CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_5_3_1/src/Alignment/MuonAlignmentAlgorithms/src/MuonResidualsFitter.cc

Go to the documentation of this file.
00001 // $Id: MuonResidualsFitter.cc,v 1.12 2011/10/12 23:44:11 khotilov Exp $
00002 
00003 #ifdef STANDALONE_FITTER
00004 #include "MuonResidualsFitter.h"
00005 #else
00006 #include "Alignment/MuonAlignmentAlgorithms/interface/MuonResidualsFitter.h"
00007 #endif
00008 
00009 #include <fstream>
00010 #include <set>
00011 #include "TMath.h"
00012 #include "TH1.h"
00013 #include "TF1.h"
00014 #include "TRobustEstimator.h"
00015 
00016 // all global variables begin with "MuonResidualsFitter_" to avoid
00017 // namespace clashes (that is, they do what would ordinarily be done
00018 // with a class structure, but Minuit requires them to be global)
00019 
00020 const double MuonResidualsFitter_gsbinsize = 0.01;
00021 const double MuonResidualsFitter_tsbinsize = 0.1;
00022 const int MuonResidualsFitter_numgsbins = 500;
00023 const int MuonResidualsFitter_numtsbins = 500;
00024 
00025 bool MuonResidualsFitter_table_initialized = false;
00026 double MuonResidualsFitter_lookup_table[MuonResidualsFitter_numgsbins][MuonResidualsFitter_numtsbins];
00027 
00028 static TMinuit* MuonResidualsFitter_TMinuit;
00029 
00030 // fit function
00031 double MuonResidualsFitter_logPureGaussian(double residual, double center, double sigma)
00032 {
00033   sigma = fabs(sigma);
00034   static const double cgaus = 0.5 * log( 2.*M_PI );
00035   return (-pow(residual - center, 2) *0.5 / sigma / sigma) - cgaus - log(sigma);
00036 }
00037 
00038 // TF1 interface version
00039 Double_t MuonResidualsFitter_pureGaussian_TF1(Double_t *xvec, Double_t *par)
00040 {
00041   return par[0] * exp(MuonResidualsFitter_logPureGaussian(xvec[0], par[1], par[2]));
00042 }
00043 
00044 
00045 // 2D Gauss fit function
00046 double MuonResidualsFitter_logPureGaussian2D(double x, double y, double x0, double y0, double sx, double sy, double r)
00047 {
00048   sx = fabs(sx);  sy = fabs(sy);
00049   static const double c2gaus = log( 2.*M_PI );
00050   double one_r2 = 1. - r*r;
00051   double dx = x - x0;
00052   double dy = y - y0;
00053   return -0.5/one_r2 * ( pow(dx/sx, 2) + pow(dy/sy, 2) - 2.*r*dx/sx*dy/sy ) - c2gaus - log(sx*sy*sqrt(one_r2));
00054 }
00055 
00056 
00057 double MuonResidualsFitter_compute_log_convolution(double toversigma, double gammaoversigma, double max, double step, double power)
00058 {
00059   if (gammaoversigma == 0.) return (-toversigma*toversigma/2.) - log(sqrt(2*M_PI));
00060 
00061   double sum = 0.;
00062   double uplus = 0.;
00063   double integrandplus_last = 0.;
00064   double integrandminus_last = 0.;
00065   for (double inc = 0.;  uplus < max;  inc += step)
00066   {
00067     double uplus_last = uplus;
00068     uplus = pow(inc, power);
00069 
00070     double integrandplus = exp(-pow(uplus - toversigma, 2)/2.) / (uplus*uplus/gammaoversigma + gammaoversigma) / M_PI / sqrt(2.*M_PI);
00071     double integrandminus = exp(-pow(-uplus - toversigma, 2)/2.) / (uplus*uplus/gammaoversigma + gammaoversigma) / M_PI / sqrt(2.*M_PI);
00072 
00073     sum += integrandplus * (uplus - uplus_last);
00074     sum += 0.5 * fabs(integrandplus_last - integrandplus) * (uplus - uplus_last);
00075 
00076     sum += integrandminus * (uplus - uplus_last);
00077     sum += 0.5 * fabs(integrandminus_last - integrandminus) * (uplus - uplus_last);
00078 
00079     integrandplus_last = integrandplus;
00080     integrandminus_last = integrandminus;
00081   }
00082   return log(sum);
00083 }
00084 
00085 // fit function
00086 double MuonResidualsFitter_logPowerLawTails(double residual, double center, double sigma, double gamma)
00087 {
00088   sigma = fabs(sigma);
00089   double gammaoversigma = fabs(gamma / sigma);
00090   double toversigma = fabs((residual - center) / sigma);
00091 
00092   int gsbin0 = int(floor(gammaoversigma / MuonResidualsFitter_gsbinsize));
