00001 #include "RecoParticleFlow/Benchmark/interface/PFJetBenchmark.h"
00002 #include "DataFormats/TrackReco/interface/Track.h"
00003
00004
00005 #define BOOK1D(name,title,nbinsx,lowx,highx) \
00006 h##name = dbe_ ? dbe_->book1D(#name,title,nbinsx,lowx,highx)->getTH1F() \
00007 : new TH1F(#name,title,nbinsx,lowx,highx)
00008
00009
00010 #define BOOK2D(name,title,nbinsx,lowx,highx,nbinsy,lowy,highy) \
00011 h##name = dbe_ ? dbe_->book2D(#name,title,nbinsx,lowx,highx,nbinsy,lowy,highy)->getTH2F() \
00012 : new TH2F(#name,title,nbinsx,lowx,highx,nbinsy,lowy,highy)
00013
00014
00015 #define DBOOK1D(name,title,nbinsx,lowx,highx) \
00016 BOOK1D(B##name,"Barrel "#title,nbinsx,lowx,highx); BOOK1D(E##name,"Endcap "#title,nbinsx,lowx,highx); BOOK1D(F##name,"Forward "#title,nbinsx,lowx,highx);
00017 #define DBOOK2D(name,title,nbinsx,lowx,highx,nbinsy,lowy,highy) \
00018 BOOK2D(B##name,"Barrel "#title,nbinsx,lowx,highx,nbinsy,lowy,highy); BOOK2D(E##name,"Endcap "#title,nbinsx,lowx,highx,nbinsy,lowy,highy); BOOK2D(F##name,"Forward "#title,nbinsx,lowx,highx,nbinsy,lowy,highy);
00019
00020
00021
00022 #define SETAXES(name,xtitle,ytitle) \
00023 h##name->GetXaxis()->SetTitle(xtitle); h##name->GetYaxis()->SetTitle(ytitle)
00024
00025
00026 #define DSETAXES(name,xtitle,ytitle) \
00027 SETAXES(B##name,xtitle,ytitle);SETAXES(E##name,xtitle,ytitle);SETAXES(F##name,xtitle,ytitle);
00028
00029
00030
00031
00032 #define PT (plotAgainstReco_)?"reconstructed P_{T}" :"generated P_{T}"
00033 #define P (plotAgainstReco_)?"generated P" :"generated P"
00034
00035 using namespace reco;
00036 using namespace std;
00037
00038 class MonitorElement;
00039
00040 PFJetBenchmark::PFJetBenchmark() : file_(0), entry_(0) {}
00041
00042 PFJetBenchmark::~PFJetBenchmark() {
00043 if(file_) file_->Close();
00044 }
00045
00046 void PFJetBenchmark::write() {
00047
00048 if (outputFile_.size() != 0) {
00049 if (dbe_)
00050 dbe_->save(outputFile_.c_str());
00051
00052 else if (file_) {
00053 file_->Write(outputFile_.c_str());
00054 cout << "Benchmark output written to file " << outputFile_.c_str() << endl;
00055 file_->Close();
00056 }
00057 }
00058 else
00059 cout << "No output file specified ("<<outputFile_<<"). Results will not be saved!" << endl;
00060
00061 }
00062
00063 void PFJetBenchmark::setup(
00064 string Filename,
00065 bool debug,
00066 bool plotAgainstReco,
00067 bool onlyTwoJets,
00068 double deltaRMax,
00069 string benchmarkLabel_,
00070 double recPt,
00071 double maxEta,
00072 DQMStore * dbe_store) {
00073 debug_ = debug;
00074 plotAgainstReco_ = plotAgainstReco;
00075 onlyTwoJets_ = onlyTwoJets;
00076 deltaRMax_ = deltaRMax;
00077 outputFile_=Filename;
00078 recPt_cut = recPt;
00079 maxEta_cut= maxEta;
00080 file_ = NULL;
00081 dbe_ = dbe_store;
