CMS 3D CMS Logo

Public Member Functions | Public Attributes | Private Member Functions | Private Attributes

CosmicMuonGenerator Class Reference

#include <CosmicMuonGenerator.h>

List of all members.

Public Member Functions

 CosmicMuonGenerator ()
double getRate ()
void initialize (CLHEP::HepRandomEngine *rng=0)
void nextEvent ()
bool nextMultiEvent ()
void runCMG ()
void setAcptAllMu (bool AllMu)
void setClayWidth (double ClayLaeyrWidth)
void setElossScaleFactor (double ElossScaleFact)
void setMaxEnu (double MaxEn)
void setMaxP (double P)
void setMaxPhi (double Phi)
void setMaxT0 (double T0)
void setMaxTheta (double Theta)
void setMinEnu (double MinEn)
void setMinP (double P)
void setMinP_CMS (double P)
void setMinPhi (double Phi)
void setMinT0 (double T0)
void setMinTheta (double Theta)
void setMTCCHalf (bool MTCC)
void setMultiMuon (bool MultiMu)
void setMultiMuonFileFirstEvent (int MultiMuFile1stEvt)
void setMultiMuonFileName (std::string MultiMuonFileName)
void setMultiMuonNmin (int MultiMuNmin)
void setNumberOfEvents (unsigned int N)
void setNuProdAlt (double NuPrdAlt)
void setPlugVx (double PlugVtx)
void setPlugVz (double PlugVtz)
void setRadiusOfTarget (double R)
void setRanSeed (int N)
void setRhoAir (double VarRhoAir)
void setRhoClay (double VarRhoClay)
void setRhoPlug (double VarRhoPlug)
void setRhoRock (double VarRhoRock)
void setRhoWall (double VarRhoSWall)
void setTIFOnly_constant (bool TIF)
void setTIFOnly_linear (bool TIF)
void setTrackerOnly (bool Tracker)
void setZCentrOfTarget (double Z)
void setZDistOfTarget (double Z)
void terminate ()
 ~CosmicMuonGenerator ()

Public Attributes

double E_at
std::vector< double > E_sf
std::vector< double > E_ug
double EventWeight
int Id_at
std::vector< int > Id_sf
std::vector< int > Id_ug
SingleParticleEvent OneMuoEvt
std::vector< double > P_mu
double Px_at
std::vector< double > Px_mu
std::vector< double > Px_sf
std::vector< double > Px_ug
double Py_at
std::vector< double > Py_mu
std::vector< double > Py_sf
std::vector< double > Py_ug
double Pz_at
std::vector< double > Pz_mu
std::vector< double > Pz_sf
std::vector< double > Pz_ug
double T0_at
std::vector< double > T0_sf
std::vector< double > T0_ug
double Theta_at
std::vector< double > Theta_mu
double Trials
double Vx_at
std::vector< double > Vx_mu
std::vector< double > Vx_sf
std::vector< double > Vx_ug
double Vxz_mu
double Vy_at
std::vector< double > Vy_mu
std::vector< double > Vy_sf
std::vector< double > Vy_ug
double Vz_at
std::vector< double > Vz_mu
std::vector< double > Vz_sf
std::vector< double > Vz_ug

Private Member Functions

void checkIn ()
void displayEv ()
bool goodOrientation ()
void initEvDis ()

Private Attributes

bool AcptAllMu
double ClayWidth
CMSCGENCosmics
bool delRanGen
double ElossScaleFactor
double EventRate
double MaxEnu
double MaxP
double MaxPhi
double MaxT0
double MaxTheta
double MinEnu
double MinP
double MinP_CMS
double MinPhi
double MinT0
double MinTheta
bool MTCCHalf
TFile * MultiIn
bool MultiMuon
int MultiMuonFileFirstEvent
std::string MultiMuonFileName
int MultiMuonNmin
TTree * MultiTree
int NcloseMultiMuonEvents
double Ndiced
double Ngen
CMSCGENnormNorm
bool NotInitialized
double Nsel
int NskippedMultiMuonEvents
unsigned int NumberOfEvents
double NuProdAlt
double PlugVx
double PlugVz
double RadiusOfTarget
CLHEP::HepRandomEngine * RanGen
int RanSeed
double rateErr_stat
double rateErr_syst
double RhoAir
double RhoClay
double RhoPlug
double RhoRock
double RhoWall
simSimTree
ULong64_t SimTree_jentry
ULong64_t SimTreeEntries
double SumIntegrals
double SurfaceRadius
double Target3dRadius
bool TIFOnly_constant
bool TIFOnly_linear
bool TrackerOnly
double ZCentrOfTarget
double ZDistOfTarget

Detailed Description

Definition at line 31 of file CosmicMuonGenerator.h.


Constructor & Destructor Documentation

CosmicMuonGenerator::CosmicMuonGenerator ( ) [inline]

Definition at line 34 of file CosmicMuonGenerator.h.

References ClayWidth, Cosmics, gather_cfg::cout, Deg2Rad, ElossScaleFactor, EventRate, MaxP, MaxPhi, MaxT0, MaxTheta, MinP, MinP_CMS, MinPhi, MinT0, MinTheta, MTCCHalf, MultiMuon, MultiMuonFileFirstEvent, MultiMuonFileName, MultiMuonNmin, Ndiced, Ngen, Norm, NotInitialized, Nsel, NumberOfEvents, PlugOnShaftVx, PlugOnShaftVz, PlugVx, PlugVz, RadiusOfTarget, RanSeed, rateErr_stat, rateErr_syst, RhoAir, RhoClay, RhoPlug, RhoRock, RhoWall, SumIntegrals, SurfaceRadius, Target3dRadius, TIFOnly_constant, TIFOnly_linear, TrackerOnly, ZCentrOfTarget, and ZDistOfTarget.

                        : delRanGen(false)
    {
      //initialize class which normalizes flux (added by P.Biallass 29.3.2006)
      Norm = new CMSCGENnorm();
      //initialize class which produces the cosmic muons  (modified by P.Biallass 29.3.2006)
      Cosmics = new CMSCGEN();
      // set default control parameters
      NumberOfEvents = 100;
      RanSeed = 135799468;
      MinP =     3.;
      MinP_CMS =     MinP;
      MaxP =   3000.;
      MinTheta =  0.*Deg2Rad;
      //MaxTheta = 84.26*Deg2Rad;
      MaxTheta = 89.0*Deg2Rad;
      MinPhi =    0.*Deg2Rad;
      MaxPhi =  360.*Deg2Rad;
      MinT0  = -12.5;
      MaxT0  =  12.5;
      ElossScaleFactor = 1.0;
      RadiusOfTarget = 8000.;
      ZDistOfTarget = 15000.;
      ZCentrOfTarget = 0.;
      TrackerOnly = false;
      MultiMuon = false;
      MultiMuonFileName = "dummy.root";
      MultiMuonFileFirstEvent = 0;
      MultiMuonNmin = 2;
      TIFOnly_constant = false;
      TIFOnly_linear = false;
      MTCCHalf = false;
      EventRate = 0.;
      rateErr_stat = 0.;
      rateErr_syst = 0.;
      
      SumIntegrals = 0.;
      Ngen = 0.;
      Nsel = 0.;
      Ndiced = 0.;
      NotInitialized = true;
      Target3dRadius = 0.;
      SurfaceRadius = 0.;
      //set plug as default onto PX56 shaft
      PlugVx = PlugOnShaftVx;
      PlugVz = PlugOnShaftVz;
      //material densities in g/cm^3
      RhoAir = 0.001214;
      RhoWall = 2.5;
      RhoRock = 2.5;
      RhoClay = 2.3;
      RhoPlug = 2.5;
      ClayWidth = 50000; //[mm]


      
      std::cout << std::endl;
      std::cout << "*********************************************************" << std::endl;
      std::cout << "*********************************************************" << std::endl;
      std::cout << "***                                                   ***" << std::endl;
      std::cout << "***  C O S M I C  M U O N  G E N E R A T O R  (vC++)  ***" << std::endl;
      std::cout << "***                                                   ***" << std::endl;
      std::cout << "*********************************************************" << std::endl;
      std::cout << "*********************************************************" << std::endl;
      std::cout << std::endl;
    }
CosmicMuonGenerator::~CosmicMuonGenerator ( ) [inline]

Definition at line 101 of file CosmicMuonGenerator.h.

References Cosmics, delRanGen, Norm, and RanGen.

    {
      if (delRanGen)
        delete RanGen;
      delete Norm; 
      delete Cosmics;
    }

Member Function Documentation

void CosmicMuonGenerator::checkIn ( ) [private]

Definition at line 868 of file CosmicMuonGenerator.cc.

References gather_cfg::cout, ElossScaleFactor, MaxEnu, MaxP, MaxPhi, MaxT0, MaxTheta, MinEnu, MinP, MinPhi, MinT0, MinTheta, and NumberOfEvents.

Referenced by initialize().

                                 {
  if (MinP < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: min.energy is out of range (0 GeV ... inf]" << std::endl << std::endl; }
  if (MaxP < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.energy is out of range (0 GeV ... inf]" << std::endl << std::endl; }
  if (MaxP <= MinP){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.energy is not greater than min.energy" << std::endl << std::endl; }
  if (MinTheta < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: min.theta is out of range [0 deg ... 90 deg)" << std::endl << std::endl; }
  if (MaxTheta < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.theta is out of range [0 deg ... 90 deg)" << std::endl << std::endl; }
  if (MaxTheta <= MinTheta){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.theta is not greater than min.theta" << std::endl << std::endl; }
  if (MinPhi < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: min.phi is out of range [0 deg ... 360 deg]" << std::endl << std::endl; }
  if (MaxPhi < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.phi is out of range [0 deg ... 360 deg]" << std::endl << std::endl; }
  if (MaxPhi <= MinPhi){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.phi is not greater than min.phi" << std::endl << std::endl; }
  if (MaxT0 <= MinT0){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.t0 is not greater than min.t0" << std::endl << std::endl; }
  if (ElossScaleFactor < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: E-loss scale factor is out of range [0 ... inf)" << std::endl << std::endl; }
  if (MinEnu < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: min.Enu is out of range [0 GeV ... inf]" << std::endl << std::endl; }
  if (MaxEnu < 0.){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.Enu is out of range [0 GeV ... inf]" << std::endl << std::endl; }
  if (MaxEnu <= MinEnu){ NumberOfEvents = 0;
    std::cout << "  CMG-ERR: max.Enu is not greater than min.Enu" << std::endl << std::endl; }

}
void CosmicMuonGenerator::displayEv ( ) [private]

Definition at line 979 of file CosmicMuonGenerator.cc.

