CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_5_3_10_patch2/src/FastSimulation/MaterialEffects/python/MaterialEffects_cfi.py

Go to the documentation of this file.
00001 # The following comments couldn't be translated into the new config version:
00002 
00003 #        pi+      pi-    K0L      K+      K-      p      pbar     n      nbar
00004 #       0.2508, 0.2549, 0.3380, 0.2879, 0.3171, 0.3282, 0.5371, 0.3859, 0.5086 # before 170 tuning
00005 
00006 import FWCore.ParameterSet.Config as cms
00007 
00008 # Material effects to be simulated in the tracker material and associated cuts
00009 MaterialEffectsBlock = cms.PSet(
00010     MaterialEffects = cms.PSet(
00011         # Material Properties (Silicon)
00012         # A
00013         A = cms.double(28.0855),
00014         # Z
00015         Z = cms.double(14.0),
00016         # Density in g/cm3
00017         Density = cms.double(2.329),
00018         # One radiation length in cm
00019         RadiationLength = cms.double(9.36),
00020 
00021         # General switches
00022         # Enable photon pair conversion 
00023         PairProduction = cms.bool(True),
00024         # Smallest photon energy allowed for conversion
00025         photonEnergy = cms.double(0.1),
00026         # Enable electron Bremsstrahlung
00027         Bremsstrahlung = cms.bool(True),
00028         # Enable muon  Bremsstrahlung
00029         MuonBremsstrahlung = cms.bool(False),
00030         # Smallest bremstrahlung photon energy
00031         bremEnergy = cms.double(0.1),
00032         # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
00033         bremEnergyFraction = cms.double(0.005),
00034         # Enable dE/dx
00035         EnergyLoss = cms.bool(True),
00036         # Enable Multiple Scattering
00037         MultipleScattering = cms.bool(True),
00038         # Smallest pT for the Mutliple Scattering 
00039         pTmin = cms.double(0.2),
00040         # Enable Nuclear Interactions
00041         NuclearInteraction = cms.bool(True),
00042         # The energies of the pions used in the above files (same order)
00043         pionEnergies = cms.untracked.vdouble(
00044             1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 9.0, 12.0, 15.0, 20.0, 
00045             30.0, 50.0, 100.0, 200.0, 300.0, 500.0, 700.0, 1000.0
00046         ),
00047         # The particle types simulated
00048         pionTypes = cms.untracked.vint32(
00049             211, -211, 130, 321, -321, 2212, -2212, 2112, -2112
00050         ),
00051         # The corresponding particle names
00052         pionNames = cms.untracked.vstring(
00053             'piplus', 'piminus', 'K0L', 'Kplus', 'Kminus', 'p', 'pbar', 'n', 'nbar'
00054         ),
00055         # The corresponding particle masses
00056         pionMasses = cms.untracked.vdouble(
00057             0.13957, 0.13957, 0.497648, 0.493677, 0.493677, 
00058             0.93827, 0.93827, 0.939565, 0.939565 
00059         ),
00060         # The corresponding smallest momenta for which an inleatic interaction may occur
00061         pionMinP = cms.untracked.vdouble( 
00062             0.7, 0.0, 1.0, 1.0, 0.0, 1.1, 0.0, 1.1, 0.0 
00063         ),
00064 
00065 
00066         # The scaling of the inelastic cross section with energy 
00067         ratios = cms.untracked.vdouble(
00068             # pi+ (211)
00069             0.031390573,0.531842852,0.819614219,0.951251711,0.986382750,1.000000000,0.985087033,0.982996773,
00070             0.990832192,0.992237923,0.994841580,0.973816742,0.967264815,0.971714258,0.969122824,0.978681792,
00071             0.977312732,0.984255819,
00072             # pi- (-211)
00073             0.035326512,0.577356403,0.857118809,0.965683504,0.989659360,1.000000000,0.989599240,0.980665408,
00074             0.988384816,0.981038152,0.975002104,0.959996152,0.953310808,0.954705592,0.957615400,0.961150456,
00075             0.965022184,0.960573304,
00076             # K0L (130)
00077             0.000000000,0.370261189,0.649793096,0.734342408,0.749079499,0.753360057,0.755790543,0.755872164,
00078             0.751337674,0.746685288,0.747519634,0.739357554,0.735004444,0.803039922,0.832749896,0.890900187,
00079             0.936734805,1.000000000,