00082
00083 cout<< "PFJetBenchmark Setup parameters =============================================="<<endl;
00084 cout << "Filename to write histograms " << Filename<<endl;
00085 cout << "PFJetBenchmark debug " << debug_<< endl;
00086 cout << "plotAgainstReco " << plotAgainstReco_ << endl;
00087 cout << "onlyTwoJets " << onlyTwoJets_ << endl;
00088 cout << "deltaRMax " << deltaRMax << endl;
00089 cout << "benchmarkLabel " << benchmarkLabel_ << endl;
00090 cout << "recPt_cut " << recPt_cut << endl;
00091 cout << "maxEta_cut " << maxEta_cut << endl;
00092
00093
00094
00095
00096 string path = "PFTask/Benchmarks/"+ benchmarkLabel_ + "/";
00097 if (plotAgainstReco) path += "Reco"; else path += "Gen";
00098 if (dbe_) {
00099 dbe_->setCurrentFolder(path.c_str());
00100 }
00101 else {
00102 file_ = new TFile(outputFile_.c_str(), "recreate");
00103
00104
00105 cout << "Info: DQM is not available to provide data storage service. Using TFile to save histograms. "<<endl;
00106 }
00107
00108 char cutString[35];
00109 sprintf(cutString,"Jet multiplicity P_{T}>%4.1f GeV", recPt_cut);
00110 BOOK1D(Njets,cutString,50, 0, 50);
00111
00112 BOOK1D(jetsPt,"Jets P_{T} Distribution",100, 0, 500);
00113
00114 sprintf(cutString,"Jets #eta Distribution |#eta|<%4.1f", maxEta_cut);
00115 BOOK1D(jetsEta,cutString,100, -5, 5);
00116
00117 BOOK2D(RPtvsEta,"#DeltaP_{T}/P_{T} vs #eta",200, -5., 5., 200,-1,1);
00118 BOOK2D(RNeutvsEta,"R_{Neutral} vs #eta",200, -5., 5., 200,-1,1);
00119 BOOK2D(RNEUTvsEta,"R_{HCAL+ECAL} vs #eta",200, -5., 5., 200,-1,1);
00120 BOOK2D(RNONLvsEta,"R_{HCAL+ECAL - Hcal Only} vs #eta",200, -5., 5., 200,-1,1);
00121 BOOK2D(RHCALvsEta,"R_{HCAL} vs #eta",200, -5., 5., 200,-1,1);
00122 BOOK2D(RHONLvsEta,"R_{HCAL only} vs #eta",200, -5., 5., 200,-1,1);
00123 BOOK2D(RCHEvsEta,"R_{Charged} vs #eta",200, -5., 5., 200,-1,1);
00124 BOOK2D(NCHvsEta,"N_{Charged} vs #eta",200, -5., 5., 200,0.,200.);
00125 BOOK2D(NCH0vsEta,"N_{Charged} vs #eta, iter 0",200, -5., 5., 200,0.,200.);
00126 BOOK2D(NCH1vsEta,"N_{Charged} vs #eta, iter 1",200, -5., 5., 200,0.,200.);
00127 BOOK2D(NCH2vsEta,"N_{Charged} vs #eta, iter 2",200, -5., 5., 200,0.,200.);
00128 BOOK2D(NCH3vsEta,"N_{Charged} vs #eta, iter 3",200, -5., 5., 200,0.,200.);
00129 BOOK2D(NCH4vsEta,"N_{Charged} vs #eta, iter 4",200, -5., 5., 200,0.,200.);
00130 BOOK2D(NCH5vsEta,"N_{Charged} vs #eta, iter 5",200, -5., 5., 200,0.,200.);
00131 BOOK2D(NCH6vsEta,"N_{Charged} vs #eta, iter 6",200, -5., 5., 200,0.,200.);
00132
00133 DBOOK1D(RPt,#DeltaP_{T}/P_{T},80,-1,1);
00134 DBOOK1D(RCHE,#DeltaE/E (charged had),80,-2,2);
00135 DBOOK1D(RNHE,#DeltaE/E (neutral had),80,-2,2);
00136 DBOOK1D(RNEE,#DeltaE/E (neutral em),80,-2,2);
00137 DBOOK1D(Rneut,#DeltaE/E (neutral),80,-2,2);
