#include <METzCalculator.h>
Public Member Functions | |
double | Calculate (int type=0) |
member functions | |
bool | IsComplex () const |
check for complex root | |
METzCalculator () | |
constructor | |
void | Print () |
void | SetMET (TLorentzVector MET) |
void | SetMET (const pat::MET &MET) |
Set MET. | |
void | SetMuon (TLorentzVector lepton) |
void | SetMuon (const pat::Particle &lepton) |
Set Muon. | |
virtual | ~METzCalculator () |
destructor | |
Private Attributes | |
bool | isComplex_ |
pat::Particle | lepton_ |
pat::MET | MET_ |
_________________________________________________________________ class: METzCalculator.h
author: Francisco Yumiceva, Fermilab (yumiceva@fnal.gov)
version
________________________________________________________________
Definition at line 21 of file METzCalculator.h.
METzCalculator::METzCalculator | ( | ) |
constructor
Definition at line 6 of file METzCalculator.cc.
References isComplex_.
{ isComplex_ = false; }
METzCalculator::~METzCalculator | ( | ) | [virtual] |
double METzCalculator::Calculate | ( | int | type = 0 | ) |
member functions
Calculate MEz options to choose roots from quadratic equation: type = 0 (defalut): if real roots, pick the one nearest to the lepton Pz except when the Pz so chosen is greater than 300 GeV in which case pick the most central root. type = 1: if real roots, choose the one closest to the lepton Pz if complex roots, use only the real part. type = 2: if real roots, choose the most central solution. if complex roots, use only the real part. type = 3: if real roots, pick the largest value of the cosine*
Definition at line 16 of file METzCalculator.cc.
References a, funct::A, funct::C, reco::LeafCandidate::energy(), isComplex_, lepton_, MET_, reco::LeafCandidate::px(), reco::LeafCandidate::py(), and reco::LeafCandidate::pz().
Referenced by BoostedTopProducer::produce().
{ double M_W = 80.4; double M_mu = 0.10566; double emu = lepton_.energy(); double pxmu = lepton_.px(); double pymu = lepton_.py(); double pzmu = lepton_.pz(); double pxnu = MET_.px(); double pynu = MET_.py(); double pznu = 0.; double a = M_W*M_W - M_mu*M_mu + 2.0*pxmu*pxnu + 2.0*pymu*pynu; double A = 4.0*(emu*emu - pzmu*pzmu); double B = -4.0*a*pzmu; double C = 4.0*emu*emu*(pxnu*pxnu + pynu*pynu) - a*a; double tmproot = B*B - 4.0*A*C; if (tmproot<0) { isComplex_= true; pznu = - B/(2*A); // take real part of complex roots //std::cout << " Neutrino Solutions: complex, real part " << pznu << std::endl; } else { isComplex_ = false; double tmpsol1 = (-B + TMath::Sqrt(tmproot))/(2.0*A); double tmpsol2 = (-B - TMath::Sqrt(tmproot))/(2.0*A); //std::cout << " Neutrino Solutions: " << tmpsol1 << ", " << tmpsol2 << std::endl; if (type == 0 ) { // two real roots, pick the one closest to pz of muon if (TMath::Abs(tmpsol2-pzmu) < TMath::Abs(tmpsol1-pzmu)) { pznu = tmpsol2;} else pznu = tmpsol1; // if pznu is > 300 pick the most central root if ( pznu > 300. ) { if (TMath::Abs(tmpsol1)<TMath::Abs(tmpsol2) ) pznu = tmpsol1; else pznu = tmpsol2; } } if (type == 1 ) { // two real roots, pick the one closest to pz of muon if (TMath::Abs(tmpsol2-pzmu) < TMath::Abs(tmpsol1-pzmu)) { pznu = tmpsol2;} else pznu = tmpsol1; } if (type == 2 ) { // pick the most central root. if (TMath::Abs(tmpsol1)<TMath::Abs(tmpsol2) ) pznu = tmpsol1; else pznu = tmpsol2; } if (type == 3 ) { // pick the largest value of the cosine TVector3 p3w, p3mu; p3w.SetXYZ(pxmu+pxnu, pymu+pynu, pzmu+ tmpsol1); p3mu.SetXYZ(pxmu, pymu, pzmu ); double sinthcm1 = 2.*(p3mu.Perp(p3w))/M_W; p3w.SetXYZ(pxmu+pxnu, pymu+pynu, pzmu+ tmpsol2); double sinthcm2 = 2.*(p3mu.Perp(p3w))/M_W; double costhcm1 = TMath::Sqrt(1. - sinthcm1*sinthcm1); double costhcm2 = TMath::Sqrt(1. - sinthcm2*sinthcm2); if ( costhcm1 > costhcm2 ) pznu = tmpsol1; else pznu = tmpsol2; } } //Particle neutrino; //neutrino.setP4( LorentzVector(pxnu, pynu, pznu, TMath::Sqrt(pxnu*pxnu + pynu*pynu + pznu*pznu ))) ; return pznu; }
bool METzCalculator::IsComplex | ( | ) | const [inline] |
check for complex root
Definition at line 54 of file METzCalculator.h.
References isComplex_.
Referenced by BoostedTopProducer::produce().
{ return isComplex_; };
void METzCalculator::Print | ( | void | ) | [inline] |
Definition at line 56 of file METzCalculator.h.
References gather_cfg::cout, lepton_, MET_, reco::LeafCandidate::px(), reco::LeafCandidate::py(), and reco::LeafCandidate::pz().
void METzCalculator::SetMET | ( | TLorentzVector | MET | ) | [inline] |
Definition at line 31 of file METzCalculator.h.
References MET_, AlCaHLTBitMon_ParallelJobs::p, and reco::LeafCandidate::setP4().
void METzCalculator::SetMET | ( | const pat::MET & | MET | ) | [inline] |
Set MET.
Definition at line 30 of file METzCalculator.h.
References MET_.
Referenced by BoostedTopProducer::produce().
{ MET_ = MET; } ;
void METzCalculator::SetMuon | ( | const pat::Particle & | lepton | ) | [inline] |
Set Muon.
Definition at line 36 of file METzCalculator.h.
References lepton_.
Referenced by BoostedTopProducer::produce().
{ lepton_ = lepton; };
void METzCalculator::SetMuon | ( | TLorentzVector | lepton | ) | [inline] |
Definition at line 37 of file METzCalculator.h.
References lepton_, AlCaHLTBitMon_ParallelJobs::p, and reco::LeafCandidate::setP4().
{ pat::Particle::LorentzVector p(lepton.Px(), lepton.Py(), lepton.Pz(), lepton.E() ); lepton_.setP4(p); }
bool METzCalculator::isComplex_ [private] |
Definition at line 63 of file METzCalculator.h.
Referenced by Calculate(), IsComplex(), and METzCalculator().
pat::Particle METzCalculator::lepton_ [private] |
Definition at line 64 of file METzCalculator.h.
Referenced by Calculate(), Print(), and SetMuon().
pat::MET METzCalculator::MET_ [private] |
Definition at line 65 of file METzCalculator.h.
Referenced by Calculate(), Print(), and SetMET().