#include <EERawDataTask.h>
Definition at line 20 of file EERawDataTask.h.
enum EERawDataTask::activeEVM [private] |
EERawDataTask::EERawDataTask | ( | const edm::ParameterSet & | ps | ) |
Constructor.
Definition at line 32 of file EERawDataTask.cc.
References calibrationBX_, dqmStore_, EcalRawDataCollection_, enableCleanup_, FEDRawDataCollection_, edm::ParameterSet::getParameter(), edm::ParameterSet::getUntrackedParameter(), init_, meEEBunchCrossingDCCErrors_, meEEBunchCrossingFEErrors_, meEEBunchCrossingSRPErrors_, meEEBunchCrossingTCCErrors_, meEECalibrationEventErrors_, meEECRCErrors_, meEEEventTypeCalibrationBX_, meEEEventTypePostCalibrationBX_, meEEEventTypePreCalibrationBX_, meEEL1ADCCErrors_, meEEL1AFEErrors_, meEEL1ASRPErrors_, meEEL1ATCCErrors_, meEEOrbitNumberErrors_, meEERunNumberErrors_, meEESynchronizationErrorsByLumi_, meEETriggerTypeErrors_, mergeRuns_, cmsCodeRules::cppFunctionSkipper::operator, and prefixME_.
{ init_ = false; dqmStore_ = edm::Service<DQMStore>().operator->(); prefixME_ = ps.getUntrackedParameter<std::string>("prefixME", ""); enableCleanup_ = ps.getUntrackedParameter<bool>("enableCleanup", false); mergeRuns_ = ps.getUntrackedParameter<bool>("mergeRuns", false); FEDRawDataCollection_ = ps.getParameter<edm::InputTag>("FEDRawDataCollection"); EcalRawDataCollection_ = ps.getParameter<edm::InputTag>("EcalRawDataCollection"); meEEEventTypePreCalibrationBX_ = 0; meEEEventTypeCalibrationBX_ = 0; meEEEventTypePostCalibrationBX_ = 0; meEECRCErrors_ = 0; meEERunNumberErrors_ = 0; meEEOrbitNumberErrors_ = 0; meEETriggerTypeErrors_ = 0; meEECalibrationEventErrors_ = 0; meEEL1ADCCErrors_ = 0; meEEBunchCrossingDCCErrors_ = 0; meEEL1AFEErrors_ = 0; meEEBunchCrossingFEErrors_ = 0; meEEL1ATCCErrors_ = 0; meEEBunchCrossingTCCErrors_ = 0; meEEL1ASRPErrors_ = 0; meEEBunchCrossingSRPErrors_ = 0; meEESynchronizationErrorsByLumi_ = 0; calibrationBX_ = 3490; }
EERawDataTask::~EERawDataTask | ( | ) | [virtual] |
void EERawDataTask::analyze | ( | const edm::Event & | e, |
const edm::EventSetup & | c | ||
) | [protected, virtual] |
Analyze.
Implements edm::EDAnalyzer.
Definition at line 378 of file EERawDataTask.cc.
References edm::EventBase::bunchCrossing(), calibrationBX_, EcalDCCHeaderBlock::COSMIC, EcalDCCHeaderBlock::COSMICS_GLOBAL, EcalDCCHeaderBlock::COSMICS_LOCAL, FEDRawData::data(), EcalEndcap, EcalRawDataCollection_, edm::EventBase::experimentType(), FEDRawDataCollection_, MonitorElement::Fill(), edm::Event::getByLabel(), H_BX_MASK, H_L1_MASK, H_ORBITCOUNTER_MASK, H_TTYPE_MASK, i, edm::EventBase::id(), ievt_, init_, Numbers::iSM(), ecalpyutils::ism(), edm::EventBase::isRealData(), FEDHeader::lvl1ID(), MAX_TCC_SIZE, meEEBunchCrossingDCCErrors_, meEEBunchCrossingFEErrors_, meEEBunchCrossingSRPErrors_, meEEBunchCrossingTCCErrors_, meEECalibrationEventErrors_, meEECRCErrors_, meEEEventTypeCalibrationBX_, meEEEventTypePostCalibrationBX_, meEEEventTypePreCalibrationBX_, meEEL1ADCCErrors_, meEEL1AFEErrors_, meEEL1ASRPErrors_, meEEL1ATCCErrors_, meEEOrbitNumberErrors_, meEERunNumberErrors_, meEESynchronizationErrorsByLumi_, meEETriggerTypeErrors_, EcalDCCHeaderBlock::MTCC, edm::EventBase::orbitNumber(), EcalDCCHeaderBlock::PHYSICS_GLOBAL, EcalDCCHeaderBlock::PHYSICS_LOCAL, edm::EventID::run(), setup(), FEDRawData::size(), ntuplemaker::status, and Numbers::subDet().