00093   int gsbin1 = int(ceil(gammaoversigma / MuonResidualsFitter_gsbinsize));
00094   int tsbin0 = int(floor(toversigma / MuonResidualsFitter_tsbinsize));
00095   int tsbin1 = int(ceil(toversigma / MuonResidualsFitter_tsbinsize));
00096 
00097   bool gsisbad = (gsbin0 >= MuonResidualsFitter_numgsbins  ||  gsbin1 >= MuonResidualsFitter_numgsbins);
00098   bool tsisbad = (tsbin0 >= MuonResidualsFitter_numtsbins  ||  tsbin1 >= MuonResidualsFitter_numtsbins);
00099 
00100   if (gsisbad  ||  tsisbad)
00101   {
00102     return log(gammaoversigma/M_PI) - log(toversigma*toversigma + gammaoversigma*gammaoversigma) - log(sigma);
00103   }
00104   else
00105   {
00106     double val00 = MuonResidualsFitter_lookup_table[gsbin0][tsbin0];
00107     double val01 = MuonResidualsFitter_lookup_table[gsbin0][tsbin1];
00108     double val10 = MuonResidualsFitter_lookup_table[gsbin1][tsbin0];
00109     double val11 = MuonResidualsFitter_lookup_table[gsbin1][tsbin1];
00110 
00111     double val0 = val00 + ((toversigma / MuonResidualsFitter_tsbinsize) - tsbin0) * (val01 - val00);
00112     double val1 = val10 + ((toversigma / MuonResidualsFitter_tsbinsize) - tsbin0) * (val11 - val10);
00113     
00114     double val = val0 + ((gammaoversigma / MuonResidualsFitter_gsbinsize) - gsbin0) * (val1 - val0);
00115     
00116     return val - log(sigma);
00117   }
00118 }
00119 
00120 
00121 // TF1 interface version
00122 Double_t MuonResidualsFitter_powerLawTails_TF1(Double_t *xvec, Double_t *par)
00123 {
00124   return par[0] * exp(MuonResidualsFitter_logPowerLawTails(xvec[0], par[1], par[2], par[3]));
00125 }
00126 
00127 
00128 double MuonResidualsFitter_logROOTVoigt(double residual, double center, double sigma, double gamma)
00129 {
00130   return log(TMath::Voigt(residual - center, fabs(sigma), fabs(gamma)*2.));
00131 }
00132 
00133 
00134 Double_t MuonResidualsFitter_ROOTVoigt_TF1(Double_t *xvec, Double_t *par)
00135 {
00136   return par[0] * TMath::Voigt(xvec[0] - par[1], fabs(par[2]), fabs(par[3])*2.);
00137 }
00138 
00139 
00140 double MuonResidualsFitter_logGaussPowerTails(double residual, double center, double sigma) {
00141   double x = residual-center;
00142   double s = fabs(sigma);
00143   double m = 2.*s;
00144   static const double e2 = exp(-2.), sqerf = sqrt(2.*M_PI)*erf(sqrt(2.));
00145   double a = pow(m,4)*e2;
00146   double n = sqerf*s + 2.*a*pow(m,-3)/3.;
00147 
00148   if (fabs(x)<m) return -x*x/(2.*s*s) - log(n);
00149   else return log(a) -4.*log(fabs(x)) - log(n);
00150 }
00151 
00152 
00153 Double_t MuonResidualsFitter_GaussPowerTails_TF1(Double_t *xvec, Double_t *par)
00154 {
00155   return par[0] * exp(MuonResidualsFitter_logGaussPowerTails(xvec[0], par[1], par[2]));
00156 }
00157 
00158 
00159 double MuonResidualsFitter_integrate_pureGaussian(double low, double high, double center, double sigma)
00160 {
00161   static const double isqr2 = 1./sqrt(2.);
00162   return (erf((high + center) * isqr2 / sigma) - erf((low + center) * isqr2 / sigma)) * exp(0.5/sigma/sigma) * 0.5;
00163 }
00164 
00165 
00166 void MuonResidualsFitter::initialize_table()
00167 {
00168   if (MuonResidualsFitter_table_initialized  ||  residualsModel() != kPowerLawTails) return;
00169   MuonResidualsFitter_table_initialized = true;
00170 
00171   std::ifstream convolution_table("convolution_table.txt");
00172   if (convolution_table.is_open())
00173   {
00174     int numgsbins = 0;
00175     int numtsbins = 0;
00176     double tsbinsize = 0.;
00177     double gsbinsize = 0.;
00178 
00179     convolution_table >> numgsbins >> numtsbins >> tsbinsize >> gsbinsize;
00180     if (numgsbins != MuonResidualsFitter_numgsbins  ||  numtsbins != MuonResidualsFitter_numtsbins  ||  
00181         tsbinsize != MuonResidualsFitter_tsbinsize  ||  gsbinsize != MuonResidualsFitter_gsbinsize)
00182     {
00183       throw cms::Exception("MuonResidualsFitter") << "convolution_table.txt has the wrong bin width/bin size.  Throw it away and let the fitter re-create the file.\n";
