![]() |
![]() |
#include <Transform3DPJ.h>
Public Types | |
enum | ETransform3DMatrixIndex { kXX = 0, kXY = 1, kXZ = 2, kDX = 3, kYX = 4, kYY = 5, kYZ = 6, kDY = 7, kZX = 8, kZY = 9, kZZ = 10, kDZ = 11 } |
typedef PositionVector3D < Cartesian3D< double > , DefaultCoordinateSystemTag > | Point |
typedef DisplacementVector3D < Cartesian3D< double > , DefaultCoordinateSystemTag > | Vector |
Public Member Functions | |
template<class IT > | |
void | GetComponents (IT begin, IT end) const |
template<class IT > | |
void | GetComponents (IT begin) const |
void | GetComponents (double &xx, double &xy, double &xz, double &dx, double &yx, double &yy, double &yz, double &dy, double &zx, double &zy, double &zz, double &dz) const |
void | GetDecomposition (Rotation3D &r, Vector &v) const |
template<class ForeignMatrix > | |
void | GetTransformMatrix (ForeignMatrix &m) const |
Transform3DPJ | Inverse () const |
void | Invert () |
bool | operator!= (const Transform3DPJ &rhs) const |
Plane3D | operator() (const Plane3D &plane) const |
template<class CoordSystem > | |
LorentzVector< CoordSystem > | operator() (const LorentzVector< CoordSystem > &q) const |
Point | operator() (const Point &p) const |
Vector | operator() (const Vector &v) const |
template<class CoordSystem > | |
PositionVector3D< CoordSystem > | operator() (const PositionVector3D< CoordSystem > &p) const |
template<class CoordSystem > | |
DisplacementVector3D< CoordSystem > | operator() (const DisplacementVector3D< CoordSystem > &v) const |
template<class AVector > | |
AVector | operator* (const AVector &v) const |
Transform3DPJ | operator* (const Transform3DPJ &t) const |
Transform3DPJ & | operator*= (const Transform3DPJ &t) |
template<class ForeignMatrix > | |
Transform3DPJ & | operator= (const ForeignMatrix &m) |
bool | operator== (const Transform3DPJ &rhs) const |
template<class IT > | |
void | SetComponents (IT begin, IT end) |
void | SetComponents (double xx, double xy, double xz, double dx, double yx, double yy, double yz, double dy, double zx, double zy, double zz, double dz) |
template<class ForeignMatrix > | |
void | SetTransformMatrix (const ForeignMatrix &m) |
template<class CoordSystem , class Tag1 , class Tag2 > | |
void | Transform (const PositionVector3D< CoordSystem, Tag1 > &p1, PositionVector3D< CoordSystem, Tag2 > &p2) const |
template<class CoordSystem , class Tag1 , class Tag2 > | |
void | Transform (const DisplacementVector3D< CoordSystem, Tag1 > &v1, DisplacementVector3D< CoordSystem, Tag2 > &v2) const |
Transform3DPJ (double xx, double xy, double xz, double dx, double yx, double yy, double yz, double dy, double zx, double zy, double zz, double dz) | |
Transform3DPJ (const RotationX &r) | |
Transform3DPJ (const EulerAngles &r) | |
template<class IT > | |
Transform3DPJ (IT begin, IT end) | |
Transform3DPJ (const Point &fr0, const Point &fr1, const Point &fr2, const Point &to0, const Point &to1, const Point &to2) | |
Transform3DPJ (const Quaternion &r) | |
Transform3DPJ (const RotationY &r) | |
Transform3DPJ (const Rotation3D &r, const Vector &v) | |
Transform3DPJ (const AxisAngle &r) | |
Transform3DPJ () | |
template<class ForeignMatrix > | |
Transform3DPJ (const ForeignMatrix &m) | |
Transform3DPJ (const RotationZ &r) | |
template<class ARotation , class CoordSystem , class Tag > | |
Transform3DPJ (const DisplacementVector3D< CoordSystem, Tag > &v, const ARotation &r) | |
template<class ARotation , class CoordSystem , class Tag > | |
Transform3DPJ (const ARotation &r, const DisplacementVector3D< CoordSystem, Tag > &v) | |
template<class CoordSystem , class Tag > | |
Transform3DPJ (const DisplacementVector3D< CoordSystem, Tag > &v) | |
Transform3DPJ (const Rotation3D &r) | |
Transform3DPJ (const Vector &v) | |
Transform3DPJ (const Vector &v, const Rotation3D &r) | |
Protected Member Functions | |
void | AssignFrom (const Rotation3D &r, const Vector &v) |
void | AssignFrom (const Rotation3D &r) |
void | AssignFrom (const Vector &v) |
void | SetIdentity () |
Private Attributes | |
double | fM [12] |
Basic 3D Transformation class describing a rotation and then a translation The internal data are a rotation data and a 3D vector data and they can be represented like a 3x4 matrix The class has a template parameter the coordinate system tag of the reference system to which the transformatioon will be applied. For example for transforming from global to local coordinate systems, the transfrom3D has to be instantiated with the coordinate of the traget system
Definition at line 60 of file Transform3DPJ.h.