{ if ( ! init_ ) this->setup(); ievt_++; // fill bin 0 with number of events in the lumi if ( meEESynchronizationErrorsByLumi_ ) meEESynchronizationErrorsByLumi_->Fill(0.); int evt_runNumber = e.id().run(); int GT_L1A=0, GT_OrbitNumber=0, GT_BunchCrossing=0, GT_TriggerType=0; edm::Handle<FEDRawDataCollection> allFedRawData; int gtFedDataSize = 0; int ECALDCC_L1A_MostFreqId = -1; int ECALDCC_OrbitNumber_MostFreqId = -1; int ECALDCC_BunchCrossing_MostFreqId = -1; int ECALDCC_TriggerType_MostFreqId = -1; if ( e.getByLabel(FEDRawDataCollection_, allFedRawData) ) { // GT FED data const FEDRawData& gtFedData = allFedRawData->FEDData(812); gtFedDataSize = gtFedData.size()/sizeof(uint64_t); if ( gtFedDataSize > 0 ) { FEDHeader header(gtFedData.data()); #define H_L1_MASK 0xFFFFFF #define H_ORBITCOUNTER_MASK 0xFFFFFFFF #define H_BX_MASK 0xFFF #define H_TTYPE_MASK 0xF GT_L1A = header.lvl1ID() & H_L1_MASK; GT_OrbitNumber = e.orbitNumber() & H_ORBITCOUNTER_MASK; GT_BunchCrossing = e.bunchCrossing() & H_BX_MASK; GT_TriggerType = e.experimentType() & H_TTYPE_MASK; } else { // use the most frequent among the ECAL FEDs std::map<int,int> ECALDCC_L1A_FreqMap; std::map<int,int> ECALDCC_OrbitNumber_FreqMap; std::map<int,int> ECALDCC_BunchCrossing_FreqMap; std::map<int,int> ECALDCC_TriggerType_FreqMap; int ECALDCC_L1A_MostFreqCounts = 0; int ECALDCC_OrbitNumber_MostFreqCounts = 0; int ECALDCC_BunchCrossing_MostFreqCounts = 0; int ECALDCC_TriggerType_MostFreqCounts = 0; edm::Handle<EcalRawDataCollection> dcchs; if ( e.getByLabel(EcalRawDataCollection_, dcchs) ) { for ( EcalRawDataCollection::const_iterator dcchItr = dcchs->begin(); dcchItr != dcchs->end(); ++dcchItr ) { if ( Numbers::subDet( *dcchItr ) != EcalEndcap ) continue; int ECALDCC_L1A = dcchItr->getLV1(); int ECALDCC_OrbitNumber = dcchItr->getOrbit(); int ECALDCC_BunchCrossing = dcchItr->getBX(); int ECALDCC_TriggerType = dcchItr->getBasicTriggerType(); ++ECALDCC_L1A_FreqMap[ECALDCC_L1A]; ++ECALDCC_OrbitNumber_FreqMap[ECALDCC_OrbitNumber]; ++ECALDCC_BunchCrossing_FreqMap[ECALDCC_BunchCrossing]; ++ECALDCC_TriggerType_FreqMap[ECALDCC_TriggerType]; if ( ECALDCC_L1A_FreqMap[ECALDCC_L1A] > ECALDCC_L1A_MostFreqCounts ) { ECALDCC_L1A_MostFreqCounts = ECALDCC_L1A_FreqMap[ECALDCC_L1A]; ECALDCC_L1A_MostFreqId = ECALDCC_L1A; } if ( ECALDCC_OrbitNumber_FreqMap[ECALDCC_OrbitNumber] > ECALDCC_OrbitNumber_MostFreqCounts ) { ECALDCC_OrbitNumber_MostFreqCounts = ECALDCC_OrbitNumber_FreqMap[ECALDCC_OrbitNumber]; ECALDCC_OrbitNumber_MostFreqId = ECALDCC_OrbitNumber; } if ( ECALDCC_BunchCrossing_FreqMap[ECALDCC_BunchCrossing] > ECALDCC_BunchCrossing_MostFreqCounts ) { ECALDCC_BunchCrossing_MostFreqCounts = ECALDCC_BunchCrossing_FreqMap[ECALDCC_BunchCrossing]; ECALDCC_BunchCrossing_MostFreqId = ECALDCC_BunchCrossing; } if ( ECALDCC_TriggerType_FreqMap[ECALDCC_TriggerType] > ECALDCC_TriggerType_MostFreqCounts ) { ECALDCC_TriggerType_MostFreqCounts = ECALDCC_TriggerType_FreqMap[ECALDCC_TriggerType]; ECALDCC_TriggerType_MostFreqId = ECALDCC_TriggerType; } } } else { edm::LogWarning("EERawDataTask") << EcalRawDataCollection_ << " not available"; } } // ECAL endcap FEDs int EEFirstFED[2]; EEFirstFED[0] = 601; // EE- EEFirstFED[1] = 