References SingleParticleEvent::e(), relval_parameters_module::energy, OneMuoEvt, SingleParticleEvent::px(), SingleParticleEvent::py(), SingleParticleEvent::pz(), RadiusCMS, RadiusTracker, mathSSE::sqrt(), TrackerOnly, SingleParticleEvent::vx(), SingleParticleEvent::vy(), SingleParticleEvent::vz(), Z_DistCMS, and Z_DistTracker.

Referenced by nextEvent().

                                   {
#if ROOT_INTERACTIVE
  double RadiusDet=RadiusCMS;
  double Z_DistDet=Z_DistCMS;
  if(TrackerOnly==true){
    RadiusDet = RadiusTracker;
    Z_DistDet = Z_DistTracker;
  }
  disXY->Reset();
  disZY->Reset();
  TMarker* InteractionPoint = new TMarker(0.,0.,2);
  TArc* r8m = new TArc(0.,0.,(RadiusDet/1000.));
  TLatex* logEaxis = new TLatex(); logEaxis->SetTextSize(0.05);
  float energy = float(OneMuoEvt.e());
  float verX = float(OneMuoEvt.vx()/1000.); // [m]
  float verY = float(OneMuoEvt.vy()/1000.); // [m]
  float verZ = float(OneMuoEvt.vz()/1000.); // [m]
  float dirX = float(OneMuoEvt.px())/std::fabs(OneMuoEvt.py());
  float dirY = float(OneMuoEvt.py())/std::fabs(OneMuoEvt.py());
  float dirZ = float(OneMuoEvt.pz())/std::fabs(OneMuoEvt.py());
  float yStep = disXY->GetYaxis()->GetBinWidth(1);
  int   NbinY = disXY->GetYaxis()->GetNbins();
  for (int iy=0; iy<NbinY; ++iy){
    verX += dirX*yStep;
    verY += dirY*yStep;
    verZ += dirZ*yStep;
    float rXY = sqrt(verX*verX + verY*verY)*1000.; // [mm]
    float absZ = std::fabs(verZ)*1000.;                 // [mm]
    if (rXY < RadiusDet && absZ < Z_DistDet){
      disXY->Fill(verX,verY,log10(energy));
      disZY->Fill(verZ,verY,log10(energy));
      disC->cd(1); disXY->Draw("COLZ"); InteractionPoint->Draw("SAME"); r8m->Draw("SAME");
      logEaxis->DrawLatex((0.65*RadiusDet/1000.),(1.08*RadiusDet/1000.),"log_{10}E(#mu^{#pm})");
      disC->cd(2); disZY->Draw("COL"); InteractionPoint->Draw("SAME");
      gPad->Update();
    }
  }
#endif
}
double CosmicMuonGenerator::getRate ( )

Definition at line 1074 of file CosmicMuonGenerator.cc.

References EventRate.

{ return EventRate; }
bool CosmicMuonGenerator::goodOrientation ( ) [private]

Definition at line 900 of file CosmicMuonGenerator.cc.

References gather_cfg::cout, Deg2Rad, dPhi(), MinTheta, OneMuoEvt, colinearityKinematic::Phi, SingleParticleEvent::phi(), Pi, PlugWidth, RadiusCMS, mathSSE::sqrt(), SurfaceOfEarth, Target3dRadius, SingleParticleEvent::theta(), TwoPi, SingleParticleEvent::vx(), and SingleParticleEvent::vz().

Referenced by nextEvent(), and nextMultiEvent().

                                         {
  // check angular range (for a sphere with Target3dRadius around the target)
  bool goodAngles = false;
  bool phiaccepted = false;
  bool thetaaccepted = false;
  double RxzV = sqrt(OneMuoEvt.vx()*OneMuoEvt.vx() + OneMuoEvt.vz()*OneMuoEvt.vz());

  double rVY;
  if (MinTheta > 90.*Deg2Rad) //upgoing muons from neutrinos
    rVY = -sqrt(RxzV*RxzV + RadiusCMS*RadiusCMS);
  else 
    rVY = sqrt(RxzV*RxzV + (SurfaceOfEarth+PlugWidth)*(SurfaceOfEarth+PlugWidth));

  double Phi = OneMuoEvt.phi();
  double PhiV = atan2(OneMuoEvt.vx(),OneMuoEvt.vz()) + Pi; if (PhiV > TwoPi) PhiV -= TwoPi;
  double disPhi = std::fabs(PhiV - Phi); if (disPhi > Pi) disPhi = TwoPi - disPhi;
  double dPhi = Pi; if (RxzV > Target3dRadius) dPhi = asin(Target3dRadius/RxzV);
  if (disPhi < dPhi) phiaccepted = true;
  double Theta = OneMuoEvt.theta();
  double ThetaV = asin(RxzV/rVY);
  double dTheta = Pi; if (std::fabs(rVY) > Target3dRadius) dTheta = asin(Target3dRadius/std::fabs(rVY));
  //std::cout << "    dPhi = " <<   dPhi << "  (" <<   Phi << " <p|V> " <<   PhiV << ")" << std::endl;
  //std::cout << "  dTheta = " << dTheta << "  (" << Theta << " <p|V> " << ThetaV << ")" << std::endl;

  if (!phiaccepted && RxzV < Target3dRadius)
  //if (RxzV < Target3dRadius)
    std::cout << "Rejected phi=" << Phi << "  PhiV="  << PhiV 
         << "  dPhi=" << dPhi << "  disPhi=" << disPhi
         << "  RxzV=" << RxzV << "  Target3dRadius=" << Target3dRadius 
         << "  Theta=" << Theta << std::endl;

  if (std::fabs(Theta-ThetaV) < dTheta) thetaaccepted = true;
  if (phiaccepted && thetaaccepted) goodAngles = true;
  return goodAngles;
}
void CosmicMuonGenerator::initEvDis ( ) [private]

Definition at line 936 of file CosmicMuonGenerator.cc.

References MaxP, MinP, RadiusCMS, RadiusTracker, TrackerOnly, Z_DistCMS, and Z_DistTracker.

Referenced by initialize().

                                   {
#if ROOT_INTERACTIVE
  float rCMS = RadiusCMS/1000.;
  float zCMS = Z_DistCMS/1000.;
  if(TrackerOnly==true){
    rCMS = RadiusTracker/1000.;
    zCMS = Z_DistTracker/1000.;
}
  TH2F* disXY = new TH2F("disXY","X-Y view",160,-rCMS,rCMS,160,-rCMS,rCMS);
  TH2F* disZY = new TH2F("disZY","Z-Y view",150,-zCMS,zCMS,160,-rCMS,rCMS);
  gStyle->SetPalette(1,0);
  gStyle->SetMarkerColor(1);
  gStyle->SetMarkerSize(1.5);
  TCanvas *disC = new TCanvas("disC","Cosmic Muon Event Display",0,0,800,410);
  disC->Divide(2,1);
  disC->cd(1);
  gPad->SetTicks(1,1);
  disXY->SetMinimum(log10(MinP));
  disXY->SetMaximum(log10(MaxP));
  disXY->GetXaxis()->SetLabelSize(0.05);
  disXY->GetXaxis()->SetTitleSize(0.05);
  disXY->GetXaxis()->SetTitleOffset(1.0);
  disXY->GetXaxis()->SetTitle("X [m]");
  disXY->GetYaxis()->SetLabelSize(0.05);
  disXY->GetYaxis()->SetTitleSize(0.05);
  disXY->GetYaxis()->SetTitleOffset(0.8);
  disXY->GetYaxis()->SetTitle("Y [m]");
  disC->cd(2);
  gPad->SetGrid(1,1);
  gPad->SetTicks(1,1);
  disZY->SetMinimum(log10(MinP));
  disZY->SetMaximum(log10(MaxP));
  disZY->GetXaxis()->SetLabelSize(0.05);
  disZY->GetXaxis()->SetTitleSize(0.05);
  disZY->GetXaxis()->SetTitleOffset(1.0);
  disZY->GetXaxis()->SetTitle("Z [m]");
  disZY->GetYaxis()->SetLabelSize(0.05);
  disZY->GetYaxis()->SetTitleSize(0.05);
  disZY->GetYaxis()->SetTitleOffset(0.8);
  disZY->GetYaxis()->SetTitle("Y [m]");
#endif
}
void CosmicMuonGenerator::initialize ( CLHEP::HepRandomEngine *  rng = 0)

Definition at line 18 of file CosmicMuonGenerator.cc.