00080             # K+ (321)
00081             0.000000000,0.175571717,0.391683394,0.528946472,0.572818635,0.614210280,0.644125538,0.670304050,
00082             0.685144573,0.702870161,0.714708513,0.730805263,0.777711536,0.831090576,0.869267129,0.915747562,
00083             0.953370523,1.000000000,
00084             # K- (-321)
00085             0.000000000,0.365353210,0.611663677,0.715315908,0.733498956,0.738361302,0.745253654,0.751459671,
00086             0.750628335,0.746442657,0.750850669,0.744895986,0.735093960,0.791663444,0.828609543,0.889993040,
00087             0.940897842,1.000000000,
00088             # proton (2212)
00089             0.000000000,0.042849136,0.459103223,0.666165343,0.787930873,0.890397011,0.920999533,0.937832788,
00090             0.950920131,0.966595049,0.979542270,0.988061653,0.983260159,0.988958431,0.991723494,0.995273237,
00091             1.000000000,0.999962634,
00092             # anti-proton (-2212)
00093             1.000000000,0.849956907,0.775625988,0.802018230,0.816207485,0.785899785,0.754998487,0.728977244, 
00094             0.710010673,0.670890339,0.665627872,0.652682888,0.613334247,0.647534574,0.667910938,0.689919693, 
00095             0.709200185,0.724199928,
00096             # neutron (2112)
00097             0.000000000,0.059216484,0.437844536,0.610370629,0.702090648,0.780076890,0.802143073,0.819570432,
00098             0.825829666,0.840079750,0.838435509,0.837529986,0.835687165,0.885205014,0.912450156,0.951451221,
00099             0.973215562,1.000000000,
00100             # anti-neutron
00101             1.000000000,0.849573257,0.756479495,0.787147094,0.804572414,0.791806302,0.760234588,0.741109531,
00102             0.724118186,0.692829761,0.688465897,0.671806061,0.636461171,0.675314029,0.699134460,0.724305037,
00103             0.742556115,0.758504713
00104         ),
00105         
00106         # The correspondence between long-lived hadrons/ions and the simulated hadron list
00107         protons = cms.untracked.vint32(2212, 3222, -101, -102, -103, -104),
00108         antiprotons = cms.untracked.vint32(-2212, -3222),
00109         neutrons = cms.untracked.vint32(2112, 3122, 3112, 3312, 3322, 3334, -3334),
00110         antineutrons = cms.untracked.vint32(-2112, -3122, -3112, -3312, -3322), 
00111         K0Ls = cms.untracked.vint32(130, 310),
00112         Kplusses = cms.untracked.vint32(321),
00113         Kminusses = cms.untracked.vint32(-321),
00114         Piplusses = cms.untracked.vint32(211),
00115         Piminusses = cms.untracked.vint32(-211),
00116 
00117         # The smallest pion energy for which nuclear interactions are simulated
00118         pionEnergy = cms.double(0.2),
00119         
00120         # The algorihm to detrmine the distance between the primary and the secondaries
00121         # 0 = no link
00122         # 1 = sin(theta12) - ~ ok at all momenta
00123         # 2 = sin(theta12) * p1/p2 - bad, should not be used
00124         distAlgo = cms.uint32(1),
00125         distCut = cms.double(0.020), ## Default is 0.020 for algo 1;
00126         
00127         # The ratio between radiation lengths and interation lengths in the tracker at 15 GeV
00128         lengthRatio = cms.vdouble(
00129         #        pi+      pi-    K0L      K+      K-      p      pbar     n      nbar
00130         #   0.2508, 0.2549, 0.3380, 0.2879, 0.3171, 0.3282, 0.5371, 0.3859, 0.5086 # before 170 tuning
00131             0.2257, 0.2294, 0.3042, 0.2591, 0.2854, 0.3101, 0.5216, 0.3668, 0.4898 # after 170 tuning
00132         ),
00133 
00134         # and a global fudge factor for TEC Layers to make it fit
00135         fudgeFactor = cms.double(1.2),
00136         
00137         # The file with the last nuclear interaction read in the previous run
00138         # to be put in the local running directory (if desired)
00139         inputFile = cms.untracked.string('NuclearInteractionInputFile.txt'),
00140    )
00141 )
00142 
00143 MaterialEffectsForMuonsBlock = cms.PSet(
00144     MaterialEffectsForMuons = cms.PSet(
00145 
00146         # Material Properties (Iron - this is for muons)
00147         # A
00148         A = cms.double(55.8455),
00149         # Z
00150         Z = cms.double(26.0),
