CMS 3D CMS Logo

/data/doxygen/doxygen-1.7.3/gen/CMSSW_4_2_8/src/RecoEgamma/EgammaPhotonAlgos/src/TangentApproachInRPhi.cc

Go to the documentation of this file.
00001 #include "RecoEgamma/EgammaPhotonAlgos/interface/TangentApproachInRPhi.h"
00002 #include "TrackingTools/TrajectoryState/interface/TrajectoryStateOnSurface.h" 
00003 #include "MagneticField/Engine/interface/MagneticField.h"
00004 #include "FWCore/Utilities/interface/Exception.h"
00005 
00006 using namespace std;
00007 
00008 bool TangentApproachInRPhi::calculate(const TrajectoryStateOnSurface & sta, 
00009                               const TrajectoryStateOnSurface & stb) 
00010 {
00011   TrackCharge chargeA = sta.charge(); TrackCharge chargeB = stb.charge();
00012   GlobalVector momentumA = sta.globalMomentum();
00013   GlobalVector momentumB = stb.globalMomentum();
00014   GlobalPoint positionA = sta.globalPosition();
00015   GlobalPoint positionB = stb.globalPosition();
00016   paramA = sta.globalParameters();
00017   paramB = stb.globalParameters();
00018 
00019   return calculate(chargeA, momentumA, positionA, chargeB, momentumB, positionB, 
00020         sta.freeState()->parameters().magneticField());
00021 }
00022 
00023 
00024 bool TangentApproachInRPhi::calculate(const FreeTrajectoryState & sta, 
00025                               const FreeTrajectoryState & stb)
00026 {
00027   TrackCharge chargeA = sta.charge(); TrackCharge chargeB = stb.charge();
00028   GlobalVector momentumA = sta.momentum();
00029   GlobalVector momentumB = stb.momentum();
00030   GlobalPoint positionA = sta.position();
00031   GlobalPoint positionB = stb.position();
00032   paramA = sta.parameters();
00033   paramB = stb.parameters();
00034 
00035   return calculate(chargeA, momentumA, positionA, chargeB, momentumB, positionB,
00036         sta.parameters().magneticField());
00037 }
00038 
00039 pair<GlobalPoint, GlobalPoint> TangentApproachInRPhi::points() const
00040 {
00041   if (!status_)
00042     throw cms::Exception("TrackingTools/PatternTools","TangentApproachInRPhi::could not compute track crossing. Check status before calling this method!");
00043   return  pair<GlobalPoint, GlobalPoint> (posA, posB);
00044 }
00045 
00046 
00047 GlobalPoint 
00048 TangentApproachInRPhi::crossingPoint() const
00049 {
00050   if (!status_)
00051     throw cms::Exception("TrackingTools/PatternTools","TangentApproachInRPhi::could not compute track crossing. Check status before calling this method!");
00052   return GlobalPoint((posA.x() + posB.x())/2., 
00053                      (posA.y() + posB.y())/2., 
00054                      (posA.z() + posB.z())/2.);
00055 }
00056 
00057 
00058 float TangentApproachInRPhi::distance() const
00059 {
00060   if (!status_)
00061     throw cms::Exception("TrackingTools/PatternTools","TangentApproachInRPhi::could not compute track crossing. Check status before calling this method!");
00062   return (posB - posA).mag();
00063 }
00064 
00065 float TangentApproachInRPhi::perpdist() const
00066 {
00067   if (!status_)
00068     throw cms::Exception("TrackingTools/PatternTools","TangentApproachInRPhi::could not compute track crossing. Check status before calling this method!");
00069   
00070   float perpdist = (posB - posA).perp();
00071   
00072   if (intersection_) {
00073     perpdist = -perpdist;
00074   }
00075   
00076   return perpdist;
00077   
00078 }
00079 
00080 
00081 bool TangentApproachInRPhi::calculate(const TrackCharge & chargeA, 
00082                               const GlobalVector & momentumA, 
00083                               const GlobalPoint & positionA, 
00084                               const TrackCharge & chargeB, 
00085                               const GlobalVector & momentumB, 
00086                               const GlobalPoint & positionB,
00087                               const MagneticField& magField) 
00088 {
00089 
00090   // centres and radii of track circles
00091   double xca, yca, ra;