00184     }
00185 
00186     for (int gsbin = 0;  gsbin < MuonResidualsFitter_numgsbins;  gsbin++)
00187     {
00188       for (int tsbin = 0;  tsbin < MuonResidualsFitter_numtsbins;  tsbin++)
00189       {
00190         int read_gsbin = 0;
00191         int read_tsbin = 0;
00192         double val = 0.;
00193 
00194         convolution_table >> read_gsbin >> read_tsbin >> val;
00195         if (read_gsbin != gsbin  ||  read_tsbin != tsbin)
00196         {
00197           throw cms::Exception("MuonResidualsFitter") << "convolution_table.txt is out of order.  Throw it away and let the fitter re-create the file.\n";
00198         }
00199         MuonResidualsFitter_lookup_table[gsbin][tsbin] = val;
00200       }
00201     }
00202     convolution_table.close();
00203   }
00204   else
00205   {
00206     std::ofstream convolution_table2("convolution_table.txt");
00207 
00208     if (!convolution_table2.is_open()) throw cms::Exception("MuonResidualsFitter") << "Couldn't write to file convolution_table.txt\n";
00209 
00210     convolution_table2 << MuonResidualsFitter_numgsbins << " " << MuonResidualsFitter_numtsbins << " " << MuonResidualsFitter_tsbinsize << " " << MuonResidualsFitter_gsbinsize << std::endl;
00211 
00212     std::cout << "Initializing convolution look-up table (takes a few minutes)..." << std::endl;
00213 
00214     for (int gsbin = 0;  gsbin < MuonResidualsFitter_numgsbins;  gsbin++)
00215     {
00216       double gammaoversigma = double(gsbin) * MuonResidualsFitter_gsbinsize;
00217       std::cout << "    gsbin " << gsbin << "/" << MuonResidualsFitter_numgsbins << std::endl;
00218       for (int tsbin = 0;  tsbin < MuonResidualsFitter_numtsbins;  tsbin++)
00219       {
00220         double toversigma = double(tsbin) * MuonResidualsFitter_tsbinsize;
00221 
00222         // 1e-6 errors (out of a value of ~0.01) with max=100, step=0.001, power=4 (max=1000 does a little better with the tails)
00223         MuonResidualsFitter_lookup_table[gsbin][tsbin] = MuonResidualsFitter_compute_log_convolution(toversigma, gammaoversigma);
00224 
00225         // <10% errors with max=20, step=0.005, power=4 (faster computation for testing)
00226         // MuonResidualsFitter_lookup_table[gsbin][tsbin] = MuonResidualsFitter_compute_log_convolution(toversigma, gammaoversigma, 100., 0.005, 4.);
00227 
00228         convolution_table2 << gsbin << " " << tsbin << " " << MuonResidualsFitter_lookup_table[gsbin][tsbin] << std::endl;
00229       }
00230     }
00231     convolution_table2.close();
00232     std::cout << "Initialization done!" << std::endl;
00233   }
00234 }
00235 
00236 
00237 bool MuonResidualsFitter::dofit(void (*fcn)(int&,double*,double&,double*,int), std::vector<int> &parNum, std::vector<std::string> &parName,
00238                                 std::vector<double> &start, std::vector<double> &step, std::vector<double> &low, std::vector<double> &high)
00239 {
00240   MuonResidualsFitterFitInfo *fitinfo = new MuonResidualsFitterFitInfo(this);
00241 
00242   MuonResidualsFitter_TMinuit = new TMinuit(npar());
00243   MuonResidualsFitter_TMinuit->SetPrintLevel(m_printLevel);
00244   MuonResidualsFitter_TMinuit->SetObjectFit(fitinfo);
00245   MuonResidualsFitter_TMinuit->SetFCN(fcn);
00246   inform(MuonResidualsFitter_TMinuit);
00247 
00248   std::vector<int>::const_iterator iNum = parNum.begin();
00249   std::vector<std::string>::const_iterator iName = parName.begin();
00250   std::vector<double>::const_iterator istart = start.begin();
00251   std::vector<double>::const_iterator istep = step.begin();
00252   std::vector<double>::const_iterator ilow = low.begin();
00253   std::vector<double>::const_iterator ihigh = high.begin();
00254   
00255   //MuonResidualsFitter_TMinuit->SetPrintLevel(-1);
00256   
00257   for (; iNum != parNum.end();  ++iNum, ++iName, ++istart, ++istep, ++ilow, ++ihigh)
00258   {
00259     MuonResidualsFitter_TMinuit->DefineParameter(*iNum, iName->c_str(), *istart, *istep, *ilow, *ihigh);