typedef PositionVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > ROOT::Math::Transform3DPJ::Point |
Definition at line 66 of file Transform3DPJ.h.
typedef DisplacementVector3D<Cartesian3D<double>, DefaultCoordinateSystemTag > ROOT::Math::Transform3DPJ::Vector |
Definition at line 65 of file Transform3DPJ.h.
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | ) | [inline] |
Default constructor (identy rotation) + zero translation
Definition at line 80 of file Transform3DPJ.h.
References SetIdentity().
{ SetIdentity(); }
Construct given a pair of pointers or iterators defining the beginning and end of an array of 12 Scalars
Definition at line 90 of file Transform3DPJ.h.
References SetComponents().
{ SetComponents(begin,end); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const Rotation3D & | r, |
const Vector & | v | ||
) | [inline] |
Construct from a rotation and then a translation described by a Vector
Definition at line 98 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom( r, v ); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const Vector & | v, |
const Rotation3D & | r | ||
) | [inline] |
Construct from a translation and then a rotation (inverse assignment)
Definition at line 105 of file Transform3DPJ.h.
References AssignFrom(), and csvReporter::r.
{ // is equivalent from having first the rotation and then the translation vector rotated AssignFrom( r, r(v) ); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const Rotation3D & | r | ) | [inline, explicit] |
Construct from a 3D Rotation only with zero translation
Definition at line 114 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(r); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const AxisAngle & | r | ) | [inline, explicit] |
Definition at line 118 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(Rotation3D(r)); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const EulerAngles & | r | ) | [inline, explicit] |
Definition at line 121 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(Rotation3D(r)); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const Quaternion & | r | ) | [inline, explicit] |
Definition at line 124 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(Rotation3D(r)); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const RotationX & | r | ) | [inline, explicit] |
Definition at line 128 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(Rotation3D(r)); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const RotationY & | r | ) | [inline, explicit] |
Definition at line 131 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(Rotation3D(r)); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const RotationZ & | r | ) | [inline, explicit] |
Definition at line 134 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(Rotation3D(r)); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const DisplacementVector3D< CoordSystem, Tag > & | v | ) | [inline, explicit] |
Construct from a translation only, represented by any DisplacementVector3D and with an identity rotation
Definition at line 143 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(Vector(v.X(),v.Y(),v.Z())); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const Vector & | v | ) | [inline, explicit] |
Construct from a translation only, represented by a Cartesian 3D Vector, and with an identity rotation
Definition at line 150 of file Transform3DPJ.h.
References AssignFrom().
{ AssignFrom(v); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const ARotation & | r, |
const DisplacementVector3D< CoordSystem, Tag > & | v | ||
) | [inline] |
Construct from a rotation (any rotation object) and then a translation (represented by any DisplacementVector) The requirements on the rotation and vector objects are that they can be transformed in a Rotation3D class and in a Vector
Definition at line 165 of file Transform3DPJ.h.