646; // EE+ for(int zside=0; zside<2; zside++) { int firstFedOnSide=EEFirstFED[zside]; for(int i=0; i<9; i++) { const FEDRawData& fedData = allFedRawData->FEDData(firstFedOnSide+i); int length = fedData.size()/sizeof(uint64_t); if ( length > 0 ) { uint64_t * pData = (uint64_t *)(fedData.data()); uint64_t * fedTrailer = pData + (length - 1); bool crcError = (*fedTrailer >> 2 ) & 0x1; if (crcError) meEECRCErrors_->Fill( i+1 ); } } } } else { edm::LogWarning("EERawDataTask") << FEDRawDataCollection_ << " not available"; } edm::Handle<EcalRawDataCollection> dcchs; if ( e.getByLabel(EcalRawDataCollection_, dcchs) ) { for ( EcalRawDataCollection::const_iterator dcchItr = dcchs->begin(); dcchItr != dcchs->end(); ++dcchItr ) { if ( Numbers::subDet( *dcchItr ) != EcalEndcap ) continue; int ism = Numbers::iSM( *dcchItr, EcalEndcap ); float xism = ism+0.5; int ECALDCC_runNumber = dcchItr->getRunNumber(); int ECALDCC_L1A = dcchItr->getLV1(); int ECALDCC_OrbitNumber = dcchItr->getOrbit(); int ECALDCC_BunchCrossing = dcchItr->getBX(); int ECALDCC_TriggerType = dcchItr->getBasicTriggerType(); if ( evt_runNumber != ECALDCC_runNumber ) meEERunNumberErrors_->Fill( xism ); if ( gtFedDataSize > 0 ) { if ( GT_L1A != ECALDCC_L1A ) meEEL1ADCCErrors_->Fill( xism ); if ( GT_BunchCrossing != ECALDCC_BunchCrossing ) meEEBunchCrossingDCCErrors_->Fill( xism ); if ( GT_TriggerType != ECALDCC_TriggerType ) meEETriggerTypeErrors_->Fill ( xism ); } else { if ( ECALDCC_L1A_MostFreqId != ECALDCC_L1A ) meEEL1ADCCErrors_->Fill( xism ); if ( ECALDCC_BunchCrossing_MostFreqId != ECALDCC_BunchCrossing ) meEEBunchCrossingDCCErrors_->Fill( xism ); if ( ECALDCC_TriggerType_MostFreqId != ECALDCC_TriggerType ) meEETriggerTypeErrors_->Fill ( xism ); } if ( gtFedDataSize > 0 ) { if ( GT_OrbitNumber != ECALDCC_OrbitNumber ) meEEOrbitNumberErrors_->Fill ( xism ); } else { if ( ECALDCC_OrbitNumber_MostFreqId != ECALDCC_OrbitNumber ) meEEOrbitNumberErrors_->Fill ( xism ); } // DCC vs. FE,TCC, SRP syncronization const std::vector<short> feBxs = dcchItr->getFEBxs(); const std::vector<short> tccBx = dcchItr->getTCCBx(); const short srpBx = dcchItr->getSRPBx(); const std::vector<short> status = dcchItr->getFEStatus(); std::vector<int> BxSynchStatus; BxSynchStatus.reserve((int)feBxs.size()); for(int fe=0; fe<(int)feBxs.size(); fe++) { // do not consider desynch errors if the DCC detected them if( ( status[fe] == 10 || status[fe] == 11 )) continue; if(feBxs[fe] != ECALDCC_BunchCrossing && feBxs[fe] != -1 && ECALDCC_BunchCrossing != -1) { meEEBunchCrossingFEErrors_->Fill( xism, 1/(float)feBxs.size()); BxSynchStatus[fe] = 0; } else BxSynchStatus[fe] = 1; } // vector of TCC channels has 4 elements for both EB and EE. // EB uses [0], EE uses [0-3]. if(tccBx.size() == MAX_TCC_SIZE) { for(int tcc=0; tcc<MAX_TCC_SIZE; tcc++) { if(tccBx[tcc] != ECALDCC_BunchCrossing && tccBx[tcc] != -1 && ECALDCC_BunchCrossing != -1) meEEBunchCrossingTCCErrors_->Fill( xism, 1/(float)tccBx.size()); } } if(srpBx != ECALDCC_BunchCrossing && srpBx != -1 && ECALDCC_BunchCrossing != -1) meEEBunchCrossingSRPErrors_->Fill( xism ); const std::vector<short> feLv1 = dcchItr->getFELv1(); const std::vector<short> tccLv1 = dcchItr->getTCCLv1(); const short srpLv1 = dcchItr->getSRPLv1(); // Lv1 in TCC,SRP,FE are limited to 12 bits(LSB), while in the DCC Lv1 has 24 bits int ECALDCC_L1A_12bit = ECALDCC_L1A & 0xfff; int feLv1Offset = ( e.isRealData() ) ? 