CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_5_2_7_hltpatch2/src/RecoEgamma/EgammaElectronAlgos/src/SiStripElectronSeedGenerator.cc

Go to the documentation of this file.
00001 // -*- C++ -*-
00002 //
00003 // Package:    EgammaElectronAlgos
00004 // Class:      SiStripElectronSeedGenerator.
00005 //
00011 //
00012 //
00013 
00014 #include <vector>
00015 #include <utility>
00016 
00017 #include "DataFormats/Math/interface/Point3D.h"
00018 #include "DataFormats/Common/interface/Handle.h"
00019 
00020 #include "DataFormats/EgammaReco/interface/ElectronSeed.h"
00021 
00022 
00023 
00024 #include "Geometry/CommonDetUnit/interface/GeomDet.h"
00025 
00026 #include "FWCore/MessageLogger/interface/MessageLogger.h"
00027 #include "FWCore/ParameterSet/interface/ParameterSet.h"
00028 
00029 #include "RecoTracker/TransientTrackingRecHit/interface/TSiStripMatchedRecHit.h"
00030 #include "RecoTracker/Record/interface/TrackerRecoGeometryRecord.h"
00031 #include "RecoTracker/TkSeedGenerator/interface/FastHelix.h"
00032 #include "RecoTracker/Record/interface/CkfComponentsRecord.h"
00033 
00034 #include "TrackingTools/Records/interface/TrackingComponentsRecord.h"
00035 #include "TrackingTools/MaterialEffects/interface/PropagatorWithMaterial.h"
00036 
00037 #include "MagneticField/Records/interface/IdealMagneticFieldRecord.h"
00038 
00039 // files for retrieving hits using measurement tracker
00040 
00041 #include "TrackingTools/DetLayers/interface/DetLayer.h"
00042 #include "TrackingTools/PatternTools/interface/TransverseImpactPointExtrapolator.h"
00043 #include "TrackingTools/MeasurementDet/interface/LayerMeasurements.h"
00044 #include "TrackingTools/PatternTools/interface/TrajectoryMeasurement.h"
00045 
00046 
00047 #include "RecoEgamma/EgammaElectronAlgos/interface/SiStripElectronSeedGenerator.h"
00048 
00049 SiStripElectronSeedGenerator::SiStripElectronSeedGenerator(const edm::ParameterSet &pset)
00050  : beamSpotTag_("offlineBeamSpot"),
00051    theUpdator(0),thePropagator(0),theMeasurementTracker(0),
00052    theSetup(0), theMatcher_(0),
00053    cacheIDMagField_(0),cacheIDCkfComp_(0),cacheIDTrkGeom_(0),
00054    tibOriginZCut_(pset.getParameter<double>("tibOriginZCut")),
00055    tidOriginZCut_(pset.getParameter<double>("tidOriginZCut")),
00056    tecOriginZCut_(pset.getParameter<double>("tecOriginZCut")),
00057    monoOriginZCut_(pset.getParameter<double>("monoOriginZCut")),
00058    tibDeltaPsiCut_(pset.getParameter<double>("tibDeltaPsiCut")),
00059    tidDeltaPsiCut_(pset.getParameter<double>("tidDeltaPsiCut")),
00060    tecDeltaPsiCut_(pset.getParameter<double>("tecDeltaPsiCut")),
00061    monoDeltaPsiCut_(pset.getParameter<double>("monoDeltaPsiCut")),
00062    tibPhiMissHit2Cut_(pset.getParameter<double>("tibPhiMissHit2Cut")),
00063    tidPhiMissHit2Cut_(pset.getParameter<double>("tidPhiMissHit2Cut")),
00064    tecPhiMissHit2Cut_(pset.getParameter<double>("tecPhiMissHit2Cut")),
00065    monoPhiMissHit2Cut_(pset.getParameter<double>("monoPhiMissHit2Cut")),
00066    tibZMissHit2Cut_(pset.getParameter<double>("tibZMissHit2Cut")),
00067    tidRMissHit2Cut_(pset.getParameter<double>("tidRMissHit2Cut")),
00068    tecRMissHit2Cut_(pset.getParameter<double>("tecRMissHit2Cut")),
00069    tidEtaUsage_(pset.getParameter<double>("tidEtaUsage")),
00070    tidMaxHits_(pset.getParameter<int>("tidMaxHits")),
00071    tecMaxHits_(pset.getParameter<int>("tecMaxHits")),
00072    monoMaxHits_(pset.getParameter<int>("monoMaxHits")),
00073    maxSeeds_(pset.getParameter<int>("maxSeeds"))
00074 {
00075   // use of a theMeasurementTrackerName
00076   if (pset.exists("measurementTrackerName"))
00077    { theMeasurementTrackerName = pset.getParameter<std::string>("measurementTrackerName") ; }
00078 
00079   // new beamSpot tag
00080   if (pset.exists("beamSpot"))
00081    { beamSpotTag_ = pset.getParameter<edm::InputTag>("beamSpot") ; }
00082 
00083   theUpdator = new KFUpdator();
00084   theEstimator = new Chi2MeasurementEstimator(30,3);
00085 }
00086 
00087 
00088 SiStripElectronSeedGenerator::~SiStripElectronSeedGenerator() {
00089   delete thePropagator;
00090   delete theUpdator;
00091 }
00092 
00093 
00094 void SiStripElectronSeedGenerator::setupES(const edm::EventSetup& setup) {
00095 
00096   if (cacheIDMagField_!=setup.get<IdealMagneticFieldRecord>().cacheIdentifier()) {