00151         # Density in g/cm3
00152         Density = cms.double(7.87),
00153         # One radiation length in cm
00154         RadiationLength = cms.double(1.76),
00155 
00156         # GEneral switches
00157         # Enable photon pair conversion 
00158         PairProduction = cms.bool(False),
00159         # Smallest photon energy allowed for conversion
00160         photonEnergy = cms.double(0.1),
00161         # Enable electron Bremsstrahlung
00162         Bremsstrahlung = cms.bool(False),
00163         # Enable muon  Bremsstrahlung
00164         MuonBremsstrahlung = cms.bool(False),
00165         # Smallest bremstrahlung photon energy
00166         bremEnergy = cms.double(0.1),
00167         # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
00168         bremEnergyFraction = cms.double(0.005),
00169         # Enable dE/dx
00170         EnergyLoss = cms.bool(True),
00171         # Enable Multiple Scattering
00172         MultipleScattering = cms.bool(True),
00173         # Smallest pT for the Mutliple Scattering 
00174         pTmin = cms.double(0.3),
00175         # Enable Nuclear Interactions
00176         NuclearInteraction = cms.bool(False)
00177 
00178     )
00179 )
00180 
00181 MaterialEffectsForMuonsInECALBlock = cms.PSet(
00182     MaterialEffectsForMuonsInECAL = cms.PSet(
00183 
00184         # Material Properties (PbW04 - this is for muons)
00185         # A
00186         A = cms.double(55.8455),
00187         # Z
00188         Z = cms.double(26.0),
00189         # Density in g/cm3
00190         Density = cms.double(8.280),
00191         # One radiation length in cm
00192         RadiationLength = cms.double(0.89),
00193 
00194         # GEneral switches
00195         # Enable photon pair conversion 
00196         PairProduction = cms.bool(False),
00197         # Smallest photon energy allowed for conversion
00198         photonEnergy = cms.double(0.1),
00199         # Enable electron Bremsstrahlung
00200         Bremsstrahlung = cms.bool(False),
00201         # Enable muon  Bremsstrahlung
00202         MuonBremsstrahlung = cms.bool(False),
00203         # Smallest bremstrahlung photon energy
00204         bremEnergy = cms.double(0.1),
00205         # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
00206         bremEnergyFraction = cms.double(0.005),
00207         # Enable dE/dx
00208         EnergyLoss = cms.bool(False),
00209         # Enable Multiple Scattering
00210         MultipleScattering = cms.bool(False),
00211         # Smallest pT for the Mutliple Scattering 
00212         pTmin = cms.double(0.3),
00213         # Enable Nuclear Interactions
00214         NuclearInteraction = cms.bool(False)
00215     )
00216 )
00217 
00218 MaterialEffectsForMuonsInHCALBlock = cms.PSet(
00219     MaterialEffectsForMuonsInHCAL = cms.PSet(
00220 
00221         # Material Properties (BRASS - this is for muons)
00222         # A
00223         A = cms.double(64.0),
00224         # Z
00225         Z = cms.double(29.0),
00226         # Density in g/cm3
00227         Density = cms.double(8.5),
00228         # One radiation length in cm
00229         RadiationLength = cms.double(1.44),
00230 
00231         # GEneral switches
00232         # Enable photon pair conversion 
00233         PairProduction = cms.bool(False),
00234         # Smallest photon energy allowed for conversion
00235         photonEnergy = cms.double(0.1),
00236         # Enable electron Bremsstrahlung
00237         Bremsstrahlung = cms.bool(False),
00238         # Enable muon  Bremsstrahlung
00239         MuonBremsstrahlung = cms.bool(False),
00240         # Smallest bremstrahlung photon energy
00241         bremEnergy = cms.double(0.1),
00242         # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
00243         bremEnergyFraction = cms.double(0.005),
00244         # Enable dE/dx
00245         EnergyLoss = cms.bool(False),
00246         # Enable Multiple Scattering
00247         MultipleScattering = cms.bool(False),
00248         # Smallest pT for the Mutliple Scattering 
00249         pTmin = cms.double(0.3),
00250         # Enable Nuclear Interactions
00251         NuclearInteraction = cms.bool(False)
00252 
00253     )
00254 )
00255