1 : 0; // in MC FE Lv1A counter starts from 1, in data from 0 for(int fe=0; fe<(int)feLv1.size(); fe++) { // do not consider desynch errors if the DCC detected them if( ( status[fe] == 9 || status[fe] == 11 )) continue; if(feLv1[fe]+feLv1Offset != ECALDCC_L1A_12bit && feLv1[fe] != -1 && ECALDCC_L1A_12bit - 1 != -1) { meEEL1AFEErrors_->Fill( xism, 1/(float)feLv1.size()); meEESynchronizationErrorsByLumi_->Fill( xism, 1/(float)feLv1.size() ); } else if( BxSynchStatus[fe]==0 ) meEESynchronizationErrorsByLumi_->Fill( xism, 1/(float)feLv1.size() ); } // vector of TCC channels has 4 elements for both EB and EE. // EB uses [0], EE uses [0-3]. if(tccLv1.size() == MAX_TCC_SIZE) { for(int tcc=0; tcc<MAX_TCC_SIZE; tcc++) { if(tccLv1[tcc] != ECALDCC_L1A_12bit && tccLv1[tcc] != -1 && ECALDCC_L1A_12bit - 1 != -1) meEEL1ATCCErrors_->Fill( xism, 1/(float)tccLv1.size()); } } if(srpLv1 != ECALDCC_L1A_12bit && srpLv1 != -1 && ECALDCC_L1A_12bit - 1 != -1) meEEL1ASRPErrors_->Fill( xism ); if ( gtFedDataSize > 0 ) { if ( GT_OrbitNumber != ECALDCC_OrbitNumber ) meEEOrbitNumberErrors_->Fill ( xism ); } else { if ( ECALDCC_OrbitNumber_MostFreqId != ECALDCC_OrbitNumber ) meEEOrbitNumberErrors_->Fill ( xism ); } float evtType = dcchItr->getRunType(); if ( evtType < 0 || evtType > 22 ) evtType = -1; if ( ECALDCC_BunchCrossing < calibrationBX_ ) meEEEventTypePreCalibrationBX_->Fill( evtType+0.5, 1./18. ); if ( ECALDCC_BunchCrossing == calibrationBX_ ) meEEEventTypeCalibrationBX_->Fill( evtType+0.5, 1./18. ); if ( ECALDCC_BunchCrossing > calibrationBX_ ) meEEEventTypePostCalibrationBX_->Fill ( evtType+0.5, 1./18. ); if ( ECALDCC_BunchCrossing != calibrationBX_ ) { if ( evtType != EcalDCCHeaderBlock::COSMIC && evtType != EcalDCCHeaderBlock::MTCC && evtType != EcalDCCHeaderBlock::COSMICS_GLOBAL && evtType != EcalDCCHeaderBlock::PHYSICS_GLOBAL && evtType != EcalDCCHeaderBlock::COSMICS_LOCAL && evtType != EcalDCCHeaderBlock::PHYSICS_LOCAL && evtType != -1 ) meEECalibrationEventErrors_->Fill( xism ); } else { if ( evtType == EcalDCCHeaderBlock::COSMIC || evtType == EcalDCCHeaderBlock::MTCC || evtType == EcalDCCHeaderBlock::COSMICS_GLOBAL || evtType == EcalDCCHeaderBlock::PHYSICS_GLOBAL || evtType == EcalDCCHeaderBlock::COSMICS_LOCAL || evtType == EcalDCCHeaderBlock::PHYSICS_LOCAL ) meEECalibrationEventErrors_->Fill( xism ); } } } else { edm::LogWarning("EERawDataTask") << EcalRawDataCollection_ << " not available"; } }
void EERawDataTask::beginJob | ( | void | ) | [protected, virtual] |
BeginJob.
Reimplemented from edm::EDAnalyzer.
Definition at line 73 of file EERawDataTask.cc.
References dqmStore_, ievt_, prefixME_, DQMStore::rmdir(), and DQMStore::setCurrentFolder().
void EERawDataTask::beginLuminosityBlock | ( | const edm::LuminosityBlock & | lumiBlock, |
const edm::EventSetup & | iSetup | ||
) | [protected, virtual] |
BeginLuminosityBlock.
Reimplemented from edm::EDAnalyzer.
Definition at line 84 of file EERawDataTask.cc.