References checkIn(), Cosmics, gather_cfg::cout, Debug, Deg2Rad, delRanGen, EventDisplay, sim::fChain, sim::Init(), initEvDis(), CMSCGEN::initialize(), CMSCGEN::initializeNuMu(), MaxEnu, MaxP, MaxPhi, MaxTheta, MinEnu, MinP, MinPhi, MinStepSize, MinTheta, MultiIn, MultiMuon, MultiMuonFileFirstEvent, MultiMuonFileName, MultiTree, NcloseMultiMuonEvents, NotInitialized, NskippedMultiMuonEvents, NumberOfEvents, NuProdAlt, OneMuoEvt, phi, PlugVx, SingleParticleEvent::PlugVx, PlugVz, SingleParticleEvent::PlugVz, PlugWidth, RadiusCMS, RadiusOfTarget, RadiusTracker, RanGen, RanSeed, SingleParticleEvent::RhoAir, RhoAir, SingleParticleEvent::RhoClay, RhoClay, SingleParticleEvent::RhoPlug, RhoPlug, RhoRock, SingleParticleEvent::RhoRock, RhoWall, SingleParticleEvent::RhoWall, SimTree, SimTree_jentry, SimTreeEntries, mathSSE::sqrt(), SurfaceOfEarth, SurfaceRadius, funct::tan(), Target3dRadius, TIFOnly_constant, TIFOnly_linear, TrackerOnly, Z_DistTracker, and ZDistOfTarget.

Referenced by edm::CosMuoGenProducer::CosMuoGenProducer(), edm::CosMuoGenSource::CosMuoGenSource(), and runCMG().

                                                             {
  if (delRanGen)
    delete RanGen;
  if (!rng) {
    RanGen = new CLHEP::HepJamesRandom;
    RanGen->setSeed(RanSeed, 0); //set seed for Random Generator (seed can be controled by config-file)
    delRanGen = true;
  } else {
    RanGen = rng;
    delRanGen = false;
  }
  checkIn();
  if (NumberOfEvents > 0){
    // set up "surface geometry" dimensions
    double RadiusTargetEff = RadiusOfTarget; //get this from cfg-file
    double Z_DistTargetEff = ZDistOfTarget;  //get this from cfg-file
    //double Z_CentrTargetEff = ZCentrOfTarget;  //get this from cfg-file
    if(TrackerOnly==true){
    RadiusTargetEff = RadiusTracker;
    Z_DistTargetEff = Z_DistTracker;
    }
    Target3dRadius = sqrt(RadiusTargetEff*RadiusTargetEff + Z_DistTargetEff*Z_DistTargetEff) + MinStepSize;
    if (Debug) std::cout << "  radius of sphere  around  target = " << Target3dRadius << " mm" << std::endl;

    if (MinTheta > 90.*Deg2Rad) //upgoing muons from neutrinos
      SurfaceRadius = (RadiusCMS)*(-tan(MinTheta)) + MinStepSize;
    else
      SurfaceRadius = (SurfaceOfEarth+PlugWidth+RadiusTargetEff)*tan(MaxTheta) + Target3dRadius;  
    if (Debug) std::cout << "  starting point radius at Surface + PlugWidth = " << SurfaceRadius << " mm" << std::endl;

    OneMuoEvt.PlugVx = PlugVx;
    OneMuoEvt.PlugVz = PlugVz;
    OneMuoEvt.RhoAir = RhoAir;
    OneMuoEvt.RhoWall = RhoWall;
    OneMuoEvt.RhoRock = RhoRock;
    OneMuoEvt.RhoClay = RhoClay;
    OneMuoEvt.RhoPlug = RhoPlug;
    //set energy and angle limits for CMSCGEN, give same seed as above 
    if (MinTheta >= 90.*Deg2Rad) //upgoing muons from neutrinos
      Cosmics->initializeNuMu(MinP, MaxP, MinTheta, MaxTheta, MinEnu, MaxEnu, 
                              MinPhi, MaxPhi, NuProdAlt, RanGen);
    else 
      Cosmics->initialize(MinP, MaxP, MinTheta, MaxTheta, RanGen, TIFOnly_constant, TIFOnly_linear);
   
#if ROOT_INTERACTIVE
  // book histos
  TH1D* ene = new TH1D("ene","generated energy",210,0.,1050.);
  TH1D* the = new TH1D("the","generated theta",90,0.,90.);
  TH1D* phi = new TH1D("phi","generated phi",120,0.,360.);
  TH3F* ver = new TH3F("ver","Z-X-Y coordinates",100,-25.,25.,20,-10.,10.,40,-10.,10.);
#endif
    if (EventDisplay) initEvDis();
    std::cout << std::endl;
    
    if (MultiMuon) {
      MultiIn = 0;
      
      std::cout << "MultiMuonFileName.c_str()=" << MultiMuonFileName.c_str() << std::endl;
      MultiIn = new TFile( MultiMuonFileName.c_str() );
      
      if (!MultiIn) std::cout << "MultiMuon=True: MultiMuonFileName='"
                              << MultiMuonFileName.c_str() << "' does not exist" << std::endl;
      else std::cout << "MultiMuonFile: " << MultiMuonFileName.c_str() << " opened!" << std::endl;
      //MultiTree = (TTree*) gDirectory->Get("sim");
      MultiTree = (TTree*) MultiIn->Get("sim");
      SimTree = new sim(MultiTree);
      SimTree->Init(MultiTree);
      SimTreeEntries = SimTree->fChain->GetEntriesFast();
      std::cout << "SimTreeEntries=" << SimTreeEntries << std::endl;

      if (MultiMuonFileFirstEvent <= 0)
        SimTree_jentry = 0;
      else 
        SimTree_jentry = MultiMuonFileFirstEvent - 1; //1=1st evt (SimTree_jentry=0)
      
      NcloseMultiMuonEvents = 0;
      NskippedMultiMuonEvents = 0;
    }
    
    if (!MultiMuon || (MultiMuon && MultiIn)) NotInitialized = false;
     
  }
}
void CosmicMuonGenerator::nextEvent ( )

Definition at line 102 of file CosmicMuonGenerator.cc.

References AcptAllMu, funct::cos(), CMSCGEN::cos_theta(), Cosmics, gather_cfg::cout, SingleParticleEvent::create(), Debug, Deg2Rad, displayEv(), dPhi(), SingleParticleEvent::e(), E_at, E_sf, E_ug, ElossScaleFactor, EventDisplay, CMSCGENnorm::events_n100cos(), EventWeight, CMSCGEN::generate(), CMSCGEN::generateNuMu(), goodOrientation(), SingleParticleEvent::hitTarget(), SingleParticleEvent::id(), Id_at, Id_sf, Id_ug, SingleParticleEvent::m(), MaxPhi, MaxT0, MinP_CMS, MinPhi, MinT0, MinTheta, CMSCGEN::momentum_times_charge(), MTCCHalf, MuonMass, Ndiced, Ngen, Norm, Nsel, OneMuoEvt, phi, colinearityKinematic::Phi, SingleParticleEvent::phi(), Pi, PlugWidth, SingleParticleEvent::propagate(), SingleParticleEvent::px(), Px_at, Px_sf, Px_ug, SingleParticleEvent::py(), Py_at, Py_sf, Py_ug, SingleParticleEvent::pz(), Pz_at, Pz_sf, Pz_ug, Rad2Deg, RadiusCMS, RadiusOfTarget, RanGen, funct::sin(), SpeedOfLight, mathSSE::sqrt(), SurfaceOfEarth, SurfaceRadius, SingleParticleEvent::t0(), T0_at, T0_sf, T0_ug, Target3dRadius, SingleParticleEvent::theta(), TrackerOnly, TwoPi, SingleParticleEvent::vx(), Vx_at, Vx_sf, Vx_ug, SingleParticleEvent::vy(), Vy_at, Vy_sf, Vy_ug, SingleParticleEvent::vz(), Vz_at, Vz_sf, Vz_ug, ZCentrOfTarget, and ZDistOfTarget.

Referenced by runCMG().

                                   {

  double E = 0.; double Theta = 0.; double Phi = 0.; double RxzV = 0.; double PhiV = 0.;
  if (int(Nsel)%100 == 0) std::cout << "    generated " << int(Nsel) << " events" << std::endl;
  // generate cosmic (E,theta,phi)
  bool   notSelected = true;
  while (notSelected){
    bool   badMomentumGenerated = true;
    while (badMomentumGenerated){
      
      if (MinTheta > 90.*Deg2Rad) //upgoing muons from neutrinos
        Cosmics->generateNuMu();
      else
        Cosmics->generate(); //dice one event now
      
      E = sqrt(Cosmics->momentum_times_charge()*Cosmics->momentum_times_charge() + MuonMass*MuonMass);
      Theta = TMath::ACos( Cosmics->cos_theta() ) ; //angle has to be in RAD here
          Ngen+=1.;   //count number of initial cosmic events (in surface area), vertices will be added later
          badMomentumGenerated = false;
          Phi = RanGen->flat()*(MaxPhi-MinPhi) + MinPhi;
    }
    Norm->events_n100cos(E, Theta); //test if this muon is in normalization range
    Ndiced += 1; //one more cosmic is diced

    // generate vertex
    double Nver = 0.;
    bool   badVertexGenerated = true;
    while (badVertexGenerated){
      RxzV = sqrt(RanGen->flat())*SurfaceRadius;
      PhiV = RanGen->flat()*TwoPi;
      // check phi range (for a sphere with Target3dRadius around the target)
      double dPhi = Pi; if (RxzV > Target3dRadius) dPhi = asin(Target3dRadius/RxzV);
      double rotPhi = PhiV + Pi; if (rotPhi > TwoPi) rotPhi -= TwoPi;
      double disPhi = std::fabs(rotPhi - Phi); if (disPhi > Pi) disPhi = TwoPi - disPhi;
      if (disPhi < dPhi || AcptAllMu) badVertexGenerated = false;
      Nver+=1.;
    }
    Ngen += (Nver-1.); //add number of generated vertices to initial cosmic events
    
    // complete event at surface
    int id =  13; // mu-
    if (Cosmics->momentum_times_charge() >0.) id = -13; // mu+
    double absMom = sqrt(E*E - MuonMass*MuonMass);
    double verMom = absMom*cos(Theta);
    double horMom = absMom*sin(Theta);
    double Px = horMom*sin(Phi); // [GeV/c]
    double Py = -verMom;         // [GeV/c]
    double Pz = horMom*cos(Phi); // [GeV/c]
    double Vx = RxzV*sin(PhiV);  // [mm]

    double Vy;
    if (MinTheta > 90.*Deg2Rad) //upgoing muons from neutrinos
      Vy = -RadiusCMS;
    else
      Vy = SurfaceOfEarth + PlugWidth;  // [mm]

    double Vz = RxzV*cos(PhiV);  // [mm]
    double T0 = (RanGen->flat()*(MaxT0-MinT0) + MinT0)*SpeedOfLight; // [mm/c];

