CMS 3D CMS Logo

 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Friends Macros Pages
MaterialEffects_cfi.py
Go to the documentation of this file.
1 # The following comments couldn't be translated into the new config version:
2 
3 # pi+ pi- K0L K+ K- p pbar n nbar
4 # 0.2508, 0.2549, 0.3380, 0.2879, 0.3171, 0.3282, 0.5371, 0.3859, 0.5086 # before 170 tuning
5 
6 import FWCore.ParameterSet.Config as cms
7 
8 # Material effects to be simulated in the tracker material and associated cuts
9 MaterialEffectsBlock = cms.PSet(
10  MaterialEffects = cms.PSet(
11  # Material Properties (Silicon)
12  # A
13  A = cms.double(28.0855),
14  # Z
15  Z = cms.double(14.0),
16  # Density in g/cm3
17  Density = cms.double(2.329),
18  # One radiation length in cm
19  RadiationLength = cms.double(9.36),
20 
21  # General switches
22  # Enable photon pair conversion
23  PairProduction = cms.bool(True),
24  # Smallest photon energy allowed for conversion
25  photonEnergy = cms.double(0.1),
26  # Enable electron Bremsstrahlung
27  Bremsstrahlung = cms.bool(True),
28  # Smallest bremstrahlung photon energy
29  bremEnergy = cms.double(0.1),
30  # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
31  bremEnergyFraction = cms.double(0.005),
32  # Enable dE/dx
33  EnergyLoss = cms.bool(True),
34  # Enable Multiple Scattering
35  MultipleScattering = cms.bool(True),
36  # Smallest pT for the Mutliple Scattering
37  pTmin = cms.double(0.2),
38  # Enable Nuclear Interactions
39  NuclearInteraction = cms.bool(True),
40  # The energies of the pions used in the above files (same order)
41  pionEnergies = cms.untracked.vdouble(
42  1.0, 2.0, 3.0, 4.0, 5.0, 7.0, 9.0, 12.0, 15.0, 20.0,
43  30.0, 50.0, 100.0, 200.0, 300.0, 500.0, 700.0, 1000.0
44  ),
45  # The particle types simulated
46  pionTypes = cms.untracked.vint32(
47  211, -211, 130, 321, -321, 2212, -2212, 2112, -2112
48  ),
49  # The corresponding particle names
50  pionNames = cms.untracked.vstring(
51  'piplus', 'piminus', 'K0L', 'Kplus', 'Kminus', 'p', 'pbar', 'n', 'nbar'
52  ),
53  # The corresponding particle masses
54  pionMasses = cms.untracked.vdouble(
55  0.13957, 0.13957, 0.497648, 0.493677, 0.493677,
56  0.93827, 0.93827, 0.939565, 0.939565
57  ),
58  # The corresponding smallest momenta for which an inleatic interaction may occur
59  pionMinP = cms.untracked.vdouble(
60  0.7, 0.0, 1.0, 1.0, 0.0, 1.1, 0.0, 1.1, 0.0
61  ),
62 
63 
64  # The scaling of the inelastic cross section with energy
65  ratios = cms.untracked.vdouble(
66  # pi+ (211)
67  0.031390573,0.531842852,0.819614219,0.951251711,0.986382750,1.000000000,0.985087033,0.982996773,
68  0.990832192,0.992237923,0.994841580,0.973816742,0.967264815,0.971714258,0.969122824,0.978681792,
69  0.977312732,0.984255819,
70  # pi- (-211)
71  0.035326512,0.577356403,0.857118809,0.965683504,0.989659360,1.000000000,0.989599240,0.980665408,
72  0.988384816,0.981038152,0.975002104,0.959996152,0.953310808,0.954705592,0.957615400,0.961150456,
73  0.965022184,0.960573304,
74  # K0L (130)
75  0.000000000,0.370261189,0.649793096,0.734342408,0.749079499,0.753360057,0.755790543,0.755872164,
76  0.751337674,0.746685288,0.747519634,0.739357554,0.735004444,0.803039922,0.832749896,0.890900187,
77  0.936734805,1.000000000,
78  # K+ (321)