References meEESynchronizationErrorsByLumi_, and MonitorElement::Reset().
void EERawDataTask::beginRun | ( | const edm::Run & | r, |
const edm::EventSetup & | c | ||
) | [protected, virtual] |
BeginRun.
Reimplemented from edm::EDAnalyzer.
Definition at line 90 of file EERawDataTask.cc.
References Numbers::initGeometry(), mergeRuns_, and reset().
{ Numbers::initGeometry(c, false); if ( ! mergeRuns_ ) this->reset(); }
void EERawDataTask::cleanup | ( | void | ) | [protected] |
Cleanup.
Definition at line 303 of file EERawDataTask.cc.
References dqmStore_, MonitorElement::getName(), init_, meEEBunchCrossingDCCErrors_, meEEBunchCrossingFEErrors_, meEEBunchCrossingSRPErrors_, meEEBunchCrossingTCCErrors_, meEECalibrationEventErrors_, meEECRCErrors_, meEEEventTypeCalibrationBX_, meEEEventTypePostCalibrationBX_, meEEEventTypePreCalibrationBX_, meEEL1ADCCErrors_, meEEL1AFEErrors_, meEEL1ASRPErrors_, meEEL1ATCCErrors_, meEEOrbitNumberErrors_, meEERunNumberErrors_, meEESynchronizationErrorsByLumi_, meEETriggerTypeErrors_, prefixME_, DQMStore::removeElement(), and DQMStore::setCurrentFolder().
Referenced by endJob().
{ if ( ! init_ ) return; if ( dqmStore_ ) { dqmStore_->setCurrentFolder(prefixME_ + "/EERawDataTask"); if ( meEEEventTypePreCalibrationBX_ ) dqmStore_->removeElement( meEEEventTypePreCalibrationBX_->getName() ); meEEEventTypePreCalibrationBX_ = 0; if ( meEEEventTypeCalibrationBX_ ) dqmStore_->removeElement( meEEEventTypeCalibrationBX_->getName() ); meEEEventTypeCalibrationBX_ = 0; if ( meEEEventTypePostCalibrationBX_ ) dqmStore_->removeElement( meEEEventTypePostCalibrationBX_->getName() ); meEEEventTypePostCalibrationBX_ = 0; if ( meEECRCErrors_ ) dqmStore_->removeElement( meEECRCErrors_->getName() ); meEECRCErrors_ = 0; if ( meEERunNumberErrors_ ) dqmStore_->removeElement( meEERunNumberErrors_->getName() ); meEERunNumberErrors_ = 0; if ( meEEOrbitNumberErrors_ ) dqmStore_->removeElement( meEEOrbitNumberErrors_->getName() ); meEEOrbitNumberErrors_ = 0; if ( meEETriggerTypeErrors_ ) dqmStore_->removeElement( meEETriggerTypeErrors_->getName() ); meEETriggerTypeErrors_ = 0; if ( meEECalibrationEventErrors_ ) dqmStore_->removeElement( meEECalibrationEventErrors_->getName() ); meEECalibrationEventErrors_ = 0; if ( meEEL1ADCCErrors_ ) dqmStore_->removeElement( meEEL1ADCCErrors_->getName() ); meEEL1ADCCErrors_ = 0; if ( meEEBunchCrossingDCCErrors_ ) dqmStore_->removeElement( meEEBunchCrossingDCCErrors_->getName() ); meEEBunchCrossingDCCErrors_ = 0; if ( meEEL1AFEErrors_ ) dqmStore_->removeElement( meEEL1AFEErrors_->getName() ); meEEL1AFEErrors_ = 0; if ( meEEBunchCrossingFEErrors_ ) dqmStore_->removeElement( meEEBunchCrossingFEErrors_->getName() ); meEEBunchCrossingFEErrors_ = 0; if ( meEEL1ATCCErrors_ ) dqmStore_->removeElement( meEEL1ATCCErrors_->getName() ); meEEL1ATCCErrors_ = 0; if ( meEEBunchCrossingTCCErrors_ ) dqmStore_->removeElement( meEEBunchCrossingTCCErrors_->getName() ); meEEBunchCrossingTCCErrors_ = 0; if ( meEEL1ASRPErrors_ ) dqmStore_->removeElement( meEEL1ASRPErrors_->getName() ); meEEL1ASRPErrors_ = 0; if ( meEEBunchCrossingSRPErrors_ ) dqmStore_->removeElement( meEEBunchCrossingSRPErrors_->getName() ); meEEBunchCrossingSRPErrors_ = 0; if ( meEESynchronizationErrorsByLumi_ ) dqmStore_->removeElement( meEESynchronizationErrorsByLumi_->getName() ); meEESynchronizationErrorsByLumi_ = 0; } init_ = false; }
void EERawDataTask::endJob | ( | void | ) | [protected, virtual] |
EndJob.