00097     setup.get<IdealMagneticFieldRecord>().get(theMagField);
00098     cacheIDMagField_=setup.get<IdealMagneticFieldRecord>().cacheIdentifier();
00099     if (thePropagator) delete thePropagator;
00100     thePropagator = new PropagatorWithMaterial(alongMomentum,.000511,&(*theMagField));
00101   }
00102 
00103   if (cacheIDCkfComp_!=setup.get<CkfComponentsRecord>().cacheIdentifier()) {
00104     setup.get<CkfComponentsRecord>().get(theMeasurementTrackerName,measurementTrackerHandle);
00105     cacheIDCkfComp_=setup.get<CkfComponentsRecord>().cacheIdentifier();
00106     theMeasurementTracker = measurementTrackerHandle.product();
00107   }
00108 
00109   if (cacheIDTrkGeom_!=setup.get<TrackerDigiGeometryRecord>().cacheIdentifier()) {
00110     setup.get<TrackerDigiGeometryRecord>().get(trackerGeometryHandle);
00111     cacheIDTrkGeom_=setup.get<TrackerDigiGeometryRecord>().cacheIdentifier();
00112   }
00113 
00114 }
00115 
00116 void  SiStripElectronSeedGenerator::run(edm::Event& e, const edm::EventSetup& setup,
00117                                         const edm::Handle<reco::SuperClusterCollection> &clusters,
00118                                         reco::ElectronSeedCollection & out) {
00119   theSetup= &setup;
00120   e.getByLabel(beamSpotTag_,theBeamSpot);
00121   theMeasurementTracker->update(e);
00122 
00123   for  (unsigned int i=0;i<clusters->size();++i) {
00124     edm::Ref<reco::SuperClusterCollection> theClusB(clusters,i);
00125     // Find the seeds
00126     LogDebug ("run") << "new cluster, calling findSeedsFromCluster";
00127     findSeedsFromCluster(theClusB,theBeamSpot,out);
00128   }
00129 
00130   LogDebug ("run") << ": For event "<<e.id();
00131   LogDebug ("run") <<"Nr of superclusters: "<<clusters->size()
00132                    <<", no. of ElectronSeeds found  = " << out.size();
00133 }
00134 
00135 
00136 // Find seeds using a supercluster
00137 void SiStripElectronSeedGenerator::findSeedsFromCluster
00138  ( edm::Ref<reco::SuperClusterCollection> seedCluster,
00139    edm::Handle<reco::BeamSpot> bs,
00140          reco::ElectronSeedCollection & result )
00141  {
00142   // clear the member vectors of good hits
00143   layer1Hits_.clear() ;
00144   layer2Hits_.clear() ;
00145   backupLayer2Hits_.clear() ;
00146 
00147   using namespace std;
00148 
00149   double sCenergy = seedCluster->energy();
00150   math::XYZPoint sCposition = seedCluster->position();
00151   double scEta = seedCluster->eta();
00152 
00153   double scz = sCposition.z();
00154   double scr = sqrt(pow(sCposition.x(),2)+pow(sCposition.y(),2));
00155 
00156   double pT = sCenergy * seedCluster->position().rho()/sqrt(seedCluster->x()*seedCluster->x()+seedCluster->y()*seedCluster->y()+seedCluster->z()*seedCluster->z());
00157 
00158   double magneticField = 3.8;
00159 
00160   // cf Jackson p. 581-2, a little geometry
00161   double phiVsRSlope = -3.00e-3 * magneticField / pT / 2.;
00162 
00163 
00164   //Need to create TSOS to feed MeasurementTracker
00165   GlobalPoint beamSpot(bs->x0(),bs->y0(),bs->z0());
00166   GlobalPoint superCluster(sCposition.x(),sCposition.y(),sCposition.z());
00167   double r0 = beamSpot.perp();
00168   double z0 = beamSpot.z();
00169 
00170   //We need to pick a charge for the particle we want to reconstruct before hits can be retrieved
00171   //Choosing both charges improves seeding efficiency by less than 0.5% for signal events
00172   //If we pick a single charge, this reduces fake rate and CPU time
00173   //So we pick a charge that is equally likely to be positive or negative
00174 
00175   int chargeHypothesis;
00176   double chargeSelector = sCenergy - (int)sCenergy;
00177   if(chargeSelector >= 0.5) chargeHypothesis = -1;
00178   if(chargeSelector < 0.5) chargeHypothesis = 1;
00179 
00180   //Use BeamSpot and SC position to estimate 3rd point
00181   double rFake = 25.;
00182   double phiFake = phiDiff(superCluster.phi(),chargeHypothesis * phiVsRSlope * (scr - rFake));
00183   double zFake = (rFake*(scz-z0)-r0*scz+scr*z0)/(scr-r0);
00184   double xFake = rFake * cos(phiFake);
00185   double yFake = rFake * sin(phiFake);
00186   GlobalPoint fakePoint(xFake,yFake,zFake);
00187 
00188   //Use 3 points to make helix
00189   FastHelix initialHelix(superCluster,fakePoint,beamSpot,*theSetup);