00260     if (fixed(*iNum)) MuonResidualsFitter_TMinuit->FixParameter(*iNum);
00261   }
00262 
00263   double arglist[10];
00264   int ierflg;
00265   int smierflg; //second MIGRAD ierflg
00266 
00267   // chi^2 errors should be 1.0, log-likelihood should be 0.5
00268   for (int i = 0;  i < 10;  i++) arglist[i] = 0.;
00269   arglist[0] = 0.5;
00270   ierflg = 0;
00271   smierflg = 0;
00272   MuonResidualsFitter_TMinuit->mnexcm("SET ERR", arglist, 1, ierflg);
00273   if (ierflg != 0) { delete MuonResidualsFitter_TMinuit; delete fitinfo; return false; }
00274 
00275   // set strategy = 2 (more refined fits)
00276   for (int i = 0;  i < 10;  i++) arglist[i] = 0.;
00277   arglist[0] = m_strategy;
00278   ierflg = 0;
00279   MuonResidualsFitter_TMinuit->mnexcm("SET STR", arglist, 1, ierflg);
00280   if (ierflg != 0) { delete MuonResidualsFitter_TMinuit; delete fitinfo; return false; }
00281 
00282   bool try_again = false;
00283 
00284   // minimize
00285   for (int i = 0;  i < 10;  i++) arglist[i] = 0.;
00286   arglist[0] = 50000;
00287   ierflg = 0;
00288   MuonResidualsFitter_TMinuit->mnexcm("MIGRAD", arglist, 1, ierflg);
00289   if (ierflg != 0) try_again = true;
00290 
00291   // just once more, if needed (using the final Minuit parameters from the failed fit; often works)
00292   if (try_again)
00293   {
00294     for (int i = 0;  i < 10;  i++) arglist[i] = 0.;
00295     arglist[0] = 50000;
00296     MuonResidualsFitter_TMinuit->mnexcm("MIGRAD", arglist, 1, smierflg);
00297   }
00298 
00299   Double_t fmin, fedm, errdef;
00300   Int_t npari, nparx, istat;
00301   MuonResidualsFitter_TMinuit->mnstat(fmin, fedm, errdef, npari, nparx, istat);
00302 
00303   if (istat != 3)
00304   {
00305     for (int i = 0;  i < 10;  i++) arglist[i] = 0.;
00306     ierflg = 0;
00307     MuonResidualsFitter_TMinuit->mnexcm("HESSE", arglist, 0, ierflg);
00308   }
00309 
00310   // read-out the results
00311   m_loglikelihood = -fmin;
00312 
00313   m_value.clear();
00314   m_error.clear();
00315   for (int i = 0;  i < npar();  i++)
00316   {
00317     double v, e;
00318     MuonResidualsFitter_TMinuit->GetParameter(i, v, e);
00319     m_value.push_back(v);
00320     m_error.push_back(e);
00321   }
00322   m_cov.ResizeTo(npar(),npar());
00323   MuonResidualsFitter_TMinuit->mnemat( m_cov.GetMatrixArray(), npar());
00324 
00325   delete MuonResidualsFitter_TMinuit;
00326   delete fitinfo;
00327   if (smierflg != 0) return false;
00328   return true;
00329 }
00330 
00331 
00332 void MuonResidualsFitter::write(FILE *file, int which)
00333 {
00334   long rows = numResiduals();
00335   int cols = ndata();
00336   int whichcopy = which;
00337 
00338   fwrite(&rows, sizeof(long), 1, file);
00339   fwrite(&cols, sizeof(int), 1, file);
00340   fwrite(&whichcopy, sizeof(int), 1, file);
00341 
00342   double *likeAChecksum = new double[cols];
00343   double *likeAChecksum2 = new double[cols];
00344   for (int i = 0;  i < cols;  i++)
00345   {
00346     likeAChecksum[i] = 0.;
00347     likeAChecksum2[i] = 0.;
00348   }
00349 
00350   for (std::vector<double*>::const_iterator residual = residuals_begin();  residual != residuals_end();  ++residual)
00351   {
00352     fwrite((*residual), sizeof(double), cols, file);
00353     for (int i = 0;  i < cols;  i++)
00354     {
00355       if (fabs((*residual)[i]) > likeAChecksum[i]) likeAChecksum[i] = fabs((*residual)[i]);
00356       if (fabs((*residual)[i]) < likeAChecksum2[i]) likeAChecksum2[i] = fabs((*residual)[i]);
00357     }
00358   } // end loop over residuals
00359 
00360   // the idea is that mal-formed doubles are likely to be huge values (or tiny values)
00361   // because the exponent gets screwed up; we want to check for that
00362   fwrite(likeAChecksum, sizeof(double), cols, file);
00363   fwrite(likeAChecksum2, sizeof(double), cols, file);
00364 
00365   delete [] likeAChecksum;
00366   delete [] likeAChecksum2;
00367 }