00092   circleParameters(chargeA, momentumA, positionA, xca, yca, ra, magField);
00093   double xcb, ycb, rb;
00094   circleParameters(chargeB, momentumB, positionB, xcb, ycb, rb, magField);
00095 
00096   // points of closest approach in transverse plane
00097   double xg1, yg1, xg2, yg2;
00098   int flag = transverseCoord(xca, yca, ra, xcb, ycb, rb, xg1, yg1, xg2, yg2);
00099   if (flag == 0) {
00100     status_ = false;
00101     return false;
00102   }
00103 
00104   double xga, yga, zga, xgb, ygb, zgb;
00105 
00106   if (flag == 1) {
00107     intersection_ = true;
00108   }
00109   else {
00110     intersection_ = false;
00111   }
00112 
00113   // one point of closest approach on each track in transverse plane
00114   xga = xg1; yga = yg1;
00115   zga = zCoord(momentumA, positionA, ra, xca, yca, xga, yga);
00116   xgb = xg2; ygb = yg2;
00117   zgb = zCoord(momentumB, positionB, rb, xcb, ycb, xgb, ygb);
00118 
00119 
00120   posA = GlobalPoint(xga, yga, zga);
00121   posB = GlobalPoint(xgb, ygb, zgb);
00122   status_ = true;
00123   return true;
00124 }
00125 
00126 pair <GlobalTrajectoryParameters, GlobalTrajectoryParameters>
00127 TangentApproachInRPhi::trajectoryParameters () const
00128 {
00129   if (!status_)
00130     throw cms::Exception("TrackingTools/PatternTools","TangentApproachInRPhi::could not compute track crossing. Check status before calling this method!");
00131   pair <GlobalTrajectoryParameters, GlobalTrajectoryParameters> 
00132     ret ( trajectoryParameters ( posA, paramA ),
00133           trajectoryParameters ( posB, paramB ) );
00134   return ret;
00135 }
00136 
00137 GlobalTrajectoryParameters TangentApproachInRPhi::trajectoryParameters ( 
00138    const GlobalPoint & newpt, const GlobalTrajectoryParameters & oldgtp ) const
00139 {
00140   // First we need the centers of the circles.
00141   double xc, yc, r;
00142   circleParameters( oldgtp.charge(), oldgtp.momentum(),
00143       oldgtp.position(), xc, yc, r, oldgtp.magneticField()  );
00144 
00145   // now we do a translation, move the center of circle to (0,0,0).
00146   double dx1 = oldgtp.position().x() - xc;
00147   double dy1 = oldgtp.position().y() - yc;
00148   double dx2 = newpt.x() - xc;
00149   double dy2 = newpt.y() - yc;
00150 
00151   // now for the angles:
00152   double cosphi = ( dx1 * dx2 + dy1 * dy2 ) / 
00153     ( sqrt ( dx1 * dx1 + dy1 * dy1 ) * sqrt ( dx2 * dx2 + dy2 * dy2 ));
00154   double sinphi = - oldgtp.charge() * sqrt ( 1 - cosphi * cosphi );
00155 
00156   // Finally, the new momenta:
00157   double px = cosphi * oldgtp.momentum().x() - sinphi * oldgtp.momentum().y();
00158   double py = sinphi * oldgtp.momentum().x() + cosphi * oldgtp.momentum().y();
00159 
00160   GlobalVector vta ( px, py, oldgtp.momentum().z() );
00161   GlobalTrajectoryParameters gta( newpt , vta , oldgtp.charge(), &(oldgtp.magneticField()) );
00162   return gta;
00163 }
00164 
00165 void 
00166 TangentApproachInRPhi::circleParameters(const TrackCharge& charge, 
00167                                         const GlobalVector& momentum, 
00168                                         const GlobalPoint& position, 
00169                                         double& xc, double& yc, double& r,
00170                                         const MagneticField& magField) 
00171 const
00172 {
00173 
00174   // compute radius of circle
00178 //   double bz = MagneticField::inInverseGeV(position).z();
00179   double bz = magField.inTesla(position).z() * 2.99792458e-3;
00180 
00181   // signed_r directed towards circle center, along F_Lorentz = q*v X B
00182   double signed_r = charge*momentum.transverse() / bz;
00183   r = abs(signed_r);
00187   // compute centre of circle
00188   double phi = momentum.phi();
00189   xc = signed_r*sin(phi) + position.x();
00190   yc = -signed_r*cos(phi) + position.y();
00191 
00192 }
00193 
00194 
00195 int 
00196 TangentApproachInRPhi::transverseCoord(double cxa, double cya, double ra, 
00197                                        double cxb, double cyb, double rb, 
