00001 #ifndef GeometryVector_newBasic3DVector_h
00002 #define GeometryVector_newBasic3DVector_h
00003
00004 #include "DataFormats/GeometryVector/interface/Basic2DVector.h"
00005 #include "DataFormats/GeometryVector/interface/Theta.h"
00006 #include "DataFormats/GeometryVector/interface/Phi.h"
00007 #include "DataFormats/GeometryVector/interface/PreciseFloatType.h"
00008 #include "DataFormats/GeometryVector/interface/CoordinateSets.h"
00009 #include "DataFormats/Math/interface/SSEVec.h"
00010 #include <iosfwd>
00011 #include <cmath>
00012
00013 namespace detailsBasic3DVector {
00014 inline float __attribute__((always_inline)) __attribute__ ((pure))
00015 eta(float x, float y, float z) { float t(z/std::sqrt(x*x+y*y)); return ::asinhf(t);}
00016 inline double __attribute__((always_inline)) __attribute__ ((pure))
00017 eta(double x, double y, double z) { double t(z/std::sqrt(x*x+y*y)); return ::asinh(t);}
00018 inline long double __attribute__((always_inline)) __attribute__ ((pure))
00019 eta(long double x, long double y, long double z) { long double t(z/std::sqrt(x*x+y*y)); return ::asinhl(t);}
00020 }
00021
00022
00023 template < typename T>
00024 class Basic3DVector {
00025 public:
00026
00027 typedef T ScalarType;
00028 typedef Geom::Cylindrical2Cartesian<T> Cylindrical;
00029 typedef Geom::Spherical2Cartesian<T> Spherical;
00030 typedef Spherical Polar;
00031
00036 Basic3DVector() {}
00037
00039 Basic3DVector( const Basic3DVector & p) :
00040 v(p.v) {}
00041
00043 template <class U>
00044 Basic3DVector( const Basic3DVector<U> & p) :
00045 v(p.v) {}
00046
00047
00049 Basic3DVector( const Basic2DVector<T> & p) :
00050 v(p.x(),p.y(),0) {}
00051
00052
00061 template <class OtherPoint>
00062 explicit Basic3DVector( const OtherPoint& p) :
00063 v(p.x(),p.y(),p.z()) {}
00064
00065
00066
00067 template<class U>
00068 Basic3DVector(mathSSE::Vec4<U> const& iv) : v(iv){}
00069
00071 Basic3DVector( const T& x, const T& y, const T& z) :
00072 v(x,y,z){}
00073
00078 template <typename U>
00079 Basic3DVector( const Geom::Theta<U>& theta,
00080 const Geom::Phi<U>& phi, const T& r) {
00081 Polar p( theta.value(), phi.value(), r);
00082 v.o.theX = p.x(); v.o.theY = p.y(); v.o.theZ = p.z();
00083 }
00084
00086 T x() const { return v.o.theX;}
00087
00089 T y() const { return v.o.theY;}
00090
00092 T z() const { return v.o.theZ;}
00093
00094 Basic2DVector<T> xy() const { return v.xy();}
00095
00096
00097 bool operator==(const Basic3DVector& rh) const {
00098 return v==rh.v;
00099 }
00100
00102 T mag2() const { return ::dot(v,v);}
00103
00105 T mag() const { return std::sqrt( mag2());}
00106
00108 T perp2() const { return ::dotxy(v,v);}
00109
00111 T perp() const { return std::sqrt( perp2());}
00112
00114 T transverse() const { return perp();}
00115
00120 T barePhi() const {return std::atan2(y(),x());}
00121 Geom::Phi<T> phi() const {return Geom::Phi<T>(barePhi());}
00122
00127 T bareTheta() const {return std::atan2(perp(),z());}
00128 Geom::Theta<T> theta() const {return Geom::Theta<T>(std::atan2(perp(),z()));}
00129
00134
00135 T eta() const { return detailsBasic3DVector::eta(x(),y(),z());}
00136
00140 Basic3DVector unit() const {
00141 T my_mag = mag2();
00142 return (0!=my_mag) ? (*this)*(T(1)/std::sqrt(my_mag)) : *this;
00143 }
00144
00147 template <class U>
00148 Basic3DVector& operator+= ( const Basic3DVector<U>& p) {
00149 v = v + p.v;
00150 return *this;
00151 }
00152
00155 template <class U>
00156 Basic3DVector& operator-= ( const Basic3DVector<U>& p) {
00157 v = v - p.v;
00158 return *this;
00159 }
00160
00162 Basic3DVector operator-() const { return Basic3DVector(-v);}