00138 DBOOK1D(NCH, #N_{charged},200,0.,200.);
00139 DBOOK2D(RPtvsPt,#DeltaP_{T}/P_{T} vs P_{T},250, 0, 500, 200,-1,1);
00140 DBOOK2D(RCHEvsPt,#DeltaE/E (charged had) vs P_{T},250, 0, 500, 120,-1,2);
00141 DBOOK2D(RNHEvsPt,#DeltaE/E (neutral had) vs P_{T},250, 0, 500, 120,-1,2);
00142 DBOOK2D(RNEEvsPt,#DeltaE/E (neutral em) vs P_{T},250, 0, 500, 120,-1,2);
00143 DBOOK2D(RneutvsPt,#DeltaE/E (neutral) vs P_{T},250, 0, 500, 120,-1,2);
00144 DBOOK2D(NCHvsPt,N_{charged} vs P_{T},250,0,500,200,0.,200.);
00145 DBOOK2D(NCH0vsPt, N_{charged} vs P_{T} iter 0,250,0,500,200,0.,200.);
00146 DBOOK2D(NCH1vsPt, N_{charged} vs P_{T} iter 1,250,0,500,200,0.,200.);
00147 DBOOK2D(NCH2vsPt, N_{charged} vs P_{T} iter 2,250,0,500,200,0.,200.);
00148 DBOOK2D(NCH3vsPt, N_{charged} vs P_{T} iter 3,250,0,500,200,0.,200.);
00149 DBOOK2D(NCH4vsPt, N_{charged} vs P_{T} iter 4,250,0,500,200,0.,200.);
00150 DBOOK2D(NCH5vsPt, N_{charged} vs P_{T} iter 5,250,0,500,200,0.,200.);
00151 DBOOK2D(NCH6vsPt, N_{charged} vs P_{T} iter 6,250,0,500,200,0.,200.);
00152
00153
00154 DBOOK2D(RNEUTvsP,#DeltaE/E (ECAL+HCAL) vs P,250, 0, 1000, 150,-1.5,1.5);
00155 DBOOK2D(RNONLvsP,#DeltaE/E (ECAL+HCAL-only) vs P,250, 0, 1000, 150,-1.5,1.5);
00156 DBOOK2D(RHCALvsP,#DeltaE/E (HCAL) vs P,250, 0, 1000, 150,-1.5,1.5);
00157 DBOOK2D(RHONLvsP,#DeltaE/E (HCAL only) vs P,250, 0, 1000, 150,-1.5,1.5);
00158 DBOOK1D(RPt20_40,#DeltaP_{T}/P_{T},80,-1,1);
00159 DBOOK1D(RPt40_60,#DeltaP_{T}/P_{T},80,-1,1);
00160 DBOOK1D(RPt60_80,#DeltaP_{T}/P_{T},80,-1,1);
00161 DBOOK1D(RPt80_100,#DeltaP_{T}/P_{T},80,-1,1);
00162 DBOOK1D(RPt100_150,#DeltaP_{T}/P_{T},80,-1,1);
00163 DBOOK1D(RPt150_200,#DeltaP_{T}/P_{T},80,-1,1);
00164 DBOOK1D(RPt200_250,#DeltaP_{T}/P_{T},80,-1,1);
00165 DBOOK1D(RPt250_300,#DeltaP_{T}/P_{T},80,-1,1);
00166 DBOOK1D(RPt300_400,#DeltaP_{T}/P_{T},160,-1,1);
00167 DBOOK1D(RPt400_500,#DeltaP_{T}/P_{T},160,-1,1);
00168 DBOOK1D(RPt500_750,#DeltaP_{T}/P_{T},160,-1,1);
00169 DBOOK1D(RPt750_1250,#DeltaP_{T}/P_{T},160,-1,1);
00170 DBOOK1D(RPt1250_2000,#DeltaP_{T}/P_{T},160,-1,1);
00171 DBOOK1D(RPt2000_5000,#DeltaP_{T}/P_{T},160,-1,1);
00172
00173 DBOOK2D(DEtavsPt,#Delta#eta vs P_{T},1000,0,2000,500,-0.5,0.5);
00174 DBOOK2D(DPhivsPt,#Delta#phi vs P_{T},1000,0,2000,500,-0.5,0.5);
00175 BOOK2D(DEtavsEta,"#Delta#eta vs P_{T}",1000,-5.,+5.,500,-0.5,0.5);
00176 BOOK2D(DPhivsEta,"#Delta#phi vs P_{T}",1000,-5.,+5.,500,-0.5,0.5);
00177
00178
00179
00180
00181 SETAXES(Njets,"","Multiplicity");
00182 SETAXES(jetsPt, PT, "Number of Events");
00183 SETAXES(jetsEta, "#eta", "Number of Events");
00184 SETAXES(RNeutvsEta, "#eta", "#DeltaE/E (Neutral)");
00185 SETAXES(RNEUTvsEta, "#eta", "#DeltaE/E (ECAL+HCAL)");
00186 SETAXES(RNONLvsEta, "#eta", "#DeltaE/E (ECAL+HCAL-only)");
00187 SETAXES(RHCALvsEta, "#eta", "#DeltaE/E (HCAL)");