00368 
00369 void MuonResidualsFitter::read(FILE *file, int which)
00370 {
00371   long rows = -100;
00372   int cols = -100;
00373   int readwhich = -100;
00374 
00375   fread(&rows, sizeof(long), 1, file);
00376   fread(&cols, sizeof(int), 1, file);
00377   fread(&readwhich, sizeof(int), 1, file);
00378 
00379   if (cols != ndata()  ||  rows < 0  ||  readwhich != which)
00380   {
00381     throw cms::Exception("MuonResidualsFitter") << "temporary file is corrupted (which = " << which << " readwhich = " << readwhich << " rows = " << rows << " cols = " << cols << ")\n";
00382   }
00383 
00384   double *likeAChecksum = new double[cols];
00385   double *likeAChecksum2 = new double[cols];
00386   for (int i = 0;  i < cols;  i++)
00387   {
00388     likeAChecksum[i] = 0.;
00389     likeAChecksum2[i] = 0.;
00390   }
00391 
00392   m_residuals.reserve(rows);
00393   for (long row = 0;  row < rows;  row++)
00394   {
00395     double *residual = new double[cols];
00396     fread(residual, sizeof(double), cols, file);
00397     fill(residual);
00398     for (int i = 0;  i < cols;  i++)
00399     {
00400       if (fabs(residual[i]) > likeAChecksum[i]) likeAChecksum[i] = fabs(residual[i]);
00401       if (fabs(residual[i]) < likeAChecksum2[i]) likeAChecksum2[i] = fabs(residual[i]);
00402     }
00403   } // end loop over records in file
00404 
00405   double *readChecksum = new double[cols];
00406   double *readChecksum2 = new double[cols];
00407   fread(readChecksum, sizeof(double), cols, file);
00408   fread(readChecksum2, sizeof(double), cols, file);
00409 
00410   for (int i = 0;  i < cols;  i++)
00411   {
00412     if (fabs(likeAChecksum[i] - readChecksum[i]) > 1e-10  ||  fabs(1./likeAChecksum2[i] - 1./readChecksum2[i]) > 1e10)
00413     {
00414       throw cms::Exception("MuonResidualsFitter") << "temporary file is corrupted (which = " << which << " rows = " << rows << " likeAChecksum " << likeAChecksum[i] << " != readChecksum " << readChecksum[i] << " " << " likeAChecksum2 " << likeAChecksum2[i] << " != readChecksum2 " << readChecksum2[i] << ")\n";
00415     }
00416   }
00417 
00418   m_residuals_ok.resize(numResiduals(), true);
00419 
00420   delete [] likeAChecksum;
00421   delete [] likeAChecksum2;
00422 }
00423 
00424 
00425 void MuonResidualsFitter::plotsimple(std::string name, TFileDirectory *dir, int which, double multiplier)
00426 {
00427   double window = 100.;
00428   if (which == 0) window = 2.*30.;
00429   else if (which == 1) window = 2.*30.;
00430   else if (which == 2) window = 2.*20.;
00431   else if (which == 3) window = 2.*50.;
00432 
00433   TH1F *hist = dir->make<TH1F>(name.c_str(), "", 200, -window, window);
00434   for (std::vector<double*>::const_iterator r = residuals_begin();  r != residuals_end();  ++r) hist->Fill(multiplier * (*r)[which]);
00435 }
00436 
00437 
00438 void MuonResidualsFitter::plotweighted(std::string name, TFileDirectory *dir, int which, int whichredchi2, double multiplier)
00439 {
00440   double window = 100.;
00441   if (which == 0) window = 2.*30.;
00442   else if (which == 1) window = 2.*30.;
00443   else if (which == 2) window = 2.*20.;
00444   else if (which == 3) window = 2.*50.;
00445 
00446   TH1F *hist = dir->make<TH1F>(name.c_str(), "", 200, -window, window);
00447   for (std::vector<double*>::const_iterator r = residuals_begin();  r != residuals_end();  ++r)
00448   {
00449     double weight = 1./(*r)[whichredchi2];
00450     if (TMath::Prob(1./weight*12, 12) < 0.99) hist->Fill(multiplier * (*r)[which], weight);
00451   }
00452 }
00453 
00454 
00455 void MuonResidualsFitter::computeHistogramRangeAndBinning(int which, int &nbins, double &a, double &b) 
00456 {
00457   // first, make a numeric array while discarding some crazy outliers
00458   double *data = new double[numResiduals()];
00459   int n = 0;
00460   for (std::vector<double*>::const_iterator r = m_residuals.begin();  r != m_residuals.end();  r++)  
00461     if (fabs((*r)[which])<50.) 