    Id_at = id;
    Px_at = Px; Py_at = Py; Pz_at = Pz; E_at = E; //M_at = MuonMass;
    Vx_at = Vx; Vy_at = Vy; Vz_at = Vz; T0_at = T0;

    OneMuoEvt.create(id, Px, Py, Pz, E, MuonMass, Vx, Vy, Vz, T0); 
    // if angles are ok, propagate to target
    if (goodOrientation()) { 
      if (MinTheta > 90.*Deg2Rad) //upgoing muons from neutrinos
        OneMuoEvt.propagate(0., RadiusOfTarget, ZDistOfTarget, ZCentrOfTarget, TrackerOnly, MTCCHalf);
      else
        OneMuoEvt.propagate(ElossScaleFactor, RadiusOfTarget, ZDistOfTarget, ZCentrOfTarget, TrackerOnly, MTCCHalf);
    }

    if ( (OneMuoEvt.hitTarget() && sqrt(OneMuoEvt.e()*OneMuoEvt.e() - MuonMass*MuonMass) > MinP_CMS)
        || AcptAllMu==true){
      Nsel+=1.; //count number of generated and accepted events  
      notSelected = false;
    }
  }

  EventWeight = 1.;

  //just one outgoing particle at SurFace
  Id_sf.resize(1); 
  Px_sf.resize(1); 
  Py_sf.resize(1); 
  Pz_sf.resize(1);
  E_sf.resize(1); 
  //M_sf.resize(1);
  Vx_sf.resize(1);
  Vy_sf.resize(1);
  Vz_sf.resize(1);
  T0_sf.resize(1);

  Id_sf[0] = Id_at;
  Px_sf[0] = Px_at; Py_sf[0] = Py_at; Pz_sf[0] = Pz_at; E_sf[0] = E_at; //M_fs[0] = MuonMass;
  Vx_sf[0] = Vx_at; Vy_sf[0] = Vy_at; Vz_sf[0] = Vz_at; T0_sf[0] = T0_at;
  

  //just one particle at UnderGround  
  Id_ug.resize(1); 
  Px_ug.resize(1); 
  Py_ug.resize(1); 
  Pz_ug.resize(1);
  E_ug.resize(1); 
  //M_ug.resize(1);
  Vx_ug.resize(1);
  Vy_ug.resize(1);
  Vz_ug.resize(1);
  T0_ug.resize(1);

  Id_ug[0] = OneMuoEvt.id();
  Px_ug[0] = OneMuoEvt.px(); 
  Py_ug[0] = OneMuoEvt.py(); 
  Pz_ug[0] = OneMuoEvt.pz();
  E_ug[0] = OneMuoEvt.e(); 
  //M_ug[0] = OneMuoEvt.m();
  Vx_ug[0] = OneMuoEvt.vx(); 
  Vy_ug[0] = OneMuoEvt.vy(); 
  Vz_ug[0] = OneMuoEvt.vz();
  T0_ug[0] = OneMuoEvt.t0();

  // plot variables of selected events
#if ROOT_INTERACTIVE
  ene->Fill(OneMuoEvt.e());
  the->Fill((OneMuoEvt.theta()*Rad2Deg));
  phi->Fill((OneMuoEvt.phi()*Rad2Deg));
  ver->Fill((OneMuoEvt.vz()/1000.),(OneMuoEvt.vx()/1000.),(OneMuoEvt.vy()/1000.));
#endif
  if (Debug){
    std::cout << "new event" << std::endl;
    std::cout << "  Px,Py,Pz,E,m = " << OneMuoEvt.px() << ", " << OneMuoEvt.py() << ", "
         << OneMuoEvt.pz() << ", " << OneMuoEvt.e() << ", " << OneMuoEvt.m() << " GeV" << std::endl;
    std::cout << "  Vx,Vy,Vz,t0  = " << OneMuoEvt.vx() << ", " << OneMuoEvt.vy() << ", " 
         << OneMuoEvt.vz() << ", " << OneMuoEvt.t0() << " mm" << std::endl;
  }
  if (EventDisplay) displayEv();
  
}
bool CosmicMuonGenerator::nextMultiEvent ( )

Definition at line 243 of file CosmicMuonGenerator.cc.

References AcptAllMu, funct::cos(), gather_cfg::cout, SingleParticleEvent::create(), Debug, dPhi(), SingleParticleEvent::e(), E_at, E_sf, E_ug, ElossScaleFactor, EventWeight, sim::GetEntry(), goodOrientation(), SingleParticleEvent::hitTarget(), SingleParticleEvent::id(), Id_at, Id_sf, Id_ug, max(), max_Trials, MaxT0, min, MinP_CMS, MinT0, MTCCHalf, MultiMuonNmin, MuonMass, NcloseMultiMuonEvents, Ngen, NorthCMSzDeltaPhi, Nsel, NskippedMultiMuonEvents, OneMuoEvt, P_mu, sim::particle__ParticleID, sim::particle__Px, sim::particle__Py, sim::particle__Pz, sim::particle__Time, sim::particle__x, sim::particle__y, Pi, PlugWidth, funct::pow(), SingleParticleEvent::propagate(), SingleParticleEvent::px(), Px_at, Px_mu, Px_sf, Px_ug, SingleParticleEvent::py(), Py_at, Py_mu, Py_sf, Py_ug, SingleParticleEvent::pz(), Pz_at, Pz_mu, Pz_sf, Pz_ug, RadiusOfTarget, RanGen, sim::shower_Energy, sim::shower_EventID, sim::shower_GH_t0, sim::shower_nParticlesWritten, sim::shower_Phi, sim::shower_Theta, SimTree, SimTree_jentry, SimTreeEntries, funct::sin(), SpeedOfLight, mathSSE::sqrt(), SurfaceOfEarth, SurfaceRadius, SingleParticleEvent::t0(), T0_at, T0_sf, T0_ug, funct::tan(), Target3dRadius, Theta_at, Theta_mu, TrackerOnly, Trials, funct::true, TwoPi, SingleParticleEvent::vx(), Vx_at, Vx_mu, Vx_sf, Vx_ug, Vxz_mu, SingleParticleEvent::vy(), Vy_at, Vy_mu, Vy_sf, Vy_ug, SingleParticleEvent::vz(), Vz_at, Vz_mu, Vz_sf, Vz_ug, ZCentrOfTarget, and ZDistOfTarget.

                                         {

  if (Debug) std::cout << "\nEntered CosmicMuonGenerator::nextMultiEvent()" << std::endl;
  bool EvtRejected = true;
  bool MuInMaxDist = false;
  double MinDist; //[mm] 

  while (EvtRejected) {

    //read in event from SimTree
    //ULong64_t ientry = SimTree->LoadTree(SimTree_jentry);
    Long64_t ientry = SimTree->GetEntry(SimTree_jentry);
    std::cout << "CosmicMuonGenerator::nextMultiEvent(): SimTree_jentry=" << SimTree_jentry
      //<< " ientry=" << ientry 
              << " SimTreeEntries=" << SimTreeEntries << std::endl;
    if (ientry < 0) return false; //stop run
    if (SimTree_jentry < SimTreeEntries) {
      SimTree_jentry++;
    }
    else {
      std::cout << "CosmicMuonGenerator.cc::nextMultiEvent: No more events in file!" << std::endl;
      return false; //stop run
    }
    


    int nmuons = SimTree->shower_nParticlesWritten;
    if (nmuons<MultiMuonNmin) {
      std::cout << "CosmicMuonGenerator.cc: Warning!  Less than " << MultiMuonNmin << 
        " muons in event!" << std::endl;
      std::cout << "trying next event from file" << std::endl;
      NskippedMultiMuonEvents++;
      continue; //EvtRejected while loop: get next event from file
    }



    Px_mu.resize(nmuons); Py_mu.resize(nmuons); Pz_mu.resize(nmuons);
    P_mu.resize(nmuons);

    MinDist = 99999.e9; //[mm] 
    double MuMuDist;
    MuInMaxDist = false;
    //check if at least one muon pair closer than 30m at surface
    int NmuPmin = 0;
    for (int imu=0; imu<nmuons; ++imu) {