00190 
00191   //Use helix to get FTS
00192   FreeTrajectoryState initialFTS = initialHelix.stateAtVertex();
00193 
00194   //Use FTS and BeamSpot to create TSOS
00195   TransverseImpactPointExtrapolator* tipe = new TransverseImpactPointExtrapolator(*thePropagator);
00196   TrajectoryStateOnSurface initialTSOS = tipe->extrapolate(initialFTS,beamSpot);
00197 
00198   //Use GST to retrieve hits from various DetLayers using layerMeasurements class
00199   const GeometricSearchTracker* gst = theMeasurementTracker->geometricSearchTracker();
00200 
00201   std::vector<BarrelDetLayer*> tibLayers = gst->tibLayers();
00202   DetLayer* tib1 = tibLayers.at(0);
00203   DetLayer* tib2 = tibLayers.at(1);
00204 
00205   std::vector<ForwardDetLayer*> tecLayers;
00206   std::vector<ForwardDetLayer*> tidLayers;
00207   if(scEta < 0){
00208     tecLayers = gst->negTecLayers();
00209     tidLayers = gst->negTidLayers();
00210   }
00211   if(scEta > 0){
00212     tecLayers = gst->posTecLayers();
00213     tidLayers = gst->posTidLayers();
00214   }
00215 
00216   DetLayer* tid1 = tidLayers.at(0);
00217   DetLayer* tid2 = tidLayers.at(1);
00218   DetLayer* tid3 = tidLayers.at(2);
00219   DetLayer* tec1 = tecLayers.at(0);
00220   DetLayer* tec2 = tecLayers.at(1);
00221   DetLayer* tec3 = tecLayers.at(2);
00222 
00223   //Figure out which DetLayers to use based on SC Eta
00224   std::vector<bool> useDL = useDetLayer(scEta);
00225   bool useTID = false;
00226 
00227   //Use counters to restrict the number of hits in TID and TEC layers
00228   //This reduces seed multiplicity
00229   int tid1MHC = 0;
00230   int tid2MHC = 0;
00231   int tid3MHC = 0;
00232   int tid1BHC = 0;
00233   int tid2BHC = 0;
00234   int tid3BHC = 0;
00235   int tec1MHC = 0;
00236   int tec2MHC = 0;
00237   int tec3MHC = 0;
00238 
00239   //Use counter to limit the allowed number of seeds
00240   int seedCounter = 0;
00241 
00242   bool hasLay1Hit = false;
00243   bool hasLay2Hit = false;
00244   bool hasBackupHit = false;
00245 
00246   LayerMeasurements layerMeasurements(theMeasurementTracker);
00247 
00248   std::vector<TrajectoryMeasurement> tib1measurements;
00249   if(useDL.at(0)) tib1measurements = layerMeasurements.measurements(*tib1,initialTSOS,*thePropagator,*theEstimator);
00250   std::vector<TrajectoryMeasurement> tib2measurements;
00251   if(useDL.at(1)) tib2measurements = layerMeasurements.measurements(*tib2,initialTSOS,*thePropagator,*theEstimator);
00252 
00253   //Basic idea: Retrieve hits from a given DetLayer
00254   //Check if it is a Matched Hit and satisfies some cuts
00255   //If yes, accept hit for seed making
00256 
00257   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tib1measurements.begin(); tmIter != tib1measurements.end(); ++ tmIter){
00258     ConstRecHitPointer hit = tmIter->recHit();
00259     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00260     if(matchedHit){
00261       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00262       if(preselection(position, superCluster, phiVsRSlope, 1)){
00263         hasLay1Hit = true;
00264         layer1Hits_.push_back(matchedHit);
00265       }
00266     }
00267   }
00268 
00269   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tib2measurements.begin(); tmIter != tib2measurements.end(); ++ tmIter){
00270     ConstRecHitPointer hit = tmIter->recHit();
00271     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00272     if(matchedHit){
00273       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00274       if(preselection(position, superCluster, phiVsRSlope, 1)){
00275         hasLay2Hit = true;
00276         layer2Hits_.push_back(matchedHit);
00277       }
00278     }
00279   }
00280 
00281   if(!(hasLay1Hit && hasLay2Hit)) useTID = true;
00282   if(std::abs(scEta) > tidEtaUsage_) useTID = true;
00283   std::vector<TrajectoryMeasurement> tid1measurements;
00284   if(useDL.at(2) && useTID) tid1measurements = layerMeasurements.measurements(*tid1,initialTSOS,*thePropagator,*theEstimator);
00285   std::vector<TrajectoryMeasurement> tid2measurements;
00286   if(useDL.at(3) && useTID) tid2measurements = layerMeasurements.measurements(*tid2,initialTSOS,*thePropagator,*theEstimator);
00287   std::vector<TrajectoryMeasurement> tid3measurements;