00188 SETAXES(RHONLvsEta, "#eta", "#DeltaE/E (HCAL Only)");
00189 SETAXES(RCHEvsEta, "#eta", "#DeltaE/E (Charged)");
00190 SETAXES(RPtvsEta, "#eta", "#DeltaP_{T}/P_{T}");
00191 SETAXES(DEtavsEta, "#eta", "#Delta#eta");
00192 SETAXES(DPhivsEta,"#eta", "#Delta#phi");
00193
00194 DSETAXES(RPt, "#DeltaP_{T}/P_{T}", "Events");
00195 DSETAXES(RPt20_40, "#DeltaP_{T}/P_{T}", "Events");
00196 DSETAXES(RPt40_60, "#DeltaP_{T}/P_{T}", "Events");
00197 DSETAXES(RPt60_80, "#DeltaP_{T}/P_{T}", "Events");
00198 DSETAXES(RPt80_100, "#DeltaP_{T}/P_{T}", "Events");
00199 DSETAXES(RPt100_150, "#DeltaP_{T}/P_{T}", "Events");
00200 DSETAXES(RPt150_200, "#DeltaP_{T}/P_{T}", "Events");
00201 DSETAXES(RPt200_250, "#DeltaP_{T}/P_{T}", "Events");
00202 DSETAXES(RPt250_300, "#DeltaP_{T}/P_{T}", "Events");
00203 DSETAXES(RPt300_400, "#DeltaP_{T}/P_{T}", "Events");
00204 DSETAXES(RPt400_500, "#DeltaP_{T}/P_{T}", "Events");
00205 DSETAXES(RPt500_750, "#DeltaP_{T}/P_{T}", "Events");
00206 DSETAXES(RPt750_1250, "#DeltaP_{T}/P_{T}", "Events");
00207 DSETAXES(RPt1250_2000, "#DeltaP_{T}/P_{T}", "Events");
00208 DSETAXES(RPt2000_5000, "#DeltaP_{T}/P_{T}", "Events");
00209 DSETAXES(RCHE, "#DeltaE/E(charged had)", "Events");
00210 DSETAXES(RNHE, "#DeltaE/E(neutral had)", "Events");
00211 DSETAXES(RNEE, "#DeltaE/E(neutral em)", "Events");
00212 DSETAXES(Rneut, "#DeltaE/E(neutral)", "Events");
00213 DSETAXES(RPtvsPt, PT, "#DeltaP_{T}/P_{T}");
00214 DSETAXES(RCHEvsPt, PT, "#DeltaE/E(charged had)");
00215 DSETAXES(RNHEvsPt, PT, "#DeltaE/E(neutral had)");
00216 DSETAXES(RNEEvsPt, PT, "#DeltaE/E(neutral em)");
00217 DSETAXES(RneutvsPt, PT, "#DeltaE/E(neutral)");
00218 DSETAXES(RHCALvsP, P, "#DeltaE/E(HCAL)");
00219 DSETAXES(RHONLvsP, P, "#DeltaE/E(HCAL-only)");
00220 DSETAXES(RNEUTvsP, P, "#DeltaE/E(ECAL+HCAL)");
00221 DSETAXES(RNONLvsP, P, "#DeltaE/E(ECAL+HCAL-only)");
00222 DSETAXES(DEtavsPt, PT, "#Delta#eta");
00223 DSETAXES(DPhivsPt, PT, "#Delta#phi");
00224
00225 }
00226
00227
00228 void PFJetBenchmark::process(const reco::PFJetCollection& pfJets, const reco::GenJetCollection& genJets) {
00229
00230 resPtMax_ = 0.;
00231 resChargedHadEnergyMax_ = 0.;
00232 resNeutralHadEnergyMax_ = 0.;
00233 resNeutralEmEnergyMax_ = 0.;
00234 int NPFJets = 0;
00235
00236 for(unsigned i=0; i<pfJets.size(); i++) {
00237
00238
00239 unsigned highJets = 0;
00240 for(unsigned j=0; j<pfJets.size(); j++) {
00241 if ( j != i && pfJets[j].pt() > pfJets[i].pt() ) highJets++;
00242 }
00243 if ( onlyTwoJets_ && highJets > 1 ) continue;
00244
00245
00246 const reco::PFJet& pfj = pfJets[i];
00247 double rec_pt = pfj.pt();
00248 double rec_eta = pfj.eta();
00249 double rec_phi = pfj.phi();
00250
00251
00252 if (rec_pt<recPt_cut and recPt_cut != -1.) continue;
00253