      Px_mu[imu] = -SimTree->particle__Px[imu]*sin(NorthCMSzDeltaPhi)
        + SimTree->particle__Py[imu]*cos(NorthCMSzDeltaPhi);
      Pz_mu[imu] = SimTree->particle__Px[imu]*cos(NorthCMSzDeltaPhi)
        + SimTree->particle__Py[imu]*sin(NorthCMSzDeltaPhi);
      Py_mu[imu] = -SimTree->particle__Pz[imu]; //Corsika down going particles defined in -z direction!
      P_mu[imu] = sqrt(Px_mu[imu]*Px_mu[imu] + Py_mu[imu]*Py_mu[imu] + Pz_mu[imu]*Pz_mu[imu]);
      
      if (P_mu[imu] < MinP_CMS  && AcptAllMu==false) continue;
      else if (SimTree->particle__ParticleID[imu] != 5 &&
               SimTree->particle__ParticleID[imu] != 6) continue;
      else NmuPmin++;
      
      for (int jmu=0; jmu<imu; ++jmu) {
        if (P_mu[jmu] < MinP_CMS && AcptAllMu==false) continue;
        if (SimTree->particle__ParticleID[imu] != 5 &&
            SimTree->particle__ParticleID[imu] != 6) continue;
        MuMuDist = sqrt( (SimTree->particle__x[imu]-SimTree->particle__x[jmu])*
                         (SimTree->particle__x[imu]-SimTree->particle__x[jmu]) 
                         +(SimTree->particle__y[imu]-SimTree->particle__y[jmu])*
                         (SimTree->particle__y[imu]-SimTree->particle__y[jmu])
                         )*10.; //CORSIKA [cm] to CMSCGEN [mm]
        if (MuMuDist < MinDist) MinDist = MuMuDist;
        if (MuMuDist < 2.*Target3dRadius) MuInMaxDist = true;
      }
    }
    if (MultiMuonNmin>=2) {
      if (MuInMaxDist) { 
        NcloseMultiMuonEvents++;
      }
      else {
        std::cout << "CosmicMuonGenerator.cc: Warning! No muon pair closer than " 
                  << 2.*Target3dRadius/1000. << "m   MinDist=" << MinDist/1000. << "m at surface" << std::endl;
        std::cout << "Fraction of too wide opening angle multi muon events: "
                  << 1 - double(NcloseMultiMuonEvents)/SimTree_jentry << std::endl;
        std::cout << "NcloseMultiMuonEvents=" << NcloseMultiMuonEvents << std::endl;
        std::cout << "trying next event from file" << std::endl;
        NskippedMultiMuonEvents++;
        continue; //EvtRejected while loop: get next event from file
      }
    }
  
    if (NmuPmin < MultiMuonNmin && AcptAllMu==false) { //take single muon events consistently into account
      NskippedMultiMuonEvents++;
      continue; //EvtRejected while loop: get next event from file
    }

    if (Debug) 
      if (MultiMuonNmin>=2)
        std::cout << "start trial do loop: MuMuDist=" << MinDist/1000. << "[m]   Nmuons=" 
                  << nmuons << "  NcloseMultiMuonEvents=" << NcloseMultiMuonEvents 
                  << "  NskippedMultiMuonEvents=" << NskippedMultiMuonEvents << std::endl;  
    
    
    //int primary_id = SimTree->run_ParticleID;
    Id_at = SimTree->shower_EventID;
    
    double M_at = 0.;
    //if (Id_at == 13) {
    Id_at = 2212; //convert from Corsika to HepPDT
    M_at = 938.272e-3; //[GeV] mass
    //}
    
    E_at = SimTree->shower_Energy;
    Theta_at = SimTree->shower_Theta;
    double phi_at = SimTree->shower_Phi - NorthCMSzDeltaPhi; //rotate by almost 90 degrees
    if (phi_at < -Pi) phi_at +=TwoPi; //bring into interval (-Pi,Pi]
    else if (phi_at > Pi) phi_at -= TwoPi; 
    double P_at = sqrt(E_at*E_at - M_at*M_at);
    //need to rotate about 90degrees around x->N axis => y<=>z, 
    //then rotate new x-z-plane from x->North to x->LHC centre
    Px_at = P_at*sin(Theta_at)*sin(phi_at);
    Py_at = -P_at*cos(Theta_at);
    Pz_at = P_at*sin(Theta_at)*cos(phi_at);

    //compute maximal theta of secondary muons
    double theta_mu_max = Theta_at;
    double theta_mu_min = Theta_at;

    double phi_rel_min = 0.; //phi_mu_min - phi_at
    double phi_rel_max = 0.; //phi_mu_max - phi_at

    //std::cout << "SimTree->shower_Energy=" << SimTree->shower_Energy <<std::endl;

    Theta_mu.resize(nmuons);
    for (int imu=0; imu<nmuons; ++imu) {
      Theta_mu[imu] = acos(-Py_mu[imu]/P_mu[imu]);
      if (Theta_mu[imu]>theta_mu_max) theta_mu_max = Theta_mu[imu];
      if (Theta_mu[imu]<theta_mu_min) theta_mu_min = Theta_mu[imu];

      double phi_mu = atan2(Px_mu[imu],Pz_mu[imu]); // in (-Pi,Pi]
      double phi_rel = phi_mu - phi_at;
      if (phi_rel < -Pi) phi_rel += TwoPi; //bring into interval (-Pi,Pi] 
      else if (phi_rel > Pi) phi_rel -= TwoPi;
      if (phi_rel < phi_rel_min) phi_rel_min = phi_rel;
      else if (phi_rel > phi_rel_max) phi_rel_max =phi_rel;


    }
    
    
    double h_sf = SurfaceOfEarth + PlugWidth; //[mm]

    double R_at = h_sf*tan(Theta_at);
    
    double JdRxzV_dR_trans = 1.; 
    double JdPhiV_dPhi_trans = 1.; 
    double JdR_trans_sqrt = 1.;
    
    //chose random vertex Phi and Rxz weighted to speed up and smoothen
    double R_mu_max = (h_sf+Target3dRadius)*tan(theta_mu_max);
    double R_max = std::min(SurfaceRadius, R_mu_max);
    double R_mu_min = (h_sf-Target3dRadius)*tan(theta_mu_min);
    double R_min = std::max(0., R_mu_min);
    
    if (R_at>SurfaceRadius) {
      std::cout << "CosmicMuonGenerator.cc: Warning! R_at=" << R_at 
           << " > SurfaceRadius=" << SurfaceRadius <<std::endl;
    }
    
    //do phase space transformation for horizontal radius R
    
    //determine first phase space limits
    
    double psR1min = R_min + 0.25*(R_max-R_min); 
    double psR1max = std::min(SurfaceRadius,R_max-0.25*(R_max-R_min)); //no R's beyond R_max
    double psR1 = psR1max - psR1min;

    double psR2min = R_min;
    double psR2max = R_max;
    double psR2 = psR2max - psR2min;

    double psR3min = 0.;
    double psR3max = SurfaceRadius;
    double psR3 = psR3max - psR3min;

    //double psall = psR1+psR2+psR3;
    double psRall = psR3;

    double fR1=psR1/psRall, fR2=psR2/psRall, fR3=psR3/psRall; //f1+f2+f3=130%
    double pR1=0.25, pR2=0.7, pR3=0.05;


    //do phase space transformation for azimuthal angle phi
    double psPh1 = 0.5*(phi_rel_max - phi_rel_min);
    double psPh2 = phi_rel_max - phi_rel_min;
    double psPh3 = TwoPi;
    double psPhall = psPh3;
    
    double fPh1=psPh1/psPhall, fPh2=psPh2/psPhall, fPh3=psPh3/psPhall; //(f1+f2+f3=TwoPi+f1+f2)/(TwoPi+f1+f2) 

    double pPh1=0.25, pPh2=0.7, pPh3=0.05;

    Trials = 0; //global int trials
    double trials = 0.; //local weighted trials
    Vx_mu.resize(nmuons); Vy_mu.resize(nmuons); Vz_mu.resize(nmuons);
    int NmuHitTarget = 0;
    while (NmuHitTarget < MultiMuonNmin) { 
   
      NmuHitTarget = 0; //re-initialize every loop iteration
      double Nver = 0.;

      
      //chose phase space class
      double RxzV;
      double which_R_class = RanGen->flat();
      if (which_R_class < pR1) { //pR1% in psR1
        RxzV = psR1min + psR1 * RanGen->flat();
        JdRxzV_dR_trans = fR1/pR1 * SurfaceRadius/psR1;
      }
      else if (which_R_class < pR1+pR2) { //further pR2% in psR2 
        RxzV = psR2min + psR2 * RanGen->flat();   
        JdRxzV_dR_trans = fR2/pR2 * SurfaceRadius/psR2;
      }
      else { //remaining pR3% in psR3=[0., R_max]
        RxzV = psR3min + psR3 * RanGen->flat();
        JdRxzV_dR_trans = fR3/pR3 * SurfaceRadius/psR3;
      }
      
      JdR_trans_sqrt = 2.*RxzV/SurfaceRadius; //flat in sqrt(r) space

      //chose phase space class
      double PhiV;
      double which_phi_class = RanGen->flat();
      if (which_phi_class < pPh1) { //pPh1% in psPh1 
        PhiV = phi_at + phi_rel_min + psPh1 * RanGen->flat();
        JdPhiV_dPhi_trans = fPh1/pPh1 * TwoPi/psPh1;
      }
      else if (which_phi_class < pPh1+pPh2) { //further pPh2% in psPh2
        PhiV = phi_at + phi_rel_min + psPh2 * RanGen->flat();     
        JdPhiV_dPhi_trans = fPh2/pPh2 * TwoPi/psPh2;
      }
      else { //remaining pPh3% in psPh3=[-Pi,Pi]
        PhiV = phi_at + phi_rel_min + psPh3 * RanGen->flat();
        JdPhiV_dPhi_trans = fPh3/pPh3 * TwoPi/psPh3;
      }

      //shuffle PhiV into [-Pi,+Pi] interval
      if (PhiV < -Pi) PhiV+=TwoPi;
      else if (PhiV > Pi) PhiV-=TwoPi;
      
      
      Nver++;
      trials += JdR_trans_sqrt * JdRxzV_dR_trans * JdPhiV_dPhi_trans;
      Trials++;
      if (trials > max_Trials) break; //while (Id_sf.size() < 2) loop 
      Ngen += (Nver-1.); //add number of generated vertices to initial cosmic events
         
   
      Vx_at = RxzV*sin(PhiV); // [mm]

      Vy_at = h_sf; // [mm] (SurfaceOfEarth + PlugWidth; Determine primary particle height below)
      //Vy_at = SimTree->shower_StartingAltitude*10. + h_sf; // [mm]
      //std::cout << "SimTree->shower_StartingAltitude*10=" << SimTree->shower_StartingAltitude*10 <<std::endl;
      Vz_at = RxzV*cos(PhiV); // [mm]
      
      int NmuHitTargetSphere = 0;
      for (int imu=0; imu<nmuons; ++imu) {
        
        Vx_mu[imu] = Vx_at + (-SimTree->particle__x[imu]*sin(NorthCMSzDeltaPhi)
                              +SimTree->particle__y[imu]*cos(NorthCMSzDeltaPhi) )*10; //[mm] (Corsika cm to CMSCGEN mm)
        Vy_mu[imu] = h_sf; //[mm] fixed at surface + PlugWidth
        Vz_mu[imu] = Vz_at + ( SimTree->particle__x[imu]*cos(NorthCMSzDeltaPhi)
                               +SimTree->particle__y[imu]*sin(NorthCMSzDeltaPhi) )*10; //[mm] (Corsika cm to CMSCGEN mm)