00462     {
00463       data[n] = (*r)[which];
00464       n++;
00465     }
00466   
00467   // compute "3 normal sigma" and regular interquantile ranges
00468   const int n_quantiles = 7;
00469   double probabilities[n_quantiles] = {0.00135, 0.02275, 0.25, 0.5, 0.75, 0.97725, 0.99865}; // "3 normal sigma"
00470   //double probabilities[n_quantiles] = {0.02275, 0.25, 0.75, 0.97725}; // "2 normal sigma"
00471   double quantiles[n_quantiles];
00472   std::sort(data, data + n);
00473   TMath::Quantiles(n, n_quantiles, data, quantiles, probabilities, true, NULL, 7);
00474   delete [] data;
00475   double iqr = quantiles[4] - quantiles[2];
00476   
00477   // estimate optimal bin size according to Freedman-Diaconis rule
00478   double hbin = 2 * iqr / pow( n, 1./3);
00479 
00480   a = quantiles[1];
00481   b = quantiles[5];
00482   nbins = (int) ( (b - a) / hbin + 3. ); // add extra safety margin of 3
00483 
00484   std::cout<<"   quantiles: ";  for (int i=0;i<n_quantiles;i++) std::cout<<quantiles[i]<<" "; std::cout<<std::endl;
00485   //cout<<"n="<<select_count<<" quantiles ["<<quantiles[1]<<", "<<quantiles[2]<<"]  IQR="<<iqr
00486   //  <<"  full range=["<<minx<<","<<maxx<<"]"<<"  2 normal sigma quantile range = ["<<quantiles[0]<<", "<<quantiles[3]<<"]"<<endl;
00487   std::cout<<"   optimal h="<<hbin<<" nbins="<<nbins<<std::endl;
00488 }
00489 
00490 
00491 void MuonResidualsFitter::histogramChi2GaussianFit(int which, double &fit_mean, double &fit_sigma)
00492 {
00493   int nbins;
00494   double a, b;
00495   computeHistogramRangeAndBinning(which, nbins, a, b); 
00496   if (a==b || a > b) { fit_mean = a; fit_sigma = 0; return; }
00497 
00498   TH1D *hist = new TH1D("htmp", "", nbins, a, b);
00499   for (std::vector<double*>::const_iterator r = m_residuals.begin();  r != m_residuals.end();  ++r)   hist->Fill( (*r)[which] );
00500   
00501   // do simple chi2 gaussian fit
00502   TF1 *f1= new TF1("f1","gaus", a, b);
00503   f1->SetParameter(0, hist->GetEntries());
00504   f1->SetParameter(1, 0);
00505   f1->SetParameter(2, hist->GetRMS());
00506   hist->Fit("f1","RQ");
00507   
00508   fit_mean  = f1->GetParameter(1);
00509   fit_sigma = f1->GetParameter(2);
00510   std::cout<<" h("<<nbins<<","<<a<<","<<b<<") mu="<<fit_mean<<" sig="<<fit_sigma<<std::endl;
00511   
00512   delete f1;
00513   delete hist;
00514 }
00515 
00516 
00517 // simple non-turned ellipsoid selection
00518 void MuonResidualsFitter::selectPeakResiduals_simple(double nsigma, int nvar, int *vars)
00519 {
00520   // does not make sense for small statistics
00521   if (numResiduals()<25) return;
00522 
00523   int nbefore = numResiduals();
00524 
00525   //just to be sure (can't see why it might ever be more then 10)
00526   assert(nvar<=10);
00527 
00528   // estimate nvar-D ellipsoid center & axes
00529   for (int v = 0; v<nvar; v++)
00530   {
00531     int which = vars[v];
00532     histogramChi2GaussianFit(which, m_center[which], m_radii[which]);
00533     m_radii[which] = nsigma * m_radii[which];
00534   }
00535 
00536   // filter out residuals that don't fit into the ellipsoid
00537   std::vector<double*>::iterator r = m_residuals.begin();
00538   while (r != m_residuals.end())
00539   {
00540     double ellipsoid_sum = 0;
00541     for (int v = 0; v<nvar; v++)
00542     {
00543       int which = vars[v];
00544       if (m_radii[which] == 0.) continue;
00545       ellipsoid_sum += pow( ( (*r)[which] - m_center[which]) / m_radii[which] , 2);
00546     }
00547     if (ellipsoid_sum <= 1.)  ++r;
00548     else
00549     {
00550       delete [] (*r);
00551       r = m_residuals.erase(r);
00552     }
00553   }