79  0.000000000,0.175571717,0.391683394,0.528946472,0.572818635,0.614210280,0.644125538,0.670304050,
80  0.685144573,0.702870161,0.714708513,0.730805263,0.777711536,0.831090576,0.869267129,0.915747562,
81  0.953370523,1.000000000,
82  # K- (-321)
83  0.000000000,0.365353210,0.611663677,0.715315908,0.733498956,0.738361302,0.745253654,0.751459671,
84  0.750628335,0.746442657,0.750850669,0.744895986,0.735093960,0.791663444,0.828609543,0.889993040,
85  0.940897842,1.000000000,
86  # proton (2212)
87  0.000000000,0.042849136,0.459103223,0.666165343,0.787930873,0.890397011,0.920999533,0.937832788,
88  0.950920131,0.966595049,0.979542270,0.988061653,0.983260159,0.988958431,0.991723494,0.995273237,
89  1.000000000,0.999962634,
90  # anti-proton (-2212)
91  1.000000000,0.849956907,0.775625988,0.802018230,0.816207485,0.785899785,0.754998487,0.728977244,
92  0.710010673,0.670890339,0.665627872,0.652682888,0.613334247,0.647534574,0.667910938,0.689919693,
93  0.709200185,0.724199928,
94  # neutron (2112)
95  0.000000000,0.059216484,0.437844536,0.610370629,0.702090648,0.780076890,0.802143073,0.819570432,
96  0.825829666,0.840079750,0.838435509,0.837529986,0.835687165,0.885205014,0.912450156,0.951451221,
97  0.973215562,1.000000000,
98  # anti-neutron
99  1.000000000,0.849573257,0.756479495,0.787147094,0.804572414,0.791806302,0.760234588,0.741109531,
100  0.724118186,0.692829761,0.688465897,0.671806061,0.636461171,0.675314029,0.699134460,0.724305037,
101  0.742556115,0.758504713
102  ),
103 
104  # The correspondence between long-lived hadrons/ions and the simulated hadron list
105  protons = cms.untracked.vint32(2212, 3222, -101, -102, -103, -104),
106  antiprotons = cms.untracked.vint32(-2212, -3222),
107  neutrons = cms.untracked.vint32(2112, 3122, 3112, 3312, 3322, 3334, -3334),
108  antineutrons = cms.untracked.vint32(-2112, -3122, -3112, -3312, -3322),
109  K0Ls = cms.untracked.vint32(130, 310),
110  Kplusses = cms.untracked.vint32(321),
111  Kminusses = cms.untracked.vint32(-321),
112  Piplusses = cms.untracked.vint32(211),
113  Piminusses = cms.untracked.vint32(-211),
114 
115  # The smallest pion energy for which nuclear interactions are simulated
116  pionEnergy = cms.double(0.2),
117 
118  # The algorihm to detrmine the distance between the primary and the secondaries
119  # 0 = no link
120  # 1 = sin(theta12) - ~ ok at all momenta
121  # 2 = sin(theta12) * p1/p2 - bad, should not be used
122  distAlgo = cms.uint32(1),
123  distCut = cms.double(0.020), ## Default is 0.020 for algo 1;
124 
125  # The ratio between radiation lengths and interation lengths in the tracker at 15 GeV
126  lengthRatio = cms.vdouble(
127  # pi+ pi- K0L K+ K- p pbar n nbar
128  # 0.2508, 0.2549, 0.3380, 0.2879, 0.3171, 0.3282, 0.5371, 0.3859, 0.5086 # before 170 tuning
129  0.2257, 0.2294, 0.3042, 0.2591, 0.2854, 0.3101, 0.5216, 0.3668, 0.4898 # after 170 tuning
130  ),
131 
132  # and a global fudge factor for TEC Layers to make it fit
133  fudgeFactor = cms.double(1.2),
134 
135  # The file with the last nuclear interaction read in the previous run
136  # to be put in the local running directory (if desired)
137  inputFile = cms.untracked.string('NuclearInteractionInputFile.txt'),
138  )
139 )
140 
141 MaterialEffectsForMuonsBlock = cms.PSet(
142  MaterialEffectsForMuons = cms.PSet(
