CMS 3D CMS Logo

/data/doxygen/doxygen-1.7.3/gen/CMSSW_4_2_8/src/RecoParticleFlow/PFProducer/python/particleFlow_cfi.py

Go to the documentation of this file.
00001 import FWCore.ParameterSet.Config as cms
00002 
00003 particleFlow = cms.EDProducer("PFProducer",
00004 
00005     # PF Blocks label
00006     blocks = cms.InputTag("particleFlowBlock"),
00007 
00008     # reco::muons label and Post Muon cleaning
00009     muons = cms.InputTag("muons"),
00010     postMuonCleaning = cms.bool(True),
00011 
00012     # Vertices label
00013     vertexCollection = cms.InputTag("offlinePrimaryVertices"),
00014     useVerticesForNeutral = cms.bool(True),
00015 
00016     # Algorithm type ?
00017     algoType = cms.uint32(0),
00018 
00019     # Verbose and debug flags
00020     verbose = cms.untracked.bool(False),
00021     debug = cms.untracked.bool(False),
00022 
00023     # Use electron identification in PFAlgo
00024     usePFElectrons = cms.bool(True),
00025     pf_electron_output_col=cms.string('electrons'),
00026     pf_electronID_mvaWeightFile = cms.string('RecoParticleFlow/PFProducer/data/MVAnalysis_BDT.weights_PfElectrons23Jan_IntToFloat.txt'),
00027 
00028     # Use Photon identification in PFAlgo (for now this has NO impact, algo is swicthed off hard-coded
00029     usePFPhotons = cms.bool(True),
00030     pf_convID_mvaWeightFile = cms.string('RecoParticleFlow/PFProducer/data/MVAnalysis_BDT.weights_pfConversionFeb2311.txt'),    
00031     pf_conv_mvaCut=cms.double(0.0), 
00032 
00033                               
00034     pf_electron_mvaCut = cms.double(-0.1),
00035     # apply the crack corrections                             
00036     pf_electronID_crackCorrection = cms.bool(False),
00037     usePFSCEleCalib = cms.bool(True),
00038                               #new corrections  #MM /*
00039     calibPFSCEle_Fbrem_barrel = cms.vdouble(0.6, 6,                                                 #Range of non constant correction
00040                                             -0.0255975, 0.0576727, 0.975442, -0.000546394, 1.26147, #standard parameters
00041                                             25,                                                     #pt value for switch to low pt corrections
00042                                             -0.02025, 0.04537, 0.9728, -0.0008962, 1.172),          # low pt parameters
00043     calibPFSCEle_Fbrem_endcap = cms.vdouble(0.9, 6.5,                                               #Range of non constant correction
00044                                             -0.0692932, 0.101776, 0.995338, -0.00236548, 0.874998,  #standard parameters eta < switch value
00045                                             1.653,                                                  #eta value for correction switch
00046                                             -0.0750184, 0.147000, 0.923165, 0.000474665, 1.10782),  #standard parameters eta > switch value
00047     calibPFSCEle_barrel = cms.vdouble(1.004, -1.536, 22.88, -1.467,  #standard
00048                                       0.3555, 0.6227, 14.65, 2051,   #parameters
00049                                       25,                            #pt value for switch to low pt corrections
00050                                       0.9932, -0.5444, 0, 0.5438,    #low pt
00051                                       0.7109, 7.645, 0.2904, 0),     #parameters
00052     calibPFSCEle_endcap = cms.vdouble(1.153, -16.5975, 5.668,
00053                                       -0.1772, 16.22, 7.326,
00054                                       0.0483, -4.068, 9.406),
00055                               #old corrections #MM */
00056 #    calibPFSCEle_barrel = cms.vdouble(1.0326,-13.71,339.72,0.4862,0.00182,0.36445,1.411,1.0206,0.0059162,-5.14434e-05,1.42516e-07),
00057 #    calibPFSCEle_endcap = cms.vdouble(0.9995,-12.313,2.8784,-1.057e-04,10.282,3.059,1.3502e-03,-2.2185,3.4206),
00058 
00059     useEGammaSupercluster =  cms.bool(True),
00060     sumEtEcalIsoForEgammaSC_barrel = cms.double(1.),
00061     sumEtEcalIsoForEgammaSC_endcap = cms.double(2.),
00062     coneEcalIsoForEgammaSC = cms.double(0.3),
00063     sumPtTrackIsoForEgammaSC_barrel = cms.double(4.),
00064     sumPtTrackIsoForEgammaSC_endcap = cms.double(4.),
00065     nTrackIsoForEgammaSC = cms.uint32(2),                          
00066     coneTrackIsoForEgammaSC = cms.double(0.3),
00067     useEGammaElectrons = cms.bool(False),
00068     egammaElectrons = cms.InputTag(''),                              
00069 
00070     # Input displaced vertices
00071     # It is strongly adviced to keep usePFNuclearInteractions = bCorrect                       
00072                               
00073     rejectTracks_Bad =  cms.bool(True),