00554   std::cout<<" N residuals "<<nbefore<<" -> "<<numResiduals()<<std::endl;
00555 }
00556 
00557 
00558 // pre-selection using robust covariance estimator
00559 void MuonResidualsFitter::selectPeakResiduals(double nsigma, int nvar, int *vars)
00560 {
00561   //std::cout<<"doing selectpeakresiduals: nsig="<<nsigma<<" nvar="<<nvar<<" vars=";
00562   for (int i=0; i<nvar; ++i) std::cout<<vars[i]<<" ";
00563   std::cout<<std::endl;
00564 
00565   // does not make sense for small statistics
00566   if (numResiduals()<50) return;
00567   
00568   size_t nbefore = numResiduals();
00569   std::cout<<" N residuals "<<nbefore<<" ~ "<<(size_t) std::count(m_residuals_ok.begin(), m_residuals_ok.end(), true)<<std::endl;
00570   //just to be sure (can't see why it might ever be more then 10)
00571   assert(nvar<=10 && nvar>0);
00572 
00573   std::vector<double*>::iterator r = m_residuals.begin();
00574 
00575   // it's awkward, but the 1D case has to be handled separately
00576   if (nvar==1)
00577   {
00578     // get robust estimates for the peak and sigma
00579     double *data = new double[nbefore];
00580     for (size_t i = 0; i < nbefore; i++) data[i] = m_residuals[i][ vars[0] ];
00581     double peak, sigma;
00582     TRobustEstimator re;
00583     re.EvaluateUni(nbefore, data, peak, sigma);
00584 
00585     // filter out residuals that are more then nsigma away from the peak
00586     while (r != m_residuals.end())
00587     {
00588       double distance = fabs( ((*r)[ vars[0] ] - peak)/sigma );
00589       if (distance <= nsigma)  ++r;
00590       else
00591       {
00592         m_residuals_ok[r - m_residuals.begin()] = false;
00593         ++r;
00594         //delete [] (*r);
00595         //r = m_residuals.erase(r);
00596       }
00597     }
00598     std::cout<<" N residuals "<<nbefore<<" -> "<<numResiduals()<<std::endl;
00599     return;
00600   } // end 1D case
00601   
00602   // initialize and run the robust estimator for D>1
00603   TRobustEstimator re(nbefore, nvar);
00604   r = m_residuals.begin();
00605   while (r != m_residuals.end())
00606   {
00607     double *row = new double[nvar];
00608     for (int v = 0; v<nvar; v++)  row[v] = (*r)[ vars[v] ];
00609     re.AddRow(row);
00610     delete[] row;
00611     ++r;
00612   }
00613   re.Evaluate();
00614   
00615   // get nvar-dimensional ellipsoid center & covariance
00616   TVectorD M(nvar);
00617   re.GetMean(M);
00618   TMatrixDSym Cov(nvar);
00619   re.GetCovariance(Cov);
00620   Cov.Invert();
00621 
00622   // calculate the normalized radius for this nvar-dimensional ellipsoid from a 1D-Gaussian nsigma equivalent distance
00623   double conf_1d = TMath::Erf(nsigma/sqrt(2));
00624   double surf_radius = sqrt(TMath::ChisquareQuantile(conf_1d, nvar));
00625 
00626   // filter out residuals that are outside of the covariance ellipsoid with the above normalized radius
00627   r = m_residuals.begin();
00628   while (r != m_residuals.end())
00629   {
00630     TVectorD res(nvar);
00631     for (int v = 0; v<nvar; v++)  res[v] = (*r)[ vars[v] ];
00632     double distance = sqrt( Cov.Similarity(res - M) );
00633     if (distance <= surf_radius)  ++r;
00634     else
00635     {
00636       m_residuals_ok[r - m_residuals.begin()] = false;
00637       ++r;
00638       //delete [] (*r);
00639       //r = m_residuals.erase(r);
00640     }
00641   }
00642   std::cout<<" N residuals "<<nbefore<<" -> "<<(size_t) std::count(m_residuals_ok.begin(), m_residuals_ok.end(), true)<<std::endl;
00643 }
00644 
00645 
00646 void MuonResidualsFitter::correctBField(int idx_momentum, int idx_q)
00647 {
00648   const int Nbin = 17;
00649   // find max 1/pt and bin width
00650   double min_pt = 9999.;