        
        //add atmospheric height to primary particle (default SimTree->shower_StartingAltitude = 0.)
        double pt_sec = sqrt(Px_mu[imu]*Px_mu[imu]+Pz_mu[imu]*Pz_mu[imu]);
        double theta_sec = atan2(std::fabs(Py_mu[imu]),pt_sec);
        double r_sec = sqrt((Vx_mu[imu]-Vx_at)*(Vx_mu[imu]-Vx_at)
                            +(Vz_mu[imu]-Vz_at)*(Vz_mu[imu]-Vz_at));
        double h_prod =  r_sec * tan(theta_sec);
        if (h_prod + h_sf > Vy_at) Vy_at = h_prod + h_sf;

        //only muons
        if (SimTree->particle__ParticleID[imu] != 5 &&
            SimTree->particle__ParticleID[imu] != 6) continue;

        if (P_mu[imu] < MinP_CMS && AcptAllMu==false) continue; 

        //check here if at least 2 muons make it to the target sphere
        double Vxz_mu = sqrt(Vx_mu[imu]*Vx_mu[imu] + Vz_mu[imu]*Vz_mu[imu]);
        theta_mu_max = atan((Vxz_mu+Target3dRadius)/(h_sf-Target3dRadius));
        theta_mu_min = atan((Vxz_mu-Target3dRadius)/(h_sf+Target3dRadius));
        if (Theta_mu[imu] > theta_mu_min && Theta_mu[imu] < theta_mu_max) {
          
          // check phi range (for a sphere with Target3dRadius around the target)
          double dPhi = Pi; if (Vxz_mu > Target3dRadius) dPhi = asin(Target3dRadius/Vxz_mu);
          double PhiPmu = atan2(Px_mu[imu],Pz_mu[imu]); //muon phi
          double PhiVmu = atan2(Vx_mu[imu],Vz_mu[imu]); //muon phi
          double rotPhi = PhiVmu + Pi; if (rotPhi > Pi) rotPhi -= TwoPi;
          double disPhi = std::fabs(rotPhi - PhiPmu); if (disPhi > Pi) disPhi = TwoPi - disPhi;
          if (disPhi < dPhi) {
            NmuHitTargetSphere++;
          }

        }

      } //end imu for loop

      


      if (NmuHitTargetSphere < MultiMuonNmin) continue; //while (Id_sf.size() < 2) loop
    
      //nmuons outgoing particle at SurFace
      Id_sf.clear(); 
      Px_sf.clear(); 
      Py_sf.clear(); 
      Pz_sf.clear();
      E_sf.clear(); 
      //M_sf_out.clear();
      Vx_sf.clear(); 
      Vy_sf.clear(); 
      Vz_sf.clear();
      T0_sf.clear();
      
      //nmuons particles at UnderGround  
      Id_ug.clear(); 
      Px_ug.clear(); 
      Py_ug.clear(); 
      Pz_ug.clear();
      E_ug.clear(); 
      //M_ug.clear();
      Vx_ug.clear();
      Vy_ug.clear();
      Vz_ug.clear();
      T0_ug.clear();
      
      int Id_sf_this =0;
      double Px_sf_this =0., Py_sf_this=0., Pz_sf_this=0.;
      double E_sf_this=0.;
      //double M_sf_this=0.;
      double Vx_sf_this=0., Vy_sf_this=0., Vz_sf_this=0.;
      double T0_sf_this=0.;
      
      T0_at = SimTree->shower_GH_t0 * SpeedOfLight; // [mm]

      for (int imu=0; imu<nmuons; ++imu) {

        if (P_mu[imu] < MinP_CMS && AcptAllMu==false) continue;
        //for the time being only muons
        if (SimTree->particle__ParticleID[imu] != 5 &&
            SimTree->particle__ParticleID[imu] != 6) continue;
        
        Id_sf_this = SimTree->particle__ParticleID[imu];
        if (Id_sf_this == 5) Id_sf_this = -13; //mu+
        else if (Id_sf_this == 6) Id_sf_this = 13; //mu-

        else if (Id_sf_this == 1) Id_sf_this = 22; //gamma
        else if (Id_sf_this == 2) Id_sf_this = -11; //e+
        else if (Id_sf_this == 3) Id_sf_this = 11; //e-
        else if (Id_sf_this == 7) Id_sf_this = 111; //pi0
        else if (Id_sf_this == 8) Id_sf_this = 211; //pi+
        else if (Id_sf_this == 9) Id_sf_this = -211; //pi-
        else if (Id_sf_this == 10) Id_sf_this = 130; //KL0
        else if (Id_sf_this == 11) Id_sf_this = 321; //K+
        else if (Id_sf_this == 12) Id_sf_this = -321; //K-
        else if (Id_sf_this == 13) Id_sf_this = 2112; //n
        else if (Id_sf_this == 14) Id_sf_this = 2212; //p
        else if (Id_sf_this == 15) Id_sf_this = -2212; //pbar
        else if (Id_sf_this == 16) Id_sf_this = 310; //Ks0
        else if (Id_sf_this == 17) Id_sf_this = 221; //eta
        else if (Id_sf_this == 18) Id_sf_this = 3122; //Lambda
        
        else {
          std::cout << "CosmicMuonGenerator.cc: Warning! Muon Id=" << Id_sf_this 
               << " from file read in" <<std::endl;
          Id_sf_this = 99999; //trouble
        }
        
        T0_sf_this = SimTree->particle__Time[imu] * SpeedOfLight; //in [mm]

        Px_sf_this = Px_mu[imu];
        Py_sf_this = Py_mu[imu]; //Corsika down going particles defined in -z direction!
        Pz_sf_this = Pz_mu[imu];
        E_sf_this = sqrt(P_mu[imu]*P_mu[imu] + MuonMass*MuonMass);
        Vx_sf_this = Vx_mu[imu];
        Vy_sf_this = Vy_mu[imu]; //[mm] fixed at surface + PlugWidth
        Vz_sf_this = Vz_mu[imu];


        OneMuoEvt.create(Id_sf_this, Px_sf_this, Py_sf_this, Pz_sf_this, E_sf_this, MuonMass, Vx_sf_this, Vy_sf_this, Vz_sf_this, T0_sf_this); 
        // if angles are ok, propagate to target
        if (goodOrientation()) {
          OneMuoEvt.propagate(ElossScaleFactor, RadiusOfTarget, ZDistOfTarget, ZCentrOfTarget, TrackerOnly, MTCCHalf);
        }
        
        if ( (OneMuoEvt.hitTarget() 
              && sqrt(OneMuoEvt.e()*OneMuoEvt.e() - MuonMass*MuonMass) > MinP_CMS)
             || AcptAllMu==true ) {
          
          Id_sf.push_back(Id_sf_this);
          Px_sf.push_back(Px_sf_this);
          Py_sf.push_back(Py_sf_this);
          Pz_sf.push_back(Pz_sf_this);
          E_sf.push_back(E_sf_this);
          //M_sf.push_back(M_sf_this);
          Vx_sf.push_back(Vx_sf_this);
          Vy_sf.push_back(Vy_sf_this);
          Vz_sf.push_back(Vz_sf_this);
          T0_sf.push_back(T0_sf_this);
          //T0_sf.push_back(0.); //synchronised arrival for 100% efficient full simulation tests
          
          Id_ug.push_back(OneMuoEvt.id());
          Px_ug.push_back(OneMuoEvt.px());
          Py_ug.push_back(OneMuoEvt.py());
          Pz_ug.push_back(OneMuoEvt.pz());
          E_ug.push_back(OneMuoEvt.e());
          //M_sf.push_back(OneMuoEvt.m());
          Vx_ug.push_back(OneMuoEvt.vx());
          Vy_ug.push_back(OneMuoEvt.vy());
          Vz_ug.push_back(OneMuoEvt.vz());
          T0_ug.push_back(OneMuoEvt.t0());

          NmuHitTarget++;
        }
      }
      

    } // while (Id_sf.size() < 2); //end of do loop
    

    if (trials > max_Trials) {
      std::cout << "CosmicMuonGenerator.cc: Warning! trials reach max_trials=" << max_Trials
                << " without accepting event!" << std::endl;
      if (Debug) {
        std::cout << " N(mu)=" << Id_ug.size();
        if (Id_ug.size()>=1) 
          std::cout << " E[0]=" << E_ug[0] << " theta=" 
                    << acos(-Py_ug[0]/sqrt(Px_ug[0]*Px_ug[0]+Py_ug[0]*Py_ug[0]+Pz_ug[0]*Pz_ug[0]))
                    << " R_xz=" << sqrt(Vx_sf[0]*Vx_sf[0]+Vy_sf[0]*Vy_sf[0]);
        std::cout << " Theta_at=" << Theta_at << std::endl; 
      }
      std::cout << "Unweighted int num of Trials = " << Trials << std::endl;
      std::cout << "trying next event (" << SimTree_jentry << ") from file" << std::endl;
      NskippedMultiMuonEvents++;
      continue; //EvtRejected while loop: get next event from file
    }
    else {
      if (NmuHitTarget < MultiMuonNmin) {
        std::cout << "CosmicMuonGenerator.cc: Warning! less than " << MultiMuonNmin << 
          " muons hit target: N(mu=)" << NmuHitTarget << std::endl;
        std::cout << "trying next event (" << SimTree_jentry << ") from file" << std::endl;
        NskippedMultiMuonEvents++;
        continue; //EvtRejected while loop: get next event from file
      }
      else { //if (MuInMaxDist) {