00254 if (fabs(rec_eta)>maxEta_cut and maxEta_cut != -1.) continue;
00255
00256 NPFJets++;
00257
00258
00259 hNjets->Fill(NPFJets);
00260 hjetsPt->Fill(rec_pt);
00261 hjetsEta->Fill(rec_eta);
00262
00263
00264 bool Barrel = false;
00265 bool Endcap = false;
00266 bool Forward = false;
00267 if (std::abs(rec_eta) < 1.4 ) Barrel = true;
00268 if (std::abs (rec_eta) > 1.6 && std::abs (rec_eta) < 2.4 ) Endcap = true;
00269 if (std::abs (rec_eta) > 3.3 && std::abs (rec_eta) < 4.7 ) Forward = true;
00270
00271
00272
00273
00274
00275 const GenJet *truth = algo_->matchByDeltaR(&pfj,&genJets);
00276 if(!truth) continue;
00277 double deltaR = algo_->deltaR(&pfj, truth);
00278
00279 if(deltaR < deltaRMax_ || deltaRMax_ == -1.0 ) {
00280
00281
00282 double pt_denom;
00283 double true_E = truth->p();
00284 double true_pt = truth->pt();
00285 double true_eta = truth->eta();
00286 double true_phi = truth->phi();
00287
00288 if (plotAgainstReco_) {pt_denom = rec_pt;}
00289 else {pt_denom = true_pt;}
00290
00291 double true_ChargedHadEnergy;
00292 double true_NeutralHadEnergy;
00293 double true_NeutralEmEnergy;
00294 gettrue (truth, true_ChargedHadEnergy, true_NeutralHadEnergy, true_NeutralEmEnergy);
00295 double true_NeutralEnergy = true_NeutralHadEnergy + true_NeutralEmEnergy;
00296 double rec_ChargedHadEnergy = pfj.chargedHadronEnergy();
00297 double rec_NeutralHadEnergy = pfj.neutralHadronEnergy();
00298 double rec_NeutralEmEnergy = pfj.neutralEmEnergy();
00299 double rec_NeutralEnergy = rec_NeutralHadEnergy + rec_NeutralEmEnergy;
00300 double rec_ChargedMultiplicity = pfj.chargedMultiplicity();
00301 std::vector <PFCandidatePtr> constituents = pfj.getPFConstituents ();
00302 std::vector <unsigned int> chMult(7, static_cast<unsigned int>(0));
00303 for (unsigned ic = 0; ic < constituents.size (); ++ic) {
00304 if ( constituents[ic]->particleId() > 3 ) continue;
00305 reco::TrackRef trackRef = constituents[ic]->trackRef();
00306 if ( trackRef.isNull() ) {
00307
00308
00309
00310 continue;
00311 }
00312 unsigned int iter = 0;
00313 switch (trackRef->algo()) {
00314 case TrackBase::ctf:
00315 case TrackBase::iter0:
00316 iter = 0;
00317 break;
00318 case TrackBase::iter1:
00319 iter = 1;
00320 break;
00321 case TrackBase::iter2:
00322 iter = 2;
00323 break;
00324 case TrackBase::iter3:
00325 iter = 3;
00326 break;
00327 case TrackBase::iter4:
00328 iter = 4;
00329 break;
00330 case TrackBase::iter5:
00331 iter = 5;
00332 break;
00333 default:
00334 iter = 6;
00335 std::cout << "Warning in entry " << entry_ << " : iter = 6... " << std::endl;
00336 break;
00337 }
00338 ++(chMult[iter]);
00339 }
00340
00341 bool plot1 = false;
00342 bool plot2 = false;
00343 bool plot3 = false;
00344 bool plot4 = false;
00345 bool plot5 = false;