00651   for (std::vector<double*>::const_iterator r = residuals_begin();  r != residuals_end();  ++r)
00652   {
00653     double pt = fabs((*r)[idx_momentum]);
00654     if (pt < min_pt) min_pt = pt;
00655   }
00656   min_pt -= 0.01; // to prevent bin # overflow
00657   const double bin_width = 1./min_pt/Nbin;
00658 
00659   // fill indices of positive and negative charge residuals in each bin
00660   std::vector<size_t> pos[Nbin], neg[Nbin], to_erase;
00661   for (size_t i = 0; i < m_residuals.size(); i++)
00662   {
00663     if (!m_residuals_ok[i]) continue;
00664     int bin = (int)floor(1./fabs(m_residuals[i][idx_momentum])/bin_width);
00665     if (m_residuals[i][idx_q] > 0) pos[bin].push_back(i);
00666     else                           neg[bin].push_back(i);
00667   }
00668 
00669   // equalize pos and neg in each bin
00670   for (int j = 0; j < Nbin; j++)
00671   {
00672     size_t psize = pos[j].size();
00673     size_t nsize = neg[j].size();
00674     if (psize == nsize) continue;
00675 
00676     std::set<int> idx_set; // use a set to collect certain number of unique random indices to erase
00677     if (psize > nsize)
00678     {
00679       while (idx_set.size() < psize - nsize)  idx_set.insert( gRandom->Integer(psize) );
00680       for (std::set<int>::iterator it = idx_set.begin() ; it != idx_set.end(); it++ )  to_erase.push_back(pos[j][*it]);
00681     }
00682     else
00683     {
00684       while (idx_set.size() < nsize - psize)  idx_set.insert( gRandom->Integer(nsize) );
00685       for (std::set<int>::iterator it = idx_set.begin() ; it != idx_set.end(); it++ )  to_erase.push_back(neg[j][*it]);
00686     }
00687   }
00688   // sort in descending order, so we safely go from higher to lower indices:
00689   std::sort(to_erase.begin(), to_erase.end(), std::greater<int>() );
00690   for (std::vector<size_t>::const_iterator e = to_erase.begin();  e != to_erase.end();  ++e)
00691   {
00692     m_residuals_ok[*e] = false;
00693     //delete[] *(m_residuals.begin() + *e);
00694     //m_residuals.erase(m_residuals.begin() + *e);
00695   }
00696 
00697   std::vector<size_t> apos[Nbin], aneg[Nbin];
00698   for (size_t i = 0; i < m_residuals.size(); i++)
00699   {
00700     if (!m_residuals_ok[i]) continue;
00701     int bin = (int)floor(1./fabs(m_residuals[i][idx_momentum])/bin_width);
00702     if (m_residuals[i][idx_q] > 0) apos[bin].push_back(i);
00703     else                           aneg[bin].push_back(i);
00704   }
00705   for (int j = 0; j < Nbin; j++) std::cout << "bin " << j << ": [pos,neg] sizes before & after: ["
00706     << pos[j].size() <<","<< neg[j].size()<<"] -> [" << apos[j].size() <<","<< aneg[j].size() << "]" << std::endl;
00707   std::cout<<" N residuals "<<m_residuals.size()<<" -> "<<(size_t) std::count(m_residuals_ok.begin(), m_residuals_ok.end(), true)<<std::endl;
00708 }
00709 
00710 
00711 void MuonResidualsFitter::eraseNotSelectedResiduals()
00712 {
00713   // it should probably be faster then doing erase
00714   size_t n_ok = (size_t) std::count(m_residuals_ok.begin(), m_residuals_ok.end(), true);
00715   std::vector<double*> tmp(n_ok, 0);
00716   std::cout << "residuals sizes: all=" << m_residuals.size()<<" good="<<n_ok<<std::endl;
00717   int iok=0;
00718   for (size_t i = 0; i < m_residuals.size(); i++)
00719   {
00720     if (!m_residuals_ok[i]) continue;
00721     tmp[iok++] = m_residuals[i];
00722   }
00723   m_residuals.swap(tmp);
00724 
00725   std::vector<bool> tmp_ok(n_ok, true);
00726   m_residuals_ok.swap(tmp_ok);
00727 
00728   std::cout << "residuals size after eraseNotSelectedResiduals =" << m_residuals.size()<<"  ok size="<<m_residuals_ok.size()<<std::endl;
00729 }