References AssignFrom().
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const DisplacementVector3D< CoordSystem, Tag > & | v, |
const ARotation & | r | ||
) | [inline] |
Construct from a translation (using any type of DisplacementVector ) and then a rotation (any rotation object). Requirement on the rotation and vector objects are that they can be transformed in a Rotation3D class and in a Vector
Definition at line 176 of file Transform3DPJ.h.
References AssignFrom().
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const Point & | fr0, |
const Point & | fr1, | ||
const Point & | fr2, | ||
const Point & | to0, | ||
const Point & | to1, | ||
const Point & | to2 | ||
) |
Construct transformation from one coordinate system defined by three points (origin + two axis) to a new coordinate system defined by other three points (origin + axis)
fr0 | point defining origin of original reference system |
fr1 | point defining first axis of original reference system |
fr2 | point defining second axis of original reference system |
to0 | point defining origin of transformed reference system |
to1 | point defining first axis transformed reference system |
to2 | point defining second axis transformed reference system |
Definition at line 40 of file Transform3DPJ.cc.
References benchmark_cfg::cerr, SetComponents(), and SetIdentity().
{ // takes impl. from CLHEP ( E.Chernyaev). To be checked XYZVector x1,y1,z1, x2,y2,z2; x1 = (fr1 - fr0).Unit(); y1 = (fr2 - fr0).Unit(); x2 = (to1 - to0).Unit(); y2 = (to2 - to0).Unit(); // C H E C K A N G L E S double cos1, cos2; cos1 = x1.Dot(y1); cos2 = x2.Dot(y2); if (std::fabs(1.0-cos1) <= 0.000001 || std::fabs(1.0-cos2) <= 0.000001) { std::cerr << "Transform3DPJ: Error : zero angle between axes" << std::endl; SetIdentity(); } else { if (std::fabs(cos1-cos2) > 0.000001) { std::cerr << "Transform3DPJ: Warning: angles between axes are not equal" << std::endl; } // F I N D R O T A T I O N M A T R I X z1 = (x1.Cross(y1)).Unit(); y1 = z1.Cross(x1); z2 = (x2.Cross(y2)).Unit(); y2 = z2.Cross(x2); double x1x = x1.X(), x1y = x1.Y(), x1z = x1.Z(); double y1x = y1.X(), y1y = y1.Y(), y1z = y1.Z(); double z1x = z1.X(), z1y = z1.Y(), z1z = z1.Z(); double detxx = (y1y*z1z - z1y*y1z); double detxy = -(y1x*z1z - z1x*y1z); double detxz = (y1x*z1y - z1x*y1y); double detyx = -(x1y*z1z - z1y*x1z); double detyy = (x1x*z1z - z1x*x1z); double detyz = -(x1x*z1y - z1x*x1y); double detzx = (x1y*y1z - y1y*x1z); double detzy = -(x1x*y1z - y1x*x1z); double detzz = (x1x*y1y - y1x*x1y); double x2x = x2.X(), x2y = x2.Y(), x2z = x2.Z(); double y2x = y2.X(), y2y = y2.Y(), y2z = y2.Z(); double z2x = z2.X(), z2y = z2.Y(), z2z = z2.Z(); double txx = x2x*detxx + y2x*detyx + z2x*detzx; double txy = x2x*detxy + y2x*detyy + z2x*detzy; double txz = x2x*detxz + y2x*detyz + z2x*detzz; double tyx = x2y*detxx + y2y*detyx + z2y*detzx; double tyy = x2y*detxy + y2y*detyy + z2y*detzy; double tyz = x2y*detxz + y2y*detyz + z2y*detzz; double tzx = x2z*detxx + y2z*detyx + z2z*detzx; double tzy = x2z*detxy + y2z*detyy + z2z*detzy; double tzz = x2z*detxz + y2z*detyz + z2z*detzz; // S E T T R A N S F O R M A T I O N double dx1 = fr0.X(), dy1 = fr0.Y(), dz1 = fr0.Z(); double dx2 = to0.X(), dy2 = to0.Y(), dz2 = to0.Z(); SetComponents(txx, txy, txz, dx2-txx*dx1-txy*dy1-txz*dz1, tyx, tyy, tyz, dy2-tyx*dx1-tyy*dy1-tyz*dz1, tzx, tzy, tzz, dz2-tzx*dx1-tzy*dy1-tzz*dz1); } }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | const ForeignMatrix & | m | ) | [inline, explicit] |
Construct from a linear algebra matrix of size at least 3x4, which must support operator()(i,j) to obtain elements (0,0) thru (2,3). The 3x3 sub-block is assumed to be the rotation part and the translations vector are described by the 4-th column
Definition at line 211 of file Transform3DPJ.h.