Reimplemented from edm::EDAnalyzer.
Definition at line 370 of file EERawDataTask.cc.
References cleanup(), enableCleanup_, and ievt_.
{ edm::LogInfo("EERawDataTask") << "analyzed " << ievt_ << " events"; if ( enableCleanup_ ) this->cleanup(); }
void EERawDataTask::endLuminosityBlock | ( | const edm::LuminosityBlock & | lumiBlock, |
const edm::EventSetup & | iSetup | ||
) | [protected, virtual] |
EndLuminosityBlock.
Reimplemented from edm::EDAnalyzer.
Definition at line 367 of file EERawDataTask.cc.
{ }
void EERawDataTask::endRun | ( | const edm::Run & | r, |
const edm::EventSetup & | c | ||
) | [protected, virtual] |
void EERawDataTask::reset | ( | void | ) | [protected] |
Reset.
Definition at line 102 of file EERawDataTask.cc.
References meEEBunchCrossingDCCErrors_, meEEBunchCrossingFEErrors_, meEEBunchCrossingSRPErrors_, meEEBunchCrossingTCCErrors_, meEECalibrationEventErrors_, meEECRCErrors_, meEEEventTypeCalibrationBX_, meEEEventTypePostCalibrationBX_, meEEEventTypePreCalibrationBX_, meEEL1ADCCErrors_, meEEL1AFEErrors_, meEEL1ASRPErrors_, meEEL1ATCCErrors_, meEEOrbitNumberErrors_, meEERunNumberErrors_, meEESynchronizationErrorsByLumi_, meEETriggerTypeErrors_, and MonitorElement::Reset().
Referenced by beginRun().
{ if ( meEEEventTypePreCalibrationBX_ ) meEEEventTypePreCalibrationBX_->Reset(); if ( meEEEventTypeCalibrationBX_ ) meEEEventTypeCalibrationBX_->Reset(); if ( meEEEventTypePostCalibrationBX_ ) meEEEventTypePostCalibrationBX_->Reset(); if ( meEECRCErrors_ ) meEECRCErrors_->Reset(); if ( meEERunNumberErrors_ ) meEERunNumberErrors_->Reset(); if ( meEEOrbitNumberErrors_ ) meEEOrbitNumberErrors_->Reset(); if ( meEETriggerTypeErrors_ ) meEETriggerTypeErrors_->Reset(); if ( meEECalibrationEventErrors_ ) meEECalibrationEventErrors_->Reset(); if ( meEEL1ADCCErrors_ ) meEEL1ADCCErrors_->Reset(); if ( meEEBunchCrossingDCCErrors_ ) meEEBunchCrossingDCCErrors_->Reset(); if ( meEEL1AFEErrors_ ) meEEL1AFEErrors_->Reset(); if ( meEEBunchCrossingFEErrors_ ) meEEBunchCrossingFEErrors_->Reset(); if ( meEEL1ATCCErrors_ ) meEEL1ATCCErrors_->Reset(); if ( meEEBunchCrossingTCCErrors_ ) meEEBunchCrossingTCCErrors_->Reset(); if ( meEEL1ASRPErrors_ ) meEEL1ASRPErrors_->Reset(); if ( meEEBunchCrossingSRPErrors_ ) meEEBunchCrossingSRPErrors_->Reset(); if ( meEESynchronizationErrorsByLumi_ ) meEESynchronizationErrorsByLumi_->Reset(); }
void EERawDataTask::setup | ( | void | ) | [protected] |
Setup.
Definition at line 124 of file EERawDataTask.cc.
References EcalDCCHeaderBlock::BEAMH2, EcalDCCHeaderBlock::BEAMH4, DQMStore::book1D(), EcalDCCHeaderBlock::COSMIC, EcalDCCHeaderBlock::COSMICS_GLOBAL, EcalDCCHeaderBlock::COSMICS_LOCAL, dqmStore_, EcalDCCHeaderBlock::HALO_GLOBAL, EcalDCCHeaderBlock::HALO_LOCAL, trackerHits::histo, i, init_, EcalDCCHeaderBlock::LASER_DELAY_SCAN, EcalDCCHeaderBlock::LASER_GAP, EcalDCCHeaderBlock::LASER_POWER_SCAN, EcalDCCHeaderBlock::LASER_STD, EcalDCCHeaderBlock::LED_GAP, EcalDCCHeaderBlock::LED_STD, meEEBunchCrossingDCCErrors_, meEEBunchCrossingFEErrors_, meEEBunchCrossingSRPErrors_, meEEBunchCrossingTCCErrors_, meEECalibrationEventErrors_, meEECRCErrors_, meEEEventTypeCalibrationBX_, meEEEventTypePostCalibrationBX_, meEEEventTypePreCalibrationBX_, meEEL1ADCCErrors_, meEEL1AFEErrors_, meEEL1ASRPErrors_, meEEL1ATCCErrors_, meEEOrbitNumberErrors_, meEERunNumberErrors_, meEESynchronizationErrorsByLumi_, meEETriggerTypeErrors_, EcalDCCHeaderBlock::MTCC, EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, EcalDCCHeaderBlock::PEDESTAL_GAP, EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, EcalDCCHeaderBlock::PEDESTAL_STD, EcalDCCHeaderBlock::PHYSICS_GLOBAL, EcalDCCHeaderBlock::PHYSICS_LOCAL, prefixME_, Numbers::sEE(), MonitorElement::setBinLabel(), DQMStore::setCurrentFolder(), MonitorElement::setLumiFlag(), EcalDCCHeaderBlock::TESTPULSE_GAP, EcalDCCHeaderBlock::TESTPULSE_MGPA, and EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM.