00198                                        double & xg1, double & yg1, 
00199                                        double & xg2, double & yg2) const 
00200 {
00201   int flag = 0;
00202   double x1, y1, x2, y2;
00203 
00204   // new reference frame with origin in (cxa, cya) and x-axis 
00205   // directed from (cxa, cya) to (cxb, cyb)
00206 
00207   double d_ab = sqrt((cxb - cxa)*(cxb - cxa) + (cyb - cya)*(cyb - cya));
00208   if (d_ab == 0) { // concentric circles
00209     return 0;
00210   }
00211   // elements of rotation matrix
00212   double u = (cxb - cxa) / d_ab;
00213   double v = (cyb - cya) / d_ab;
00214 
00215   // conditions for circle intersection
00216   if (d_ab <= ra + rb && d_ab >= abs(rb - ra)) {
00217 
00218     // circles cross each other
00219 //     flag = 1;
00220 // 
00221 //     // triangle (ra, rb, d_ab)
00222 //     double cosphi = (ra*ra - rb*rb + d_ab*d_ab) / (2*ra*d_ab);
00223 //     double sinphi2 = 1. - cosphi*cosphi;
00224 //     if (sinphi2 < 0.) { sinphi2 = 0.; cosphi = 1.; }
00225 // 
00226 //     // intersection points in new frame
00227 //     double sinphi = sqrt(sinphi2);
00228 //     x1 = ra*cosphi; y1 = ra*sinphi; x2 = x1; y2 = -y1;
00229 
00230     //circles cross each other, but take tangent points anyway
00231     flag = 1;
00232 
00233     // points of closest approach in new frame 
00234     // are on line between 2 centers
00235     x1 = ra; y1 = 0; x2 = d_ab - rb; y2 = 0;
00236 
00237 
00238   } 
00239   else if (d_ab > ra + rb) {
00240 
00241     // circles are external to each other
00242     flag = 2;
00243 
00244     // points of closest approach in new frame 
00245     // are on line between 2 centers
00246     x1 = ra; y1 = 0; x2 = d_ab - rb; y2 = 0;
00247   }
00248   else if (d_ab < abs(rb - ra)) {
00249 
00250     // circles are inside each other
00251     flag = 2;
00252 
00253     // points of closest approach in new frame are on line between 2 centers
00254     // choose 2 closest points
00255     double sign = 1.;
00256     if (ra <= rb) sign = -1.;
00257     x1 = sign*ra; y1 = 0; x2 = d_ab + sign*rb; y2 = 0;
00258   }
00259   else {
00260     return 0;
00261   }
00262 
00263   // intersection points in global frame, transverse plane
00264   xg1 = u*x1 - v*y1 + cxa; yg1 = v*x1 + u*y1 + cya;
00265   xg2 = u*x2 - v*y2 + cxa; yg2 = v*x2 + u*y2 + cya;
00266 
00267   return flag;
00268 }
00269 
00270 
00271 double 
00272 TangentApproachInRPhi::zCoord(const GlobalVector& mom, 
00273                               const GlobalPoint& pos, 
00274                               double r, double xc, double yc, 
00275                               double xg, double yg) const
00276 {
00277 
00278   // starting point
00279   double x = pos.x(); double y = pos.y(); double z = pos.z();
00280 
00281   double px = mom.x(); double py = mom.y(); double pz = mom.z();
00282 
00283   // rotation angle phi from starting point to crossing point (absolute value)
00284   // -- compute sin(phi/2) if phi smaller than pi/4, 
00285   // -- cos(phi) if phi larger than pi/4
00286   double phi = 0.;
00287   double sinHalfPhi = sqrt((x-xg)*(x-xg) + (y-yg)*(y-yg))/(2*r);
00288   if (sinHalfPhi < 0.383) { // sin(pi/8)
00289     phi = 2*asin(sinHalfPhi);
00290   }
00291   else {
00292     double cosPhi = ((x-xc)*(xg-xc) + (y-yc)*(yg-yc))/(r*r);
00293     if (std::abs(cosPhi) > 1) cosPhi = (cosPhi > 0 ? 1 : -1);
00294     phi = abs(acos(cosPhi));
00295   }
00296   // -- sign of phi
00297   double signPhi = ((x - xc)*(yg - yc) - (xg - xc)*(y - yc) > 0) ? 1. : -1.;
00298 
00299   // sign of track angular momentum
00300   // if rotation is along angular momentum, delta z is along pz
00301   double signOmega = ((x - xc)*py - (y - yc)*px > 0) ? 1. : -1.;
00302 
00303   // delta z
00304   // -- |dz| = |cos(theta) * path along helix|
00305   //         = |cos(theta) * arc length along circle / sin(theta)|
00306   double dz = signPhi*signOmega*(pz/mom.transverse())*phi*r;
00307 
00308   return z + dz;
00309 }