00346 bool plot6 = false;
00347 bool plot7 = false;
00348 double cut1 = 0.0001;
00349 double cut2 = 0.0001;
00350 double cut3 = 0.0001;
00351 double cut4 = 0.0001;
00352 double cut5 = 0.0001;
00353 double cut6 = 0.0001;
00354 double cut7 = 0.0001;
00355 double resPt =0.;
00356 double resChargedHadEnergy= 0.;
00357 double resNeutralHadEnergy= 0.;
00358 double resNeutralEmEnergy= 0.;
00359 double resNeutralEnergy= 0.;
00360
00361 double resHCALEnergy = 0.;
00362 double resNEUTEnergy = 0.;
00363 if ( rec_NeutralHadEnergy > cut6 && rec_ChargedHadEnergy < cut1 ) {
00364 double true_NEUTEnergy = true_NeutralHadEnergy + true_NeutralEmEnergy;
00365 double true_HCALEnergy = true_NEUTEnergy - rec_NeutralEmEnergy;
00366 double rec_NEUTEnergy = rec_NeutralHadEnergy+rec_NeutralEmEnergy;
00367 double rec_HCALEnergy = rec_NeutralHadEnergy;
00368 resHCALEnergy = (rec_HCALEnergy-true_HCALEnergy)/rec_HCALEnergy;
00369 resNEUTEnergy = (rec_NEUTEnergy-true_NEUTEnergy)/rec_NEUTEnergy;
00370 if ( rec_NeutralEmEnergy > cut7 ) {
00371 plot6 = true;
00372 } else {
00373 plot7 = true;
00374 }
00375 }
00376
00377
00378 if (true_pt > 0.0001){
00379 resPt = (rec_pt -true_pt)/true_pt ;
00380 plot1 = true;}
00381 if (true_ChargedHadEnergy > cut1){
00382 resChargedHadEnergy = (rec_ChargedHadEnergy- true_ChargedHadEnergy)/true_ChargedHadEnergy;
00383 plot2 = true;}
00384 if (true_NeutralHadEnergy > cut2){
00385 resNeutralHadEnergy = (rec_NeutralHadEnergy- true_NeutralHadEnergy)/true_NeutralHadEnergy;
00386 plot3 = true;}
00387 else
00388 if (rec_NeutralHadEnergy > cut3){
00389 resNeutralHadEnergy = (rec_NeutralHadEnergy- true_NeutralHadEnergy)/rec_NeutralHadEnergy;
00390 plot3 = true;}
00391 if (true_NeutralEmEnergy > cut4){
00392 resNeutralEmEnergy = (rec_NeutralEmEnergy- true_NeutralEmEnergy)/true_NeutralEmEnergy;
00393 plot4 = true;}
00394 if (true_NeutralEnergy > cut5){
00395 resNeutralEnergy = (rec_NeutralEnergy- true_NeutralEnergy)/true_NeutralEnergy;
00396 plot5 = true;}
00397
00398
00399
00400
00401
00402 if ( ( resPt > 0.2 && true_pt > 100. ) ||
00403 ( resPt < -0.5 && true_pt > 100. ) ) {
00404
00405
00406
00407 std::cout << "Entry " << entry_
00408 << " resPt = " << resPt
00409 <<" resCharged " << resChargedHadEnergy
00410 <<" resNeutralHad " << resNeutralHadEnergy
00411 << " resNeutralEm " << resNeutralEmEnergy
00412 << " pT (T/R) " << true_pt << "/" << rec_pt
00413 << " Eta (T/R) " << truth->eta() << "/" << rec_eta
00414 << " Phi (T/R) " << truth->phi() << "/" << rec_phi
00415 << std::endl;
00416
00417
00418 const reco::PFJet* pfoj = 0;
00419 double dRo = 1E9;
00420 for(unsigned j=0; j<pfJets.size(); j++) {
00421 const reco::PFJet& pfo = pfJets[j];
00422 if ( j != i && algo_->deltaR(&pfj,&pfo) < dRo && pfo.pt() > 0.25*pfj.pt()) {