00163
00165 Basic3DVector& operator*= ( T t) {
00166 v = t*v;
00167 return *this;
00168 }
00169
00171 Basic3DVector& operator/= ( T t) {
00172 t = T(1)/t;
00173 v = t*v;
00174 return *this;
00175 }
00176
00178 T dot( const Basic3DVector& rh) const {
00179 return ::dot(v,rh.v);
00180 }
00181
00187 template <class U>
00188 typename PreciseFloatType<T,U>::Type dot( const Basic3DVector<U>& lh) const {
00189 return Basic3DVector<typename PreciseFloatType<T,U>::Type>(*this)
00190 .dot(Basic3DVector<typename PreciseFloatType<T,U>::Type>(lh));
00191 }
00192
00194 Basic3DVector cross( const Basic3DVector& lh) const {
00195 return ::cross(v,lh.v);
00196 }
00197
00198
00204 template <class U>
00205 Basic3DVector<typename PreciseFloatType<T,U>::Type>
00206 cross( const Basic3DVector<U>& lh) const {
00207 return Basic3DVector<typename PreciseFloatType<T,U>::Type>(*this)
00208 .cross(Basic3DVector<typename PreciseFloatType<T,U>::Type>(lh));
00209 }
00210
00211 public:
00212 mathSSE::Vec4<T> v;
00213 } __attribute__ ((aligned (16)));
00214
00215
00216 namespace geometryDetails {
00217 std::ostream & print3D(std::ostream& s, double x, double y, double z);
00218 }
00219
00221 template <class T>
00222 inline std::ostream & operator<<( std::ostream& s, const Basic3DVector<T>& v) {
00223 return geometryDetails::print3D(s, v.x(),v.y(), v.z());
00224 }
00225
00226
00228 template <class T>
00229 inline Basic3DVector<T>
00230 operator+( const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
00231 return a.v+b.v;
00232 }
00233 template <class T>
00234 inline Basic3DVector<T>
00235 operator-( const Basic3DVector<T>& a, const Basic3DVector<T>& b) {
00236 return a.v-b.v;
00237 }
00238
00239 template <class T, class U>
00240 inline Basic3DVector<typename PreciseFloatType<T,U>::Type>
00241 operator+( const Basic3DVector<T>& a, const Basic3DVector<U>& b) {
00242 typedef Basic3DVector<typename PreciseFloatType<T,U>::Type> RT;
00243 return RT(a).v+RT(b).v;
00244 }
00245
00246 template <class T, class U>
00247 inline Basic3DVector<typename PreciseFloatType<T,U>::Type>
00248 operator-( const Basic3DVector<T>& a, const Basic3DVector<U>& b) {
00249 typedef Basic3DVector<typename PreciseFloatType<T,U>::Type> RT;
00250 return RT(a).v-RT(b).v;
00251 }
00252
00254 template <class T>
00255 inline T operator*( const Basic3DVector<T>& v1, const Basic3DVector<T>& v2) {
00256 return v1.dot(v2);
00257 }
00258
00260 template <class T, class U>
00261 inline typename PreciseFloatType<T,U>::Type operator*( const Basic3DVector<T>& v1,
00262 const Basic3DVector<U>& v2) {
00263 return v1.dot(v2);
00264 }
00265
00269 template <class T>
00270 inline Basic3DVector<T> operator*( const Basic3DVector<T>& v, T t) {
00271 return v.v*t;
00272 }
00273
00275 template <class T>
00276 inline Basic3DVector<T> operator*(T t, const Basic3DVector<T>& v) {
00277 return v.v*t;
00278 }
00279
00280 template <class T, typename S>
00281 inline Basic3DVector<T> operator*(S t, const Basic3DVector<T>& v) {
00282 return static_cast<T>(t)*v;
00283 }
00284
00285 template <class T, typename S>
00286 inline Basic3DVector<T> operator*(const Basic3DVector<T>& v, S t) {
00287 return static_cast<T>(t)*v;
00288 }
00289
00290
00294 template <class T, typename S>
00295 inline Basic3DVector<T> operator/( const Basic3DVector<T>& v, S s) {
00296 T t = T(1)/s;
00297 return v*t;
00298 }
00299
00300
00301 typedef Basic3DVector<float> Basic3DVectorF;
00302 typedef Basic3DVector<double> Basic3DVectorD;
00303
00304
00305
00306 #include "Basic3DVectorLD.h"
00307
00308 #endif // GeometryVector_Basic3DVector_h
00309
00310