00288   if(useDL.at(4) && useTID) tid3measurements = layerMeasurements.measurements(*tid3,initialTSOS,*thePropagator,*theEstimator);
00289 
00290   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tid1measurements.begin(); tmIter != tid1measurements.end(); ++ tmIter){
00291     if(tid1MHC < tidMaxHits_){
00292     ConstRecHitPointer hit = tmIter->recHit();
00293     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00294     if(matchedHit){
00295       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00296       if(preselection(position, superCluster, phiVsRSlope, 2)){
00297         tid1MHC++;
00298         hasLay1Hit = true;
00299         layer1Hits_.push_back(matchedHit);
00300         hasLay2Hit = true;
00301         layer2Hits_.push_back(matchedHit);
00302       }
00303     }else if(useDL.at(8) && tid1BHC < monoMaxHits_){
00304       const SiStripRecHit2D* backupHit = backupHitConverter(hit);
00305       if(backupHit){
00306         GlobalPoint position = trackerGeometryHandle->idToDet(backupHit->geographicalId())->surface().toGlobal(backupHit->localPosition());
00307         if(preselection(position, superCluster, phiVsRSlope, 4) && position.perp() > 37.){
00308           tid1BHC++;
00309           hasBackupHit = true;
00310           backupLayer2Hits_.push_back(backupHit);
00311         }
00312       }
00313     }
00314     }
00315   }
00316 
00317   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tid2measurements.begin(); tmIter != tid2measurements.end(); ++ tmIter){
00318     if(tid2MHC < tidMaxHits_){
00319     ConstRecHitPointer hit = tmIter->recHit();
00320     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00321     if(matchedHit){
00322       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00323       if(preselection(position, superCluster, phiVsRSlope, 2)){
00324         tid2MHC++;
00325         hasLay1Hit = true;
00326         layer1Hits_.push_back(matchedHit);
00327         hasLay2Hit = true;
00328         layer2Hits_.push_back(matchedHit);
00329       }
00330     }else if(useDL.at(8) && tid2BHC < monoMaxHits_){
00331       const SiStripRecHit2D* backupHit = backupHitConverter(hit);
00332       if(backupHit){
00333         GlobalPoint position = trackerGeometryHandle->idToDet(backupHit->geographicalId())->surface().toGlobal(backupHit->localPosition());
00334         if(preselection(position, superCluster, phiVsRSlope, 4) && position.perp() > 37.){
00335           tid2BHC++;
00336           hasBackupHit = true;
00337           backupLayer2Hits_.push_back(backupHit);
00338         }
00339       }
00340     }
00341     }
00342   }
00343 
00344   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tid3measurements.begin(); tmIter != tid3measurements.end(); ++ tmIter){
00345     if(tid3MHC < tidMaxHits_){
00346     ConstRecHitPointer hit = tmIter->recHit();
00347     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00348     if(matchedHit){
00349       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00350       if(preselection(position, superCluster, phiVsRSlope, 2)){
00351         tid3MHC++;
00352         hasLay1Hit = true;
00353         layer1Hits_.push_back(matchedHit);
00354         hasLay2Hit = true;
00355         layer2Hits_.push_back(matchedHit);
00356       }
00357     }else if(useDL.at(8) && tid3BHC < monoMaxHits_){
00358       const SiStripRecHit2D* backupHit = backupHitConverter(hit);
00359       if(backupHit){
00360         GlobalPoint position = trackerGeometryHandle->idToDet(backupHit->geographicalId())->surface().toGlobal(backupHit->localPosition());
00361         if(preselection(position, superCluster, phiVsRSlope, 4) && position.perp() > 37.){
00362           tid3BHC++;
00363           hasBackupHit = true;
00364           backupLayer2Hits_.push_back(backupHit);
00365         }
00366       }
00367     }
00368     }
00369   }
00370 
00371   std::vector<TrajectoryMeasurement> tec1measurements;
00372   if(useDL.at(5)) tec1measurements = layerMeasurements.measurements(*tec1,initialTSOS,*thePropagator,*theEstimator);
00373   std::vector<TrajectoryMeasurement> tec2measurements;
00374   if(useDL.at(6)) tec2measurements = layerMeasurements.measurements(*tec2,initialTSOS,*thePropagator,*theEstimator);
00375   std::vector<TrajectoryMeasurement> tec3measurements;