00423 dRo = algo_->deltaR(&pfj,&pfo);
00424 pfoj = &pfo;
00425 }
00426 }
00427
00428
00429 math::XYZTLorentzVector overlappinGenJet(0.,0.,0.,0.);
00430 const reco::GenJet* genoj = 0;
00431 double dRgo = 1E9;
00432 for(unsigned j=0; j<genJets.size(); j++) {
00433 const reco::GenJet* gjo = &(genJets[j]);
00434 if ( gjo != truth && algo_->deltaR(truth,gjo) < dRgo && gjo->pt() > 0.25*truth->pt() ) {
00435 dRgo = algo_->deltaR(truth,gjo);
00436 genoj = gjo;
00437 }
00438 }
00439
00440 if ( dRo < 0.8 && dRgo < 0.8 && algo_->deltaR(genoj,pfoj) < 2.*deltaRMax_ )
00441 std::cout << "Excess probably due to overlapping jets (DR = " << algo_->deltaR(genoj,pfoj) << "),"
00442 << " at DeltaR(T/R) = " << dRgo << "/" << dRo
00443 << " with pT(T/R) " << genoj->pt() << "/" << pfoj->pt()
00444 << " and Eta (T/R) " << genoj->eta() << "/" << pfoj->eta()
00445 << " and Phi (T/R) " << genoj->phi() << "/" << pfoj->phi()
00446 << std::endl;
00447 }
00448
00449 if(std::abs(resPt) > std::abs(resPtMax_)) resPtMax_ = resPt;
00450 if(std::abs(resChargedHadEnergy) > std::abs(resChargedHadEnergyMax_) ) resChargedHadEnergyMax_ = resChargedHadEnergy;
00451 if(std::abs(resNeutralHadEnergy) > std::abs(resNeutralHadEnergyMax_) ) resNeutralHadEnergyMax_ = resNeutralHadEnergy;
00452 if(std::abs(resNeutralEmEnergy) > std::abs(resNeutralEmEnergyMax_) ) resNeutralEmEnergyMax_ = resNeutralEmEnergy;
00453 if (debug_) {
00454 cout << i <<" =========PFJet Pt "<< rec_pt
00455 << " eta " << rec_eta
00456 << " phi " << rec_phi
00457 << " Charged Had Energy " << rec_ChargedHadEnergy
00458 << " Neutral Had Energy " << rec_NeutralHadEnergy
00459 << " Neutral elm Energy " << rec_NeutralEmEnergy << endl;
00460 cout << " matching Gen Jet Pt " << true_pt
00461 << " eta " << truth->eta()
00462 << " phi " << truth->phi()
00463 << " Charged Had Energy " << true_ChargedHadEnergy
00464 << " Neutral Had Energy " << true_NeutralHadEnergy
00465 << " Neutral elm Energy " << true_NeutralEmEnergy << endl;
00466 printPFJet(&pfj);
00467
00468 printGenJet(truth);
00469
00470
00471 cout << "==============deltaR " << deltaR << " resPt " << resPt
00472 << " resChargedHadEnergy " << resChargedHadEnergy
00473 << " resNeutralHadEnergy " << resNeutralHadEnergy
00474 << " resNeutralEmEnergy " << resNeutralEmEnergy
00475 << endl;
00476 }
00477
00478
00479 if(plot1) {
00480 if ( rec_eta > 0. )
00481 hDEtavsEta->Fill(true_eta,rec_eta-true_eta);
00482 else
00483 hDEtavsEta->Fill(true_eta,-rec_eta+true_eta);
00484 hDPhivsEta->Fill(true_eta,rec_phi-true_phi);
00485
00486 hRPtvsEta->Fill(true_eta, resPt);
00487 hNCHvsEta->Fill(true_eta, rec_ChargedMultiplicity);
00488 hNCH0vsEta->Fill(true_eta,chMult[0]);
00489 hNCH1vsEta->Fill(true_eta,chMult[1]);
00490 hNCH2vsEta->Fill(true_eta,chMult[2]);