References SetComponents().
{ SetComponents(m); }
ROOT::Math::Transform3DPJ::Transform3DPJ | ( | double | xx, |
double | xy, | ||
double | xz, | ||
double | dx, | ||
double | yx, | ||
double | yy, | ||
double | yz, | ||
double | dy, | ||
double | zx, | ||
double | zy, | ||
double | zz, | ||
double | dz | ||
) | [inline] |
Raw constructor from 12 Scalar components
Definition at line 218 of file Transform3DPJ.h.
References SetComponents().
{ SetComponents (xx, xy, xz, dx, yx, yy, yz, dy, zx, zy, zz, dz); }
void ROOT::Math::Transform3DPJ::AssignFrom | ( | const Rotation3D & | r, |
const Vector & | v | ||
) | [protected] |
make transformation from first a rotation then a translation
Definition at line 212 of file Transform3DPJ.cc.
References fM, i, kDX, kDY, kDZ, kYX, and kZX.
Referenced by Transform3DPJ().
{ // assignment from rotation + translation double rotData[9]; r.GetComponents(rotData, rotData +9); // first raw for (int i = 0; i < 3; ++i) fM[i] = rotData[i]; // second raw for (int i = 0; i < 3; ++i) fM[kYX+i] = rotData[3+i]; // third raw for (int i = 0; i < 3; ++i) fM[kZX+i] = rotData[6+i]; // translation data double vecData[3]; v.GetCoordinates(vecData, vecData+3); fM[kDX] = vecData[0]; fM[kDY] = vecData[1]; fM[kDZ] = vecData[2]; }
void ROOT::Math::Transform3DPJ::AssignFrom | ( | const Rotation3D & | r | ) | [protected] |
make transformation from only rotations (zero translation)
Definition at line 237 of file Transform3DPJ.cc.
void ROOT::Math::Transform3DPJ::AssignFrom | ( | const Vector & | v | ) | [protected] |
void ROOT::Math::Transform3DPJ::GetComponents | ( | IT | begin | ) | const [inline] |
Get the 12 matrix components into data specified by an iterator begin
Definition at line 272 of file Transform3DPJ.h.
References filterCSVwithJSON::copy, and fM.
void ROOT::Math::Transform3DPJ::GetComponents | ( | double & | xx, |
double & | xy, | ||
double & | xz, | ||
double & | dx, | ||
double & | yx, | ||
double & | yy, | ||
double & | yz, | ||
double & | dy, | ||
double & | zx, | ||
double & | zy, | ||
double & | zz, | ||
double & | dz | ||
) | const [inline] |
void ROOT::Math::Transform3DPJ::GetComponents | ( | IT | begin, |
IT | end | ||
) | const [inline] |
Get the 12 matrix components into data specified by an iterator begin and another to the end of the desired data (12 past start).
Definition at line 260 of file Transform3DPJ.h.
Referenced by ROOT::Math::operator<<().
void ROOT::Math::Transform3DPJ::GetDecomposition | ( | Rotation3D & | r, |
Vector & | v | ||
) | const |
void ROOT::Math::Transform3DPJ::GetTransformMatrix | ( | ForeignMatrix & | m | ) | const [inline] |
Transform3DPJ ROOT::Math::Transform3DPJ::Inverse | ( | ) | const [inline] |
Return the inverse of the transformation.