00074     rejectTracks_Step45 = cms.bool(True),
00075 
00076     usePFNuclearInteractions = cms.bool(True),
00077     usePFConversions = cms.bool(False),
00078     usePFDecays = cms.bool(False),
00079 
00080     dptRel_DispVtx = cms.double(10.),
00081 
00082     iCfgCandConnector = cms.PSet(
00083     
00084          bCorrect         =  cms.bool(True), 
00085          bCalibPrimary    =  cms.bool(True),
00086          dptRel_PrimaryTrack = cms.double(10.),
00087          dptRel_MergedTrack = cms.double(5.0),
00088          ptErrorSecondary = cms.double(1.0),
00089          nuclCalibFactors =  cms.vdouble(0.8, 0.15, 0.5, 0.5, 0.05)
00090     ),
00091 
00092     
00093 
00094     # Treatment of muons : 
00095     # Expected energy in ECAL and HCAL, and RMS
00096     muon_HCAL = cms.vdouble(3.0,3.0),
00097     muon_ECAL = cms.vdouble(0.5,0.5),
00098 
00099     # Use PF muon momentum assigment instead of default reco muon one
00100     usePFMuonMomAssign = cms.bool(False),
00101 
00102     # Treatment of potential fake tracks
00103     # Number of sigmas for fake track detection
00104     nsigma_TRACK = cms.double(1.0),
00105     # Absolute pt error to detect fake tracks in the first three iterations
00106     # dont forget to modify also ptErrorSecondary if you modify this parameter
00107     pt_Error = cms.double(1.0),
00108     # Factors to be applied in the four and fifth steps to the pt error
00109     factors_45 = cms.vdouble(10.,100.),
00110 
00111     # Post HF cleaning
00112     postHFCleaning = cms.bool(False),
00113     # Clean only objects with pt larger than this value
00114     minHFCleaningPt = cms.double(5.),
00115     # Clean only if the initial MET/sqrt(sumet) is larger than this value
00116     maxSignificance = cms.double(2.5),                          
00117     # Clean only if the final MET/sqrt(sumet) is smaller than this value
00118     minSignificance = cms.double(2.5),
00119     # Clean only if the significance reduction is larger than this value
00120     minSignificanceReduction = cms.double(1.4),
00121     # Clean only if the MET and the to-be-Cleaned object satisfy this DeltaPhi * Pt cut
00122     # (the MET angular resoution is in 1/MET) 
00123     maxDeltaPhiPt = cms.double(7.0),
00124     # Clean only if the MET relative reduction from the to-be-Cleaned object
00125     # is larger than this value
00126     minDeltaMet = cms.double(0.4),
00127 
00128     # Check HF cleaning
00129     cleanedHF = cms.VInputTag(
00130                 cms.InputTag("particleFlowRecHitHCAL","Cleaned"),
00131                 cms.InputTag("particleFlowClusterHFHAD","Cleaned"),
00132                 cms.InputTag("particleFlowClusterHFEM","Cleaned")
00133                 ),
00134     
00135     # number of sigmas for neutral energy detection
00136     pf_nsigma_ECAL = cms.double(0.0),
00137     pf_nsigma_HCAL = cms.double(1.0),
00138 
00139     # ECAL/HCAL PF cluster calibration : take it from global tag ?
00140     useCalibrationsFromDB = cms.bool(True),
00141 
00142     # calibration parameters for HF:
00143     calibHF_use = cms.bool(False),
00144     calibHF_eta_step  = cms.vdouble(0.0,2.90,3.00,3.20,4.20,4.40,4.60,4.80,5.20,5.40),
00145 #    calibHF_a_EMonly  = cms.vdouble(10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00),
00146 #    calibHF_b_HADonly = cms.vdouble(10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00),
00147 #    calibHF_a_EMHAD   = cms.vdouble(10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00),
00148 #    calibHF_b_EMHAD   = cms.vdouble(10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00,10.00)
00149     calibHF_a_EMonly  = cms.vdouble(0.96945,0.96701,0.76309,0.82268,0.87583,0.89718,0.98674,1.4681,1.4580,1.4580),
00150     calibHF_b_HADonly = cms.vdouble(1.27541,0.85361,0.86333,0.89091,0.94348,0.94348,0.94370,1.0034,1.0444,1.0444),
00151     calibHF_a_EMHAD   = cms.vdouble(1.42215,1.00496,0.68961,0.81656,0.98504,0.98504,1.00802,1.0593,1.4576,1.4576),
00152     calibHF_b_EMHAD   = cms.vdouble(1.27541,0.85361,0.86333,0.89091,0.94348,0.94348,0.94370,1.0034,1.0444,1.0444)
00153  
00154 #    toRead = cms.untracked.vstring("PFfa_BARREL",
00155 #                                   "PFfa_ENDCAP",
00156 #                                   "PFfb_BARREL",
00157 #                                   "PFfb_ENDCAP",
00158 #                                   "PFfc_BARREL",
00159 #                                   "PFfc_ENDCAP",
00160 #                                   "PFfaEta_BARREL",
00161 #                                   "PFfaEta_ENDCAP",
00162 #                                   "PFfbEta_BARREL",
00163 #                                   "PFfbEta_ENDCAP") # same strings as fType
00164 
00165 )
00166 
00167 
00168