00376   if(useDL.at(7)) tec3measurements = layerMeasurements.measurements(*tec3,initialTSOS,*thePropagator,*theEstimator);
00377 
00378   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tec1measurements.begin(); tmIter != tec1measurements.end(); ++ tmIter){
00379     if(tec1MHC < tecMaxHits_){
00380     ConstRecHitPointer hit = tmIter->recHit();
00381     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00382     if(matchedHit){
00383       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00384       if(preselection(position, superCluster, phiVsRSlope, 3)){
00385         tec1MHC++;
00386         hasLay1Hit = true;
00387         layer1Hits_.push_back(matchedHit);
00388         hasLay2Hit = true;
00389         layer2Hits_.push_back(matchedHit);
00390       }
00391     }
00392     }
00393   }
00394 
00395   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tec2measurements.begin(); tmIter != tec2measurements.end(); ++ tmIter){
00396     if(tec2MHC < tecMaxHits_){
00397     ConstRecHitPointer hit = tmIter->recHit();
00398     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00399     if(matchedHit){
00400       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00401       if(preselection(position, superCluster, phiVsRSlope, 3)){
00402         tec2MHC++;
00403         hasLay1Hit = true;
00404         layer1Hits_.push_back(matchedHit);
00405         hasLay2Hit = true;
00406         layer2Hits_.push_back(matchedHit);
00407       }
00408     }
00409     }
00410   }
00411 
00412   for(std::vector<TrajectoryMeasurement>::const_iterator tmIter = tec3measurements.begin(); tmIter != tec3measurements.end(); ++ tmIter){
00413     if(tec3MHC < tecMaxHits_){
00414     ConstRecHitPointer hit = tmIter->recHit();
00415     const SiStripMatchedRecHit2D* matchedHit = matchedHitConverter(hit);
00416     if(matchedHit){
00417       GlobalPoint position = trackerGeometryHandle->idToDet(matchedHit->geographicalId())->surface().toGlobal(matchedHit->localPosition());
00418       if(preselection(position, superCluster, phiVsRSlope, 3)){
00419         tec3MHC++;
00420         hasLay2Hit = true;
00421         layer2Hits_.push_back(matchedHit);
00422       }
00423     }
00424     }
00425   }
00426 
00427   // We have 2 arrays of hits, combine them to form seeds
00428   if( hasLay1Hit && hasLay2Hit ){
00429 
00430     for (std::vector<const SiStripMatchedRecHit2D*>::const_iterator hit1 = layer1Hits_.begin() ; hit1!= layer1Hits_.end(); ++hit1) {
00431       for (std::vector<const SiStripMatchedRecHit2D*>::const_iterator hit2 = layer2Hits_.begin() ; hit2!= layer2Hits_.end(); ++hit2) {
00432 
00433         if(seedCounter < maxSeeds_){
00434 
00435           if(checkHitsAndTSOS(hit1,hit2,scr,scz,pT,scEta)) {
00436 
00437             seedCounter++;
00438 
00439             recHits_.clear();
00440 
00441             SiStripMatchedRecHit2D *hit;
00442             hit=new SiStripMatchedRecHit2D(*(dynamic_cast <const SiStripMatchedRecHit2D *> (*hit1) ) );
00443             recHits_.push_back(hit);
00444             hit=new SiStripMatchedRecHit2D(*(dynamic_cast <const SiStripMatchedRecHit2D *> (*hit2) ) );
00445             recHits_.push_back(hit);
00446 
00447             PropagationDirection dir = alongMomentum;
00448             reco::ElectronSeed seed(pts_,recHits_,dir) ;
00449             reco::ElectronSeed::CaloClusterRef caloCluster(seedCluster) ;
00450             seed.setCaloCluster(caloCluster) ;
00451             result.push_back(seed);
00452 
00453           }
00454 
00455         }
00456 
00457       }// end of hit 2 loop
00458 
00459     }// end of hit 1 loop
00460 
00461   }//end of seed making
00462 
00463   //Make seeds using TID Ring 3 if necessary
00464 
00465   if(hasLay1Hit && hasBackupHit && seedCounter == 0){
00466 
00467     for (std::vector<const SiStripMatchedRecHit2D*>::const_iterator hit1 = layer1Hits_.begin() ; hit1!= layer1Hits_.end(); ++hit1) {
00468       for (std::vector<const SiStripRecHit2D*>::const_iterator hit2 = backupLayer2Hits_.begin() ; hit2!= backupLayer2Hits_.end(); ++hit2) {
00469 
00470         if(seedCounter < maxSeeds_){
00471 
00472           if(altCheckHitsAndTSOS(hit1,hit2,scr,scz,pT,scEta)) {
00473 
00474             seedCounter++;
00475 
00476             recHits_.clear();
00477 
00478             SiStripMatchedRecHit2D *innerHit;
