documentation of this file.
00001 import math
00002 import FWCore.ParameterSet.Config as cms
00003 
00004 from RecoJets.FFTJetProducers.fftjetcommon_cfi import *
00005 
00006 # FFTJet pattern recognition module configuration
00007 fftjet_patreco_producer = cms.EDProducer(
00008     "FFTJetPatRecoProducer",
00009     #
00010     # The main eta and phi scale factors for the pattern recognition kernel
00011     kernelEtaScale = cms.double(math.sqrt(1.0/fftjet_phi_to_eta_bw_ratio)),
00012     kernelPhiScale = cms.double(math.sqrt(fftjet_phi_to_eta_bw_ratio)),
00013     #
00014     # Make the clustering trees? If you do not make the trees,
00015     # you should at least turn on the "storeDiscretizationGrid"
00016     # flag, otherwise this module will not produce anything at all.
00017     makeClusteringTree = cms.bool(True),
00018     #
00019     # Verify data conversion? For trees, this is only meaningful with
00020     # double precision storage. Grids, however, will always be verified
00021     # if this flag is set.
00022     verifyDataConversion = cms.untracked.bool(False),
00023     #
00024     # Are we going to produce sparse or full clustering trees
00025     sparsify = cms.bool(True),
00026     #
00027     # Are we going to store the discretized energy flow?
00028     storeDiscretizationGrid = cms.bool(False),
00029     #
00030     # Are we going to dump discretized energy flow into an external file?
00031     # Empty file name means "no".
00032     externalGridFile = cms.string(""),
00033     #
00034     # Configuration for the preliminary peak finder.
00035     # Its main purpose is to reject peaks produced by the FFT round-off noise.
00036     peakFinderMaxEta = cms.double(fftjet_standard_eta_range),
00037     peakFinderMaxMagnitude = cms.double(1.e-8),
00038     #
00039     # Attempt to correct the jet finding efficiency near detector eta limits?
00040     fixEfficiency = cms.bool(False),
00041     #
00042     # Minimum and maximum eta bin number for 1d convolver. Also used
00043     # to indicate detector limits for 2d convolvers in case "fixEfficiency"
00044     # is True.
00045     convolverMinBin = cms.uint32(0),
00046     convolverMaxBin = cms.uint32(fftjet_large_int),
00047     #
00048     # Insert complete event at the end when the clustering tree is constructed?
00049     insertCompleteEvent = cms.bool(fftjet_insert_complete_event),
00050     #
00051     # The scale variable for the complete event. Should be smaller than
00052     # any other pattern recognition scale but not too small so that the
00053     # tree can be nicely visualized in the ln(scale) space.
00054     completeEventScale = cms.double(fftjet_complete_event_scale),
00055     #
00056     # The grid data cutoff for the complete event
00057     completeEventDataCutoff = cms.double(0.0),
00058     #
00059     # Label for the produced objects
00060     outputLabel = cms.string("FFTJetPatternRecognition"),
00061     #
00062     # Label for the input collection of Candidate objects
00063     src = cms.InputTag("towerMaker"),
00064     #
00065     # Label for the jets which will be produced. The algorithm might do
00066     # different things depending on the type. In particular, vertex
00067     # correction may be done for "CaloJet"
00068     jetType = cms.string("CaloJet"),
00069     #
00070     # Perform vertex correction?
00071     doPVCorrection = cms.bool(False),
00072     #
00073     # Label for the input collection of vertex objects. Meaningful
00074     # only when "doPVCorrection" is True
00075     srcPVs = cms.InputTag("offlinePrimaryVertices"),
00076     #
00077     # Are we going to perform adaptive clustering? Setting the maximum
00078     # number of adaptive scales to 0 turns adaptive clustering off.
00079     maxAdaptiveScales = cms.uint32(0),
00080     #
00081     # Minimum distance between the scales (in the ln(scale) space)
00082     # for adaptive clustering. Meaningful only when the "maxAdaptiveScales"
00083     # parameter is not 0.
00084     minAdaptiveRatioLog = cms.double(0.01),
00085     #
00086     # Eta-dependent scale factors for the sequential 1d convolver.
00087     # If this vector is empty, 2d convolver will be used.
00088     etaDependentScaleFactors = cms.vdouble(),
00089     #
00090     # Eta-dependent magnitude factors for the data. These can be used
00091     # to correct for various things (including the eta-dependent scale
00092     # factors above).
00093     etaDependentMagnutideFactors = cms.vdouble(),
00094     #
00095     # Configuration for the energy discretization grid
00096     GridConfiguration = fftjet_grid_256_128,
00097     #
00098     # Configuration for the peak selector determining which peaks
00099     # are kept when the clustering tree is constructed
00100     PeakSelectorConfiguration = fftjet_peak_selector_allpass,
00101     #
00102     # The initial set of scales used by the pattern recognition stage.
00103     # This is also the final set unless clustering tree construction
00104     # is adaptive.
00105     InitialScales = fftjet_patreco_scales_50,
00106     #
00107     # Configuration for the clustering tree sparsification.
00108     # 
00109     # Do not write the last tree level (the complete event) into the sparse
00110     # tree. This is done by setting the "maxLevelNumber" parameter to -1
00111     # in which case the counting for the max level is performed backwards
00112     # from the last level. Counting backwards is especially useful in the
00113     # adaptive clustering mode when the number of clustering tree levels
00114     # is not known in advance.
00115     SparsifierConfiguration = cms.PSet(
00116         maxLevelNumber = cms.int32(-1),
00117         filterMask = cms.uint32(fftjet_large_int),
00118         userScales = cms.vdouble()
00119     ),
00120     #
00121     # Clustering tree distance functor
00122     TreeDistanceCalculator = fftjet_fixed_bandwidth_distance,
00123     #
00124     # Anomalous calo tower definition (comes from JetProducers default)
00125     anomalous = fftjet_anomalous_tower_default
00126 )