Definition at line 441 of file Transform3DPJ.h.
References Invert(), and matplotRender::t.
{ Transform3DPJ t(*this); t.Invert(); return t; }
void ROOT::Math::Transform3DPJ::Invert | ( | ) |
Invert the transformation in place
Definition at line 115 of file Transform3DPJ.cc.
References benchmark_cfg::cerr, fM, kDX, kDY, kDZ, kXX, kXY, kXZ, kYX, kYY, kYZ, kZX, kZY, kZZ, and SetComponents().
Referenced by Inverse().
{ // // Name: Transform3DPJ::inverse Date: 24.09.96 // Author: E.Chernyaev (IHEP/Protvino) Revised: // // Function: Find inverse affine transformation. double detxx = fM[kYY]*fM[kZZ] - fM[kYZ]*fM[kZY]; double detxy = fM[kYX]*fM[kZZ] - fM[kYZ]*fM[kZX]; double detxz = fM[kYX]*fM[kZY] - fM[kYY]*fM[kZX]; double det = fM[kXX]*detxx - fM[kXY]*detxy + fM[kXZ]*detxz; if (det == 0) { std::cerr << "Transform3DPJ::inverse error: zero determinant" << std::endl; return; } det = 1./det; detxx *= det; detxy *= det; detxz *= det; double detyx = (fM[kXY]*fM[kZZ] - fM[kXZ]*fM[kZY] )*det; double detyy = (fM[kXX]*fM[kZZ] - fM[kXZ]*fM[kZX] )*det; double detyz = (fM[kXX]*fM[kZY] - fM[kXY]*fM[kZX] )*det; double detzx = (fM[kXY]*fM[kYZ] - fM[kXZ]*fM[kYY] )*det; double detzy = (fM[kXX]*fM[kYZ] - fM[kXZ]*fM[kYX] )*det; double detzz = (fM[kXX]*fM[kYY] - fM[kXY]*fM[kYX] )*det; SetComponents (detxx, -detyx, detzx, -detxx*fM[kDX]+detyx*fM[kDY]-detzx*fM[kDZ], -detxy, detyy, -detzy, detxy*fM[kDX]-detyy*fM[kDY]+detzy*fM[kDZ], detxz, -detyz, detzz, -detxz*fM[kDX]+detyz*fM[kDY]-detzz*fM[kDZ]); }
bool ROOT::Math::Transform3DPJ::operator!= | ( | const Transform3DPJ & | rhs | ) | const [inline] |
Definition at line 467 of file Transform3DPJ.h.
References operator==().
{ return ! operator==(rhs); }
PositionVector3D<CoordSystem> ROOT::Math::Transform3DPJ::operator() | ( | const PositionVector3D< CoordSystem > & | p | ) | const [inline] |
Transformation operation for Position Vector in any coordinate system
Definition at line 356 of file Transform3DPJ.h.
References operator()().
{ Point xyzNew = operator() ( Point(p) ); return PositionVector3D<CoordSystem> (xyzNew); }
LorentzVector<CoordSystem> ROOT::Math::Transform3DPJ::operator() | ( | const LorentzVector< CoordSystem > & | q | ) | const [inline] |
Transformation operation for a Lorentz Vector in any coordinate system
Definition at line 393 of file Transform3DPJ.h.
References operator()().
{ Vector xyzNew = operator() ( Vector(q.Vect() ) ); return LorentzVector<CoordSystem> (xyzNew.X(), xyzNew.Y(), xyzNew.Z(), q.E() ); }
Transformation on a 3D plane
Definition at line 258 of file Transform3DPJ.cc.
References n, and L1TEmulatorMonitor_cff::p.