00479             innerHit=new SiStripMatchedRecHit2D(*(dynamic_cast <const SiStripMatchedRecHit2D *> (*hit1) ) );
00480             recHits_.push_back(innerHit);
00481             SiStripRecHit2D *outerHit;
00482             outerHit=new SiStripRecHit2D(*(dynamic_cast <const SiStripRecHit2D *> (*hit2) ) );
00483             recHits_.push_back(outerHit);
00484 
00485             PropagationDirection dir = alongMomentum;
00486             reco::ElectronSeed seed(pts_,recHits_,dir) ;
00487             reco::ElectronSeed::CaloClusterRef caloCluster(seedCluster) ;
00488             seed.setCaloCluster(caloCluster) ;
00489             result.push_back(seed);
00490 
00491           }
00492 
00493         }
00494 
00495       }// end of hit 2 loop
00496 
00497     }// end of hit 1 loop
00498 
00499   }// end of backup seed making
00500 
00501 } // end of findSeedsFromCluster
00502 
00503 
00504 
00505 bool SiStripElectronSeedGenerator::checkHitsAndTSOS(std::vector<const SiStripMatchedRecHit2D*>::const_iterator hit1,
00506                                                     std::vector<const SiStripMatchedRecHit2D*>::const_iterator hit2,
00507                                                     double rc,double zc,double pT,double scEta) {
00508 
00509   bool seedCutsSatisfied = false;
00510 
00511   using namespace std;
00512 
00513   GlobalPoint hit1Pos = trackerGeometryHandle->idToDet((*hit1)->geographicalId())->surface().toGlobal((*hit1)->localPosition());
00514   double r1 = sqrt(hit1Pos.x()*hit1Pos.x() + hit1Pos.y()*hit1Pos.y());
00515   double phi1 = hit1Pos.phi();
00516   double z1=hit1Pos.z();
00517 
00518   GlobalPoint hit2Pos = trackerGeometryHandle->idToDet((*hit2)->geographicalId())->surface().toGlobal((*hit2)->localPosition());
00519   double r2 = sqrt(hit2Pos.x()*hit2Pos.x() + hit2Pos.y()*hit2Pos.y());
00520   double phi2 = hit2Pos.phi();
00521   double z2 = hit2Pos.z();
00522 
00523   if(r2 > r1 && (std::abs(z2) > std::abs(z1) || std::abs(scEta) < 0.25)) {
00524 
00525     //Consider the circle made of IP and Hit 1; Calculate it's radius using pT
00526 
00527     double curv = pT*100*.877;
00528 
00529     //Predict phi of hit 2
00530     double a = (r2-r1)/(2*curv);
00531     double b = phiDiff(phi2,phi1);
00532     //UB added '=0' to avoid compiler warning
00533     double phiMissHit2=0;
00534     if(std::abs(b - a)<std::abs(b + a)) phiMissHit2 = b - a;
00535     if(std::abs(b - a)>std::abs(b + a)) phiMissHit2 = b + a;
00536 
00537     double zMissHit2 = z2 - (r2*(zc-z1)-r1*zc+rc*z1)/(rc-r1);
00538 
00539     double rPredHit2 = r1 + (rc-r1)/(zc-z1)*(z2-z1);
00540     double rMissHit2 = r2 - rPredHit2;
00541 
00542     int subdetector = whichSubdetector(hit2);
00543 
00544     bool zDiff = true;
00545     double zVar1 = std::abs(z1);
00546     double zVar2 = std::abs(z2 - z1);
00547     if(zVar1 > 75 && zVar1 < 95 && (zVar2 > 18 || zVar2 < 5)) zDiff = false;
00548     if(zVar1 > 100 && zVar1 < 110 && (zVar2 > 35 || zVar2 < 5)) zDiff = false;
00549     if(zVar1 > 125 && zVar1 < 150 && (zVar2 > 18 || zVar2 < 5)) zDiff = false;
00550 
00551     if(subdetector == 1){
00552       int tibExtraCut = 0;
00553       if(r1 > 23 && r1 < 28 && r2 > 31 && r2 < 37) tibExtraCut = 1;
00554       if(std::abs(phiMissHit2) < tibPhiMissHit2Cut_ && std::abs(zMissHit2) < tibZMissHit2Cut_ && tibExtraCut == 1) seedCutsSatisfied = true;
00555     }else if(subdetector == 2){
00556       int tidExtraCut = 0;
00557       if(r1 > 23 && r1 < 34 && r2 > 26 && r2 < 42) tidExtraCut = 1;
00558       if(std::abs(phiMissHit2) < tidPhiMissHit2Cut_ && std::abs(rMissHit2) < tidRMissHit2Cut_ && tidExtraCut == 1 && zDiff) seedCutsSatisfied = true;
00559     }else if(subdetector == 3){
00560       int tecExtraCut = 0;
00561       if(r1 > 23 && r1 < 32 && r2 > 26 && r2 < 42) tecExtraCut = 1;
00562       if(std::abs(phiMissHit2) < tecPhiMissHit2Cut_ && std::abs(rMissHit2) < tecRMissHit2Cut_ && tecExtraCut == 1 && zDiff) seedCutsSatisfied = true;
00563     }
00564 
00565   }
00566 
00567   if(!seedCutsSatisfied) return false;
00568 
00569   // seed checks borrowed from pixel-based algoritm
00570 
00571 
00572   /* Some of this code could be better optimized.  The Pixel algorithm natively
00573      takes Transient rec hits, so to recycle code we have to build them.