Referenced by analyze().
{ init_ = true; char histo[200]; if ( dqmStore_ ) { dqmStore_->setCurrentFolder(prefixME_ + "/EERawDataTask"); sprintf(histo, "EERDT event type pre calibration BX"); meEEEventTypePreCalibrationBX_ = dqmStore_->book1D(histo, histo, 31, -1., 30.); meEEEventTypePreCalibrationBX_->setBinLabel(1, "UNKNOWN", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMIC, "COSMIC", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH4, "BEAMH4", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH2, "BEAMH2", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::MTCC, "MTCC", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_STD, "LASER_STD", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_POWER_SCAN, "LASER_POWER_SCAN", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_DELAY_SCAN, "LASER_DELAY_SCAN", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM, "TESTPULSE_SCAN_MEM", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_MGPA, "TESTPULSE_MGPA", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_STD, "PEDESTAL_STD", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, "PEDESTAL_OFFSET_SCAN", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, "PEDESTAL_25NS_SCAN", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_STD, "LED_STD", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_GLOBAL, "PHYSICS_GLOBAL", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_GLOBAL, "COSMICS_GLOBAL", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_GLOBAL, "HALO_GLOBAL", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_GAP, "LASER_GAP", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_GAP, "TESTPULSE_GAP"); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_GAP, "PEDESTAL_GAP"); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_GAP, "LED_GAP", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_LOCAL, "PHYSICS_LOCAL", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_LOCAL, "COSMICS_LOCAL", 1); meEEEventTypePreCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_LOCAL, "HALO_LOCAL", 1); sprintf(histo, "EERDT event type calibration BX"); meEEEventTypeCalibrationBX_ = dqmStore_->book1D(histo, histo, 31, -1., 30.); meEEEventTypeCalibrationBX_->setBinLabel(1, "UNKNOWN", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMIC, "COSMIC", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH4, "BEAMH4", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH2, "BEAMH2", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::MTCC, "MTCC", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_STD, "LASER_STD", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_POWER_SCAN, "LASER_POWER_SCAN", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_DELAY_SCAN, "LASER_DELAY_SCAN", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM, "TESTPULSE_SCAN_MEM", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_MGPA, "TESTPULSE_MGPA", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_STD, "PEDESTAL_STD", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, "PEDESTAL_OFFSET_SCAN", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, "PEDESTAL_25NS_SCAN", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_STD, "LED_STD", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_GLOBAL, "PHYSICS_GLOBAL", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_GLOBAL, "COSMICS_GLOBAL", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_GLOBAL, "HALO_GLOBAL", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_GAP, "LASER_GAP", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_GAP, "TESTPULSE_GAP"); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_GAP, "PEDESTAL_GAP"); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_GAP, "LED_GAP", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_LOCAL, "PHYSICS_LOCAL", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_LOCAL, "COSMICS_LOCAL", 1); meEEEventTypeCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_LOCAL, "HALO_LOCAL", 1); sprintf(histo, "EERDT event type post calibration BX"); meEEEventTypePostCalibrationBX_ = dqmStore_->book1D(histo, histo, 31, -1., 30.); meEEEventTypePostCalibrationBX_->setBinLabel(1, "UNKNOWN", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMIC, "COSMIC", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH4, "BEAMH4", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::BEAMH2, "BEAMH2", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::MTCC, "MTCC", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_STD, "LASER_STD", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_POWER_SCAN, "LASER_POWER_SCAN", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_DELAY_SCAN, "LASER_DELAY_SCAN", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_SCAN_MEM, "TESTPULSE_SCAN_MEM", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_MGPA, "TESTPULSE_MGPA", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_STD, "PEDESTAL_STD", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_OFFSET_SCAN, "PEDESTAL_OFFSET_SCAN", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_25NS_SCAN, "PEDESTAL_25NS_SCAN", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_STD, "LED_STD", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_GLOBAL, "PHYSICS_GLOBAL", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_GLOBAL, "COSMICS_GLOBAL", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_GLOBAL, "HALO_GLOBAL", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LASER_GAP, "LASER_GAP", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::TESTPULSE_GAP, "TESTPULSE_GAP"); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PEDESTAL_GAP, "PEDESTAL_GAP"); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::LED_GAP, "LED_GAP", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::PHYSICS_LOCAL, "PHYSICS_LOCAL", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::COSMICS_LOCAL, "COSMICS_LOCAL", 