        //re-adjust T0's of surviving muons shifted to trigger time box
        //(possible T0 increase due to propagation (loss of energy/speed + travelled distance))
        double T0_ug_min, T0_ug_max;
        T0_ug_min = T0_ug_max = T0_ug[0];
        double Tbox = (MaxT0 - MinT0) * SpeedOfLight; // [mm]
        double minDeltaT0 = 2*Tbox;
        for (unsigned int imu=0; imu<Id_ug.size(); ++imu) {
          double T0_this = T0_ug[imu];
          if (T0_this < T0_ug_min) T0_ug_min = T0_this;
          if (T0_this > T0_ug_max) T0_ug_max = T0_this;
          if (Debug) std::cout << "imu=" << imu << " T0_this=" << T0_this 
                               << " P=" << sqrt(pow(Px_ug[imu],2) + pow(Py_ug[imu],2) + pow(Pz_ug[imu],2)) 
                               << std::endl;
          for (unsigned int jmu=0; jmu<imu; ++jmu) {
            if (std::fabs(T0_ug[imu]-T0_ug[jmu]) < minDeltaT0) minDeltaT0 = std::fabs(T0_ug[imu]-T0_ug[jmu]);
          }
        }
        
        if (int(Id_ug.size()) >= MultiMuonNmin && MultiMuonNmin>=2 && minDeltaT0 > Tbox)
          continue; //EvtRejected while loop: get next event from file

        double T0_min = T0_ug_min +MinT0*SpeedOfLight; //-12.5ns * c [mm]
        double T0_max = T0_ug_max +MaxT0*SpeedOfLight; //+12.5ns * c [mm]

        //ckeck if >= NmuMin in time box, else throw new random number + augment evt weight
        int TboxTrials = 0;
        int NmuInTbox;
        double T0_offset, T0diff;
        for (int tboxtrial=0; tboxtrial<1000; ++tboxtrial) { //max 1000 trials
          T0_offset = RanGen->flat()*(T0_max -T0_min); // [mm]
          TboxTrials++;
          T0diff = T0_offset - T0_max; // [mm] 
          NmuInTbox = 0;
          for (unsigned int imu=0; imu<Id_ug.size(); ++imu) {
            if (T0_ug[imu]+T0diff > MinT0*SpeedOfLight && T0_ug[imu]+T0diff < MaxT0*SpeedOfLight)
              NmuInTbox++;
          }
          if (NmuInTbox >= MultiMuonNmin) break;

        }
        if (NmuInTbox < MultiMuonNmin) continue; //EvtRejected while loop: get next event from file


        if (Debug) std::cout << "initial T0_at=" << T0_at << " T0_min=" << T0_min << " T0_max=" << T0_max 
                        << " T0_offset=" << T0_offset;
        T0_at += T0diff; //[mm]
        if (Debug) std::cout << " T0diff=" << T0diff << std::endl;
        for (unsigned int imu=0; imu<Id_ug.size(); ++imu) { //adjust @ surface + underground
          if (Debug) std::cout << "before: T0_sf[" << imu << "]=" << T0_sf[imu] << "  T0_ug=" <<  T0_ug[imu]; 
          T0_sf[imu] += T0diff;
          T0_ug[imu] += T0diff;
          if (Debug) 
            std::cout << "   after: T0_sf[" << imu << "]=" << T0_sf[imu] << "  T0_ug=" <<  T0_ug[imu] << std::endl;
        }       
        if (Debug) std::cout << "T0diff=" << T0diff << " T0_at=" << T0_at << std::endl;



        Nsel += 1;
        EventWeight = JdR_trans_sqrt * JdRxzV_dR_trans * JdPhiV_dPhi_trans 
          / (trials * TboxTrials);
        EvtRejected = false;
        if (Debug) std::cout << "CosmicMuonGenerator.cc: Theta_at=" << Theta_at << " phi_at=" << phi_at 
                             << " Px_at=" << Px_at << " Py_at=" << Py_at << " Pz_at=" << Pz_at 
                             << " T0_at=" << T0_at
                             << " Vx_at=" << Vx_at << " Vy_at=" << Vy_at << " Vz_at=" << Vz_at 
                             << " EventWeight=" << EventWeight << " Nmuons=" << Id_sf.size() << std::endl;
      }
    }
    
    
  } //while loop EvtRejected
  

  return true; //write event to HepMC;

}
void CosmicMuonGenerator::runCMG ( )

Definition at line 12 of file CosmicMuonGenerator.cc.

References initialize(), nextEvent(), NumberOfEvents, and terminate().

                                {
  initialize();
  for (unsigned int iGen=0; iGen<NumberOfEvents; ++iGen){ nextEvent(); }
  terminate();
}
void CosmicMuonGenerator::setAcptAllMu ( bool  AllMu)
void CosmicMuonGenerator::setClayWidth ( double  ClayLaeyrWidth)
void CosmicMuonGenerator::setElossScaleFactor ( double  ElossScaleFact)
void CosmicMuonGenerator::setMaxEnu ( double  MaxEn)
void CosmicMuonGenerator::setMaxP ( double  P)
void CosmicMuonGenerator::setMaxPhi ( double  Phi)
void CosmicMuonGenerator::setMaxT0 ( double  T0)
void CosmicMuonGenerator::setMaxTheta ( double  Theta)
void CosmicMuonGenerator::setMinEnu ( double  MinEn)
void CosmicMuonGenerator::setMinP ( double  P)
void CosmicMuonGenerator::setMinP_CMS ( double  P)
void CosmicMuonGenerator::setMinPhi ( double  Phi)
void CosmicMuonGenerator::setMinT0 ( double  T0)
void CosmicMuonGenerator::setMinTheta ( double  Theta)
void CosmicMuonGenerator::setMTCCHalf ( bool  MTCC)
void CosmicMuonGenerator::setMultiMuon ( bool  MultiMu)
void CosmicMuonGenerator::setMultiMuonFileFirstEvent ( int  MultiMuFile1stEvt)
void CosmicMuonGenerator::setMultiMuonFileName ( std::string  MultiMuonFileName)
void CosmicMuonGenerator::setMultiMuonNmin ( int  MultiMuNmin)
void CosmicMuonGenerator::setNumberOfEvents ( unsigned int  N)
void CosmicMuonGenerator::setNuProdAlt ( double  NuPrdAlt)
void CosmicMuonGenerator::setPlugVx ( double  PlugVtx)
void CosmicMuonGenerator::setPlugVz ( double  PlugVtz)
void CosmicMuonGenerator::setRadiusOfTarget ( double  R)
void CosmicMuonGenerator::setRanSeed ( int  N)
void CosmicMuonGenerator::setRhoAir ( double  VarRhoAir)
void CosmicMuonGenerator::setRhoClay ( double  VarRhoClay)
void CosmicMuonGenerator::setRhoPlug ( double  VarRhoPlug)
void CosmicMuonGenerator::setRhoRock ( double  VarRhoRock)
void CosmicMuonGenerator::setRhoWall ( double  VarRhoSWall)
void CosmicMuonGenerator::setTIFOnly_constant ( bool  TIF)
void CosmicMuonGenerator::setTIFOnly_linear ( bool  TIF)
void CosmicMuonGenerator::setTrackerOnly ( bool  Tracker)
void CosmicMuonGenerator::setZCentrOfTarget ( double  Z)
void CosmicMuonGenerator::setZDistOfTarget ( double  Z)
void CosmicMuonGenerator::terminate ( void  )

Definition at line 778 of file CosmicMuonGenerator.cc.

References funct::cos(), gather_cfg::cout, Deg2Rad, alignCSCRings::e, ElossScaleFactor, EventRate, CMSCGENnorm::events_n100cos(), MaxP, MaxPhi, MaxT0, MaxTheta, MinP, MinPhi, MinT0, MinTheta, Ndiced, Ngen, CMSCGENnorm::norm(), Norm, Nsel, NumberOfEvents, Pi, Rad2Deg, RadiusOfTarget, rateErr_stat, rateErr_syst, mathSSE::sqrt(), SurfaceOfEarth, SurfaceRadius, and ZDistOfTarget.

Referenced by runCMG().

                                   {
  if (NumberOfEvents > 0){
    std::cout << std::endl;
    std::cout << "*********************************************************" << std::endl;
    std::cout << "*********************************************************" << std::endl;
    std::cout << "***                                                   ***" << std::endl;
    std::cout << "***    C O S M I C   M U O N   S T A T I S T I C S    ***" << std::endl;
    std::cout << "***                                                   ***" << std::endl;
    std::cout << "*********************************************************" << std::endl;
    std::cout << "*********************************************************" << std::endl;
    std::cout << std::endl;  
    std::cout << "       number of initial cosmic events:  " << int(Ngen) << std::endl;
    std::cout << "       number of actually diced events:  " << int(Ndiced) << std::endl;
    std::cout << "       number of generated and accepted events:  " << int(Nsel) << std::endl;
    double selEff = Nsel/Ngen; // selection efficiency
    std::cout << "       event selection efficiency:  " << selEff*100. << "%" << std::endl;
    int n100cos =  Norm->events_n100cos(0., 0.); //get final amount of cosmics in defined range for normalisation of flux
    std::cout << "       events with ~100 GeV and 1 - cos(theta) < 1/2pi: " << n100cos << std::endl;
    std::cout << std::endl;
    std::cout << "       momentum range: " << MinP             << " ... " << MaxP << " GeV" << std::endl;
    std::cout << "       theta  range:   " << MinTheta*Rad2Deg << " ... " << MaxTheta*Rad2Deg << " deg" << std::endl; 
    std::cout << "       phi    range:   " << MinPhi*Rad2Deg   << " ... " << MaxPhi*Rad2Deg << " deg" << std::endl;
    std::cout << "       time   range:   " << MinT0            << " ... " << MaxT0 << " ns" << std::endl;
    std::cout << "       energy  loss:   " << ElossScaleFactor*100. << "%" << std::endl;
    std::cout << std::endl;
    double area = 1.e-6*Pi*SurfaceRadius*SurfaceRadius; // area on surface [m^2] 
    if (MinTheta > 90.*Deg2Rad) //upgoing muons from neutrinos)
      std::cout << "       area of initial cosmics at CMS detector bottom surface:   " << area << " m^2" << std::endl;
    else
      std::cout << "       area of initial cosmics on Surface + PlugWidth:   " << area << " m^2" << std::endl;
    std::cout << "       depth of CMS detector (from Surface):   " << SurfaceOfEarth/1000 << " m" << std::endl;
       