00574   */
00575 
00576   RecHitPointer hit1Trans = TSiStripMatchedRecHit::build(trackerGeometryHandle->idToDet((*hit1)->geographicalId()), *hit1, theMatcher_);
00577   RecHitPointer hit2Trans = TSiStripMatchedRecHit::build(trackerGeometryHandle->idToDet((*hit2)->geographicalId()), *hit2, theMatcher_);
00578 
00579   typedef TrajectoryStateOnSurface TSOS;
00580 
00581   double vertexZ = z1 - (r1 * (zc - z1) ) / (rc - r1);
00582   GlobalPoint eleVertex(0.,0.,vertexZ);
00583 
00584   // make a spiral
00585   FastHelix helix(hit2Pos,hit1Pos,eleVertex,*theSetup);
00586   if (!helix.isValid()) return false;
00587 
00588   FreeTrajectoryState fts = helix.stateAtVertex();
00589   TSOS propagatedState = thePropagator->propagate(fts,hit1Trans->det()->surface());
00590 
00591   if (!propagatedState.isValid()) return false;
00592 
00593   TSOS updatedState = theUpdator->update(propagatedState, *hit1Trans);
00594   TSOS propagatedState_out = thePropagator->propagate(fts,hit2Trans->det()->surface()) ;
00595 
00596   if (!propagatedState_out.isValid()) return false;
00597 
00598   // the seed has now passed all the cuts
00599 
00600   TSOS updatedState_out = theUpdator->update(propagatedState_out, *hit2Trans);
00601 
00602   pts_ =  trajectoryStateTransform::persistentState(updatedState_out, hit2Trans->geographicalId().rawId());
00603 
00604   return true;
00605 }
00606 
00607 bool SiStripElectronSeedGenerator::altCheckHitsAndTSOS(std::vector<const SiStripMatchedRecHit2D*>::const_iterator hit1,
00608                                                        std::vector<const SiStripRecHit2D*>::const_iterator hit2,
00609                                                        double rc,double zc,double pT,double scEta) {
00610 
00611   bool seedCutSatisfied = false;
00612 
00613   using namespace std;
00614 
00615   GlobalPoint hit1Pos = trackerGeometryHandle->idToDet((*hit1)->geographicalId())->surface().toGlobal((*hit1)->localPosition());
00616   double r1 = sqrt(hit1Pos.x()*hit1Pos.x() + hit1Pos.y()*hit1Pos.y());
00617   double phi1 = hit1Pos.phi();
00618   double z1=hit1Pos.z();
00619 
00620   GlobalPoint hit2Pos = trackerGeometryHandle->idToDet((*hit2)->geographicalId())->surface().toGlobal((*hit2)->localPosition());
00621   double r2 = sqrt(hit2Pos.x()*hit2Pos.x() + hit2Pos.y()*hit2Pos.y());
00622   double phi2 = hit2Pos.phi();
00623   double z2 = hit2Pos.z();
00624 
00625   if(r2 > r1 && std::abs(z2) > std::abs(z1)) {
00626 
00627     //Consider the circle made of IP and Hit 1; Calculate it's radius using pT
00628 
00629     double curv = pT*100*.877;
00630 
00631     //Predict phi of hit 2
00632     double a = (r2-r1)/(2*curv);
00633     double b = phiDiff(phi2,phi1);
00634     double phiMissHit2 = 0;
00635     if(std::abs(b - a)<std::abs(b + a)) phiMissHit2 = b - a;
00636     if(std::abs(b - a)>std::abs(b + a)) phiMissHit2 = b + a;
00637 
00638     if(std::abs(phiMissHit2) < monoPhiMissHit2Cut_) seedCutSatisfied = true;
00639 
00640   }
00641 
00642   if(!seedCutSatisfied) return false;
00643 
00644   // seed checks borrowed from pixel-based algoritm
00645 
00646  
00647 
00648   /* Some of this code could be better optimized.  The Pixel algorithm natively
00649      takes Transient rec hits, so to recycle code we have to build them.