{ // transformations on a 3D plane XYZVector n = plane.Normal(); // take a point on the plane. Use origin projection on the plane // ( -ad, -bd, -cd) if (a**2 + b**2 + c**2 ) = 1 double d = plane.HesseDistance(); XYZPoint p( - d * n.X() , - d *n.Y(), -d *n.Z() ); return Plane3D ( operator() (n), operator() (p) ); }
Transformation operation for Position Vector in Cartesian coordinate
Definition at line 157 of file Transform3DPJ.cc.
References GetDecomposition(), csvReporter::r, and matplotRender::t.
Referenced by operator()(), operator*(), and Transform().
Transformation operation for Displacement Vectors in Cartesian coordinate For the Displacement Vectors only the rotation applies - no translations
Definition at line 170 of file Transform3DPJ.cc.
References GetDecomposition(), csvReporter::r, and matplotRender::t.
DisplacementVector3D<CoordSystem> ROOT::Math::Transform3DPJ::operator() | ( | const DisplacementVector3D< CoordSystem > & | v | ) | const [inline] |
Transformation operation for Displacement Vector in any coordinate system
Definition at line 365 of file Transform3DPJ.h.
References operator()().
{ Vector xyzNew = operator() ( Vector(v) ); return DisplacementVector3D<CoordSystem> (xyzNew); }
AVector ROOT::Math::Transform3DPJ::operator* | ( | const AVector & | v | ) | const [inline] |
Transformation operation for Vectors. Apply same rules as operator() depending on type of vector. Will work only for DisplacementVector3D, PositionVector3D and LorentzVector
Definition at line 413 of file Transform3DPJ.h.
References operator()().
{ return operator() (v); }
Transform3DPJ ROOT::Math::Transform3DPJ::operator* | ( | const Transform3DPJ & | t | ) | const [inline] |
multiply (combine) two transformations
Definition at line 427 of file Transform3DPJ.h.
References matplotRender::t, and tmp.
{ Transform3DPJ tmp(*this); tmp*= t; return tmp; }
Transform3DPJ & ROOT::Math::Transform3DPJ::operator*= | ( | const Transform3DPJ & | t | ) |
multiply (combine) with another transformation in place
Definition at line 181 of file Transform3DPJ.cc.
References fM, kDX, kDY, kDZ, kXX, kXY, kXZ, kYX, kYY, kYZ, kZX, kZY, kZZ, and SetComponents().
{ // combination of transformations SetComponents(fM[kXX]*t.fM[kXX]+fM[kXY]*t.fM[kYX]+fM[kXZ]*t.fM[kZX], fM[kXX]*t.fM[kXY]+fM[kXY]*t.fM[kYY]+fM[kXZ]*t.fM[kZY], fM[kXX]*t.fM[kXZ]+fM[kXY]*t.fM[kYZ]+fM[kXZ]*t.fM[kZZ], fM[kXX]*t.fM[kDX]+fM[kXY]*t.fM[kDY]+fM[kXZ]*t.fM[kDZ]+fM[kDX], fM[kYX]*t.fM[kXX]+fM[kYY]*t.fM[kYX]+fM[kYZ]*t.fM[kZX], fM[kYX]*t.fM[kXY]+fM[kYY]*t.fM[kYY]+fM[kYZ]*t.fM[kZY], fM[kYX]*t.fM[kXZ]+fM[kYY]*t.fM[kYZ]+fM[kYZ]*t.fM[kZZ], fM[kYX]*t.fM[kDX]+fM[kYY]*t.fM[kDY]+fM[kYZ]*t.fM[kDZ]+fM[kDY], fM[kZX]*t.fM[kXX]+fM[kZY]*t.fM[kYX]+fM[kZZ]*t.fM[kZX], fM[kZX]*t.fM[kXY]+fM[kZY]*t.fM[kYY]+fM[kZZ]*t.fM[kZY], fM[kZX]*t.fM[kXZ]+fM[kZY]*t.fM[kYZ]+fM[kZZ]*t.fM[kZZ], fM[kZX]*t.fM[kDX]+fM[kZY]*t.fM[kDY]+fM[kZZ]*t.fM[kDZ]+fM[kDZ]); return *this; }
Transform3DPJ& ROOT::Math::Transform3DPJ::operator= | ( | const ForeignMatrix & | m | ) | [inline] |
Construct from a linear algebra matrix of size at least 3x4, which must support operator()(i,j) to obtain elements (0,0) thru (2,3). The 3x3 sub-block is assumed to be the rotation part and the translations vector are described by the 4-th column
Definition at line 233 of file Transform3DPJ.h.