1); meEEEventTypePostCalibrationBX_->setBinLabel(2+EcalDCCHeaderBlock::HALO_LOCAL, "HALO_LOCAL", 1); sprintf(histo, "EERDT CRC errors"); meEECRCErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEECRCErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT run number errors"); meEERunNumberErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEERunNumberErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT orbit number errors"); meEEOrbitNumberErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEOrbitNumberErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT trigger type errors"); meEETriggerTypeErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEETriggerTypeErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT calibration event errors"); meEECalibrationEventErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEECalibrationEventErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT L1A DCC errors"); meEEL1ADCCErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEL1ADCCErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT bunch crossing DCC errors"); meEEBunchCrossingDCCErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEBunchCrossingDCCErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT L1A FE errors"); meEEL1AFEErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEL1AFEErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT bunch crossing FE errors"); meEEBunchCrossingFEErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEBunchCrossingFEErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT L1A TCC errors"); meEEL1ATCCErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEL1ATCCErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT bunch crossing TCC errors"); meEEBunchCrossingTCCErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEBunchCrossingTCCErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT L1A SRP errors"); meEEL1ASRPErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEL1ASRPErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT bunch crossing SRP errors"); meEEBunchCrossingSRPErrors_ = dqmStore_->book1D(histo, histo, 18, 1, 19); for (int i = 0; i < 18; i++) { meEEBunchCrossingSRPErrors_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } sprintf(histo, "EERDT FE synchronization errors by lumi"); meEESynchronizationErrorsByLumi_ = dqmStore_->book1D(histo, histo, 18, 1, 19); meEESynchronizationErrorsByLumi_->setLumiFlag(); for (int i = 0; i < 18; i++) { meEESynchronizationErrorsByLumi_->setBinLabel(i+1, Numbers::sEE(i+1).c_str(), 1); } } }
float EERawDataTask::calibrationBX_ [private] |
Definition at line 98 of file EERawDataTask.h.
Referenced by analyze(), and EERawDataTask().
DQMStore* EERawDataTask::dqmStore_ [private] |
Definition at line 66 of file EERawDataTask.h.
Referenced by beginJob(), cleanup(), EERawDataTask(), and setup().
Definition at line 75 of file EERawDataTask.h.
Referenced by analyze(), and EERawDataTask().
bool EERawDataTask::enableCleanup_ [private] |
Definition at line 70 of file EERawDataTask.h.
Referenced by EERawDataTask(), and endJob().
Definition at line 74 of file EERawDataTask.h.
Referenced by analyze(), and EERawDataTask().
int EERawDataTask::ievt_ [private] |
Definition at line 64 of file EERawDataTask.h.
Referenced by analyze(), beginJob(), and endJob().
bool EERawDataTask::init_ [private] |
Definition at line 96 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), and setup().
Definition at line 86 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 88 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 92 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 90 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 84 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
MonitorElement* EERawDataTask::meEECRCErrors_ [private] |
Definition at line 77 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 79 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 80 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 78 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
MonitorElement* EERawDataTask::meEEL1ADCCErrors_ [private] |
Definition at line 85 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
MonitorElement* EERawDataTask::meEEL1AFEErrors_ [private] |
Definition at line 87 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
MonitorElement* EERawDataTask::meEEL1ASRPErrors_ [private] |
Definition at line 91 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
MonitorElement* EERawDataTask::meEEL1ATCCErrors_ [private] |
Definition at line 89 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 82 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 81 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 94 of file EERawDataTask.h.
Referenced by analyze(), beginLuminosityBlock(), cleanup(), EERawDataTask(), reset(), and setup().
Definition at line 83 of file EERawDataTask.h.
Referenced by analyze(), cleanup(), EERawDataTask(), reset(), and setup().
bool EERawDataTask::mergeRuns_ [private] |
Definition at line 72 of file EERawDataTask.h.
Referenced by beginRun(), and EERawDataTask().
std::string EERawDataTask::prefixME_ [private] |
Definition at line 68 of file EERawDataTask.h.
Referenced by beginJob(), cleanup(), EERawDataTask(), and setup().