00650   */
00651 
00652   RecHitPointer hit1Trans = TSiStripMatchedRecHit::build(trackerGeometryHandle->idToDet((*hit1)->geographicalId()), *hit1, theMatcher_);
00653   RecHitPointer hit2Trans = TSiStripMatchedRecHit::build(trackerGeometryHandle->idToDet((*hit2)->geographicalId()), *hit2, theMatcher_);
00654 
00655   typedef TrajectoryStateOnSurface TSOS;
00656 
00657   double vertexZ = z1 - (r1 * (zc - z1) ) / (rc - r1);
00658   GlobalPoint eleVertex(0.,0.,vertexZ);
00659 
00660   // make a spiral
00661   FastHelix helix(hit2Pos,hit1Pos,eleVertex,*theSetup);
00662   if (!helix.isValid()) return false;
00663 
00664   FreeTrajectoryState fts = helix.stateAtVertex();
00665   TSOS propagatedState = thePropagator->propagate(fts,hit1Trans->det()->surface());
00666 
00667   if (!propagatedState.isValid()) return false;
00668 
00669   TSOS updatedState = theUpdator->update(propagatedState, *hit1Trans);
00670   TSOS propagatedState_out = thePropagator->propagate(fts,hit2Trans->det()->surface()) ;
00671 
00672   if (!propagatedState_out.isValid()) return false;
00673 
00674   // the seed has now passed all the cuts
00675 
00676   TSOS updatedState_out = theUpdator->update(propagatedState_out, *hit2Trans);
00677 
00678   pts_ =  trajectoryStateTransform::persistentState(updatedState_out, hit2Trans->geographicalId().rawId());
00679 
00680   return true;
00681 }
00682 
00683 
00684 bool SiStripElectronSeedGenerator::preselection(GlobalPoint position,GlobalPoint superCluster,double phiVsRSlope,int hitLayer){
00685   double r = position.perp();
00686   double phi = position.phi();
00687   double z = position.z();
00688   double scr = superCluster.perp();
00689   double scphi = superCluster.phi();
00690   double scz = superCluster.z();
00691   double psi = phiDiff(phi,scphi);
00692   double deltaPsi = psi - (scr-r)*phiVsRSlope;
00693   double antiDeltaPsi = psi - (r-scr)*phiVsRSlope;
00694   double dP;
00695   if (std::abs(deltaPsi)<std::abs(antiDeltaPsi)){
00696     dP = deltaPsi;
00697   }else{
00698     dP = antiDeltaPsi;
00699   }
00700   double originZ = (scr*z - r*scz)/(scr-r);
00701 
00702   bool result = false;
00703 
00704   if(hitLayer == 1){
00705     if(std::abs(originZ) < tibOriginZCut_ && std::abs(dP) < tibDeltaPsiCut_) result = true;
00706   }else if(hitLayer == 2){
00707     if(std::abs(originZ) < tidOriginZCut_ && std::abs(dP) < tidDeltaPsiCut_) result = true;
00708   }else if(hitLayer == 3){
00709     if(std::abs(originZ) < tecOriginZCut_ && std::abs(dP) < tecDeltaPsiCut_) result = true;
00710   }else if(hitLayer == 4){
00711     if(std::abs(originZ) < monoOriginZCut_ && std::abs(dP) < monoDeltaPsiCut_) result = true;
00712   }
00713 
00714   return result;
00715 }
00716 
00717 // Helper algorithms
00718 
00719 int SiStripElectronSeedGenerator::whichSubdetector(std::vector<const SiStripMatchedRecHit2D*>::const_iterator hit){
00720   int result = 0;
00721   if(((*hit)->geographicalId()).subdetId() == StripSubdetector::TIB){
00722     result = 1;
00723   }else if(((*hit)->geographicalId()).subdetId() == StripSubdetector::TID){
00724     result = 2;
00725   }else if(((*hit)->geographicalId()).subdetId() == StripSubdetector::TEC){
00726     result = 3;
00727   }
00728   return result;
00729 }
00730 
00731 const SiStripMatchedRecHit2D* SiStripElectronSeedGenerator::matchedHitConverter(ConstRecHitPointer crhp){
00732   const TrackingRecHit* trh = crhp->hit();
00733   const SiStripMatchedRecHit2D* matchedHit = dynamic_cast<const SiStripMatchedRecHit2D*>(trh);
00734   return matchedHit;
00735 }
00736 
00737 const SiStripRecHit2D* SiStripElectronSeedGenerator::backupHitConverter(ConstRecHitPointer crhp){
00738   const TrackingRecHit* trh = crhp->hit();
00739   const SiStripRecHit2D* backupHit = dynamic_cast<const SiStripRecHit2D*>(trh);
00740   return backupHit;
00741 }
00742 
00743 std::vector<bool> SiStripElectronSeedGenerator::useDetLayer(double scEta){
00744   std::vector<bool> useDetLayer;
00745   double variable = std::abs(scEta);
00746   if(variable > 0 && variable < 1.8){
00747     useDetLayer.push_back(true);
00748   }else{
00749     useDetLayer.push_back(false);
00750   }
00751   if(variable > 0 && variable < 1.5){
00752     useDetLayer.push_back(true);
00753   }else{
00754     useDetLayer.push_back(false);
00755   }
00756   if(variable > 1 && variable < 2.1){
00757     useDetLayer.push_back(true);
00758   }else{
00759     useDetLayer.push_back(false);
00760   }
00761   if(variable > 1 && variable < 2.2){
00762     useDetLayer.push_back(true);
00763   }else{
00764     useDetLayer.push_back(false);
00765   }
00766   if(variable > 1 && variable < 2.3){
00767     useDetLayer.push_back(true);
00768   }else{
00769     useDetLayer.push_back(false);
00770   }
00771   if(variable > 1.8 && variable < 2.5){
00772     useDetLayer.push_back(true);
00773   }else{
00774     useDetLayer.push_back(false);
00775   }
00776   if(variable > 1.8 && variable < 2.5){
00777     useDetLayer.push_back(true);
00778   }else{
00779     useDetLayer.push_back(false);
00780   }
00781   if(variable > 1.8 && variable < 2.5){
00782     useDetLayer.push_back(true);
00783   }else{
00784     useDetLayer.push_back(false);
00785   }
00786   if(variable > 1.2 && variable < 1.6){
00787     useDetLayer.push_back(true);
00788   }else{
00789     useDetLayer.push_back(false);
00790   }
00791   return useDetLayer;
00792 }
00793 
00794 
00795