143 
144  # Material Properties (Iron - this is for muons)
145  # A
146  A = cms.double(55.8455),
147  # Z
148  Z = cms.double(26.0),
149  # Density in g/cm3
150  Density = cms.double(7.87),
151  # One radiation length in cm
152  RadiationLength = cms.double(1.76),
153 
154  # GEneral switches
155  # Enable photon pair conversion
156  PairProduction = cms.bool(False),
157  # Smallest photon energy allowed for conversion
158  photonEnergy = cms.double(0.1),
159  # Enable electron Bremsstrahlung
160  Bremsstrahlung = cms.bool(False),
161  # Smallest bremstrahlung photon energy
162  bremEnergy = cms.double(0.1),
163  # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
164  bremEnergyFraction = cms.double(0.005),
165  # Enable dE/dx
166  EnergyLoss = cms.bool(True),
167  # Enable Multiple Scattering
168  MultipleScattering = cms.bool(True),
169  # Smallest pT for the Mutliple Scattering
170  pTmin = cms.double(0.3),
171  # Enable Nuclear Interactions
172  NuclearInteraction = cms.bool(False)
173 
174  )
175 )
176 
177 MaterialEffectsForMuonsInECALBlock = cms.PSet(
178  MaterialEffectsForMuonsInECAL = cms.PSet(
179 
180  # Material Properties (PbW04 - this is for muons)
181  # A
182  A = cms.double(55.8455),
183  # Z
184  Z = cms.double(26.0),
185  # Density in g/cm3
186  Density = cms.double(8.280),
187  # One radiation length in cm
188  RadiationLength = cms.double(0.89),
189 
190  # GEneral switches
191  # Enable photon pair conversion
192  PairProduction = cms.bool(False),
193  # Smallest photon energy allowed for conversion
194  photonEnergy = cms.double(0.1),
195  # Enable electron Bremsstrahlung
196  Bremsstrahlung = cms.bool(False),
197  # Smallest bremstrahlung photon energy
198  bremEnergy = cms.double(0.1),
199  # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
200  bremEnergyFraction = cms.double(0.005),
201  # Enable dE/dx
202  EnergyLoss = cms.bool(False),
203  # Enable Multiple Scattering
204  MultipleScattering = cms.bool(False),
205  # Smallest pT for the Mutliple Scattering
206  pTmin = cms.double(0.3),
207  # Enable Nuclear Interactions
208  NuclearInteraction = cms.bool(False)
209  )
210 )
211 
212 MaterialEffectsForMuonsInHCALBlock = cms.PSet(
213  MaterialEffectsForMuonsInHCAL = cms.PSet(
214 
215  # Material Properties (BRASS - this is for muons)
216  # A
217  A = cms.double(64.0),
218  # Z
219  Z = cms.double(29.0),
220  # Density in g/cm3
221  Density = cms.double(8.5),
222  # One radiation length in cm
223  RadiationLength = cms.double(1.44),
224 
225  # GEneral switches
226  # Enable photon pair conversion
227  PairProduction = cms.bool(False),
228  # Smallest photon energy allowed for conversion
229  photonEnergy = cms.double(0.1),
230  # Enable electron Bremsstrahlung
231  Bremsstrahlung = cms.bool(False),
232  # Smallest bremstrahlung photon energy
233  bremEnergy = cms.double(0.1),
234  # Smallest bremsstrahlung energy fraction (wrt to the electron energy)
235  bremEnergyFraction = cms.double(0.005),
236  # Enable dE/dx
237  EnergyLoss = cms.bool(False),
238  # Enable Multiple Scattering
239  MultipleScattering = cms.bool(False),
240  # Smallest pT for the Mutliple Scattering
241  pTmin = cms.double(0.3),
242  # Enable Nuclear Interactions
243  NuclearInteraction = cms.bool(False)
244 
245  )
246 )
247