References SetComponents().
{ SetComponents(m); return *this; }
bool ROOT::Math::Transform3DPJ::operator== | ( | const Transform3DPJ & | rhs | ) | const [inline] |
Equality/inequality operators
Definition at line 451 of file Transform3DPJ.h.
References fM.
Referenced by operator!=().
{ if( fM[0] != rhs.fM[0] ) return false; if( fM[1] != rhs.fM[1] ) return false; if( fM[2] != rhs.fM[2] ) return false; if( fM[3] != rhs.fM[3] ) return false; if( fM[4] != rhs.fM[4] ) return false; if( fM[5] != rhs.fM[5] ) return false; if( fM[6] != rhs.fM[6] ) return false; if( fM[7] != rhs.fM[7] ) return false; if( fM[8] != rhs.fM[8] ) return false; if( fM[9] != rhs.fM[9] ) return false; if( fM[10]!= rhs.fM[10] ) return false; if( fM[11]!= rhs.fM[11] ) return false; return true; }
Set the 12 matrix components given an iterator to the start of the desired data, and another to the end (12 past start).
Definition at line 247 of file Transform3DPJ.h.
Referenced by Invert(), operator*=(), operator=(), and Transform3DPJ().
void ROOT::Math::Transform3DPJ::SetComponents | ( | double | xx, |
double | xy, | ||
double | xz, | ||
double | dx, | ||
double | yx, | ||
double | yy, | ||
double | yz, | ||
double | dy, | ||
double | zx, | ||
double | zy, | ||
double | zz, | ||
double | dz | ||
) | [inline] |
void ROOT::Math::Transform3DPJ::SetIdentity | ( | ) | [protected] |
void ROOT::Math::Transform3DPJ::SetTransformMatrix | ( | const ForeignMatrix & | m | ) | [inline] |
Set components from a linear algebra matrix of size at least 3x4, which must support operator()(i,j) to obtain elements (0,0) thru (2,3). The 3x3 sub-block is assumed to be the rotation part and the translations vector are described by the 4-th column
Definition at line 284 of file Transform3DPJ.h.
References fM, kDX, kDY, kDZ, kXX, kXY, kXZ, kYX, kYY, kYZ, kZX, kZY, kZZ, and m.
void ROOT::Math::Transform3DPJ::Transform | ( | const DisplacementVector3D< CoordSystem, Tag1 > & | v1, |
DisplacementVector3D< CoordSystem, Tag2 > & | v2 | ||
) | const [inline] |
Transformation operation for Displacement Vector of different coordinate systems
Definition at line 384 of file Transform3DPJ.h.
References operator()().
{ Vector xyzNew = operator() ( Vector(v1.X(), v1.Y(), v1.Z() ) ); v2.SetXYZ( xyzNew.X(), xyzNew.Y(), xyzNew.Z() ); }
void ROOT::Math::Transform3DPJ::Transform | ( | const PositionVector3D< CoordSystem, Tag1 > & | p1, |
PositionVector3D< CoordSystem, Tag2 > & | p2 | ||
) | const [inline] |
Transformation operation for points between different coordinate system tags
Definition at line 374 of file Transform3DPJ.h.
References operator()().
double ROOT::Math::Transform3DPJ::fM[12] [private] |
Definition at line 497 of file Transform3DPJ.h.
Referenced by AssignFrom(), GetComponents(), GetDecomposition(), GetTransformMatrix(), Invert(), operator*=(), operator==(), SetComponents(), SetIdentity(), and SetTransformMatrix().