    //at least 100 evts., and
    //downgoing inside theta parametersisation range
    //or upgoing neutrino muons 
    if( (n100cos>0 && MaxTheta<84.26*Deg2Rad) 
       || MinTheta>90.*Deg2Rad) {
      // rate: corrected for area and selection-Eff. and normalized to known flux, integration over solid angle (dOmega) is implicit
      // flux is normalised with respect to known flux of vertical 100GeV muons in area at suface level 
      // rate seen by detector is lower than rate at surface area, so has to be corrected for selection-Eff.
      // normalisation factor has unit [1/s/m^2] 
      // rate = N/time --> normalization factor gives 1/runtime/area 
      // normalization with respect to number of actually diced events (Ndiced)

      if (MinTheta > 90.*Deg2Rad) {//upgoing muons from neutrinos) 
        double Omega = (cos(MinTheta)-cos(MaxTheta)) * (MaxPhi-MinPhi);
        //EventRate = (Ndiced * 3.e-13) * Omega * area*1.e4 * selEff;//area in cm, flux=3.e-13cm^-2s^-1sr^-1
        EventRate = (Ndiced * 3.e-13) * Omega * 4.*RadiusOfTarget*ZDistOfTarget*1.e-2 * selEff;//area in cm, flux=3.e-13cm^-2s^-1sr^-1
        rateErr_stat = EventRate/sqrt( (double) Ndiced);  // stat. rate error 
        rateErr_syst = EventRate/3.e-13 * 1.0e-13;  // syst. rate error, from error of known flux 
      }
      else {
        EventRate= (Ndiced * Norm->norm(n100cos)) * area * selEff;
        rateErr_stat = EventRate/sqrt( (double) n100cos);  // stat. rate error 
        rateErr_syst = EventRate/2.63e-3 * 0.06e-3;  // syst. rate error, from error of known flux 
      }

      // normalisation in region 1.-cos(theta) < 1./(2.*Pi), if MaxTheta even lower correct for this
      if(MaxTheta<0.572){
        double spacean = 2.*Pi*(1.-cos(MaxTheta));
        EventRate= (Ndiced * Norm->norm(n100cos)) * area * selEff * spacean;
        rateErr_stat = EventRate/sqrt( (double) n100cos);  // rate error 
        rateErr_syst = EventRate/2.63e-3 * 0.06e-3;  // syst. rate error, from error of known flux 
      }

    }else{
      EventRate=Nsel; //no info as no muons at 100 GeV
      rateErr_stat =Nsel;
      rateErr_syst =Nsel;
      std::cout << std::endl;
      if (MinP > 100.)
        std::cout << " !!! MinP > 100 GeV. Cannot apply normalisation!" << std::endl;
      else if (MaxTheta > 84.26*Deg2Rad)
        std::cout << " !!! Note: generated cosmics exceed parameterisation. No flux calculated!" << std::endl;

      else
        std::cout << " !!! Not enough statistics to apply normalisation (rate=1 +- 1) !!!" << std::endl;
    } 
    
    std::cout << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl;
    std::cout << "       rate is " << EventRate << " +-" << rateErr_stat <<" (stat) " << "+-" << 
      rateErr_syst << " (syst) " <<" muons per second" << std::endl;
    if(EventRate!=0) std::cout << "       number of events corresponds to " << Nsel/EventRate << " s" << std::endl;  //runtime at CMS = Nsel/rate
    std::cout << "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" << std::endl;
    std::cout << std::endl;
    std::cout << "*********************************************************" << std::endl;
    std::cout << "*********************************************************" << std::endl;
  }
}

Member Data Documentation

Definition at line 214 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), nextMultiEvent(), and setAcptAllMu().

Definition at line 206 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), and setClayWidth().

Definition at line 219 of file CosmicMuonGenerator.h.

Referenced by initialize(), and ~CosmicMuonGenerator().

Definition at line 118 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::E_sf

Definition at line 133 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::E_ug

Definition at line 140 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

Definition at line 187 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), getRate(), and terminate().

Definition at line 113 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

Definition at line 116 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<int> CosmicMuonGenerator::Id_sf

Definition at line 131 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<int> CosmicMuonGenerator::Id_ug

Definition at line 138 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

double CosmicMuonGenerator::MaxEnu [private]

Definition at line 211 of file CosmicMuonGenerator.h.

Referenced by checkIn(), initialize(), and setMaxEnu().

double CosmicMuonGenerator::MaxP [private]
double CosmicMuonGenerator::MaxPhi [private]
double CosmicMuonGenerator::MaxT0 [private]
double CosmicMuonGenerator::MinEnu [private]

Definition at line 210 of file CosmicMuonGenerator.h.

Referenced by checkIn(), initialize(), and setMinEnu().

double CosmicMuonGenerator::MinP [private]

Definition at line 166 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), nextEvent(), nextMultiEvent(), and setMinP_CMS().

double CosmicMuonGenerator::MinPhi [private]
double CosmicMuonGenerator::MinT0 [private]

Definition at line 185 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), nextEvent(), nextMultiEvent(), and setMTCCHalf().

TFile* CosmicMuonGenerator::MultiIn [private]

Definition at line 149 of file CosmicMuonGenerator.h.

Referenced by initialize().

Definition at line 179 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setMultiMuon().

Definition at line 180 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setMultiMuonFileName().

Definition at line 182 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), nextMultiEvent(), and setMultiMuonNmin().

Definition at line 150 of file CosmicMuonGenerator.h.

Referenced by initialize().

Definition at line 154 of file CosmicMuonGenerator.h.

Referenced by initialize(), and nextMultiEvent().

double CosmicMuonGenerator::Ndiced [private]

Definition at line 194 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), nextEvent(), and terminate().

double CosmicMuonGenerator::Ngen [private]

Definition at line 192 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), nextEvent(), nextMultiEvent(), and terminate().

double CosmicMuonGenerator::Nsel [private]

Definition at line 193 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), nextEvent(), nextMultiEvent(), and terminate().

Definition at line 155 of file CosmicMuonGenerator.h.

Referenced by initialize(), and nextMultiEvent().

unsigned int CosmicMuonGenerator::NumberOfEvents [private]

Definition at line 212 of file CosmicMuonGenerator.h.

Referenced by initialize(), and setNuProdAlt().

std::vector<double> CosmicMuonGenerator::P_mu

Definition at line 126 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

double CosmicMuonGenerator::PlugVx [private]

Definition at line 197 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setPlugVx().

double CosmicMuonGenerator::PlugVz [private]

Definition at line 198 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setPlugVz().

Definition at line 117 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Px_mu

Definition at line 125 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Px_sf

Definition at line 132 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Px_ug

Definition at line 139 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

Definition at line 117 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Py_mu

Definition at line 125 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Py_sf

Definition at line 132 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Py_ug

Definition at line 139 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

Definition at line 117 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Pz_mu

Definition at line 125 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Pz_sf

Definition at line 132 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Pz_ug

Definition at line 139 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

CLHEP::HepRandomEngine* CosmicMuonGenerator::RanGen [private]

Definition at line 218 of file CosmicMuonGenerator.h.

Referenced by initialize(), nextEvent(), nextMultiEvent(), and ~CosmicMuonGenerator().

Definition at line 164 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setRanSeed().

Definition at line 188 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), and terminate().

Definition at line 189 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), and terminate().

double CosmicMuonGenerator::RhoAir [private]

Definition at line 201 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setRhoAir().

double CosmicMuonGenerator::RhoClay [private]

Definition at line 204 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setRhoClay().

double CosmicMuonGenerator::RhoPlug [private]

Definition at line 205 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setRhoPlug().

double CosmicMuonGenerator::RhoRock [private]

Definition at line 203 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setRhoRock().

double CosmicMuonGenerator::RhoWall [private]

Definition at line 202 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setRhoWall().

Definition at line 151 of file CosmicMuonGenerator.h.

Referenced by initialize(), and nextMultiEvent().

Definition at line 153 of file CosmicMuonGenerator.h.

Referenced by initialize(), and nextMultiEvent().

Definition at line 152 of file CosmicMuonGenerator.h.

Referenced by initialize(), and nextMultiEvent().

Definition at line 191 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator().

Definition at line 121 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::T0_sf

Definition at line 136 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::T0_ug

Definition at line 143 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

Definition at line 122 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Theta_mu

Definition at line 129 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

Definition at line 183 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setTIFOnly_constant().

Definition at line 184 of file CosmicMuonGenerator.h.

Referenced by CosmicMuonGenerator(), initialize(), and setTIFOnly_linear().

Definition at line 114 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

Definition at line 120 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vx_mu

Definition at line 127 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vx_sf

Definition at line 135 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vx_ug

Definition at line 142 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

Definition at line 128 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

Definition at line 120 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vy_mu

Definition at line 127 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vy_sf

Definition at line 135 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vy_ug

Definition at line 142 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

Definition at line 120 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vz_mu

Definition at line 127 of file CosmicMuonGenerator.h.

Referenced by nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vz_sf

Definition at line 135 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().

std::vector<double> CosmicMuonGenerator::Vz_ug

Definition at line 142 of file CosmicMuonGenerator.h.

Referenced by nextEvent(), and nextMultiEvent().