00491 hNCH3vsEta->Fill(true_eta,chMult[3]);
00492 hNCH4vsEta->Fill(true_eta,chMult[4]);
00493 hNCH5vsEta->Fill(true_eta,chMult[5]);
00494 hNCH6vsEta->Fill(true_eta,chMult[6]);
00495 }
00496 if(plot2)hRCHEvsEta->Fill(true_eta, resChargedHadEnergy);
00497 if(plot5)hRNeutvsEta->Fill(true_eta, resNeutralEnergy);
00498 if(plot6) {
00499 hRHCALvsEta->Fill(true_eta, resHCALEnergy);
00500 hRNEUTvsEta->Fill(true_eta, resNEUTEnergy);
00501 }
00502 if(plot7) {
00503 hRHONLvsEta->Fill(true_eta, resHCALEnergy);
00504 hRNONLvsEta->Fill(true_eta, resNEUTEnergy);
00505 }
00506
00507
00508
00509 if (Barrel){
00510 if(plot1) {
00511 hBRPt->Fill (resPt);
00512 if ( pt_denom > 20. && pt_denom < 40. ) hBRPt20_40->Fill (resPt);
00513 if ( pt_denom > 40. && pt_denom < 60. ) hBRPt40_60->Fill (resPt);
00514 if ( pt_denom > 60. && pt_denom < 80. ) hBRPt60_80->Fill (resPt);
00515 if ( pt_denom > 80. && pt_denom < 100. ) hBRPt80_100->Fill (resPt);
00516 if ( pt_denom > 100. && pt_denom < 150. ) hBRPt100_150->Fill (resPt);
00517 if ( pt_denom > 150. && pt_denom < 200. ) hBRPt150_200->Fill (resPt);
00518 if ( pt_denom > 200. && pt_denom < 250. ) hBRPt200_250->Fill (resPt);
00519 if ( pt_denom > 250. && pt_denom < 300. ) hBRPt250_300->Fill (resPt);
00520 if ( pt_denom > 300. && pt_denom < 400. ) hBRPt300_400->Fill (resPt);
00521 if ( pt_denom > 400. && pt_denom < 500. ) hBRPt400_500->Fill (resPt);
00522 if ( pt_denom > 500. && pt_denom < 750. ) hBRPt500_750->Fill (resPt);
00523 if ( pt_denom > 750. && pt_denom < 1250. ) hBRPt750_1250->Fill (resPt);
00524 if ( pt_denom > 1250. && pt_denom < 2000. ) hBRPt1250_2000->Fill (resPt);
00525 if ( pt_denom > 2000. && pt_denom < 5000. ) hBRPt2000_5000->Fill (resPt);
00526 hBNCH->Fill(rec_ChargedMultiplicity);
00527 hBNCH0vsPt->Fill(pt_denom,chMult[0]);
00528 hBNCH1vsPt->Fill(pt_denom,chMult[1]);
00529 hBNCH2vsPt->Fill(pt_denom,chMult[2]);
00530 hBNCH3vsPt->Fill(pt_denom,chMult[3]);
00531 hBNCH4vsPt->Fill(pt_denom,chMult[4]);
00532 hBNCH5vsPt->Fill(pt_denom,chMult[5]);
00533 hBNCH6vsPt->Fill(pt_denom,chMult[6]);
00534 hBNCHvsPt->Fill(pt_denom,rec_ChargedMultiplicity);
00535 if ( rec_eta > 0. )
00536 hBDEtavsPt->Fill(pt_denom,rec_eta-true_eta);
00537 else
00538 hBDEtavsPt->Fill(pt_denom,-rec_eta+true_eta);
00539 hBDPhivsPt->Fill(pt_denom,rec_phi-true_phi);
00540 }
00541 if(plot2)hBRCHE->Fill(resChargedHadEnergy);
00542 if(plot3)hBRNHE->Fill(resNeutralHadEnergy);
00543 if(plot4)hBRNEE->Fill(resNeutralEmEnergy);
00544 if(plot5)hBRneut->Fill(resNeutralEnergy);
00545 if(plot1)hBRPtvsPt->Fill(pt_denom, resPt);
00546 if(plot2)hBRCHEvsPt->Fill(pt_denom, resChargedHadEnergy);
00547 if(plot3)hBRNHEvsPt->Fill(pt_denom, resNeutralHadEnergy);
00548 if(plot4)hBRNEEvsPt->Fill(pt_denom, resNeutralEmEnergy);
00549 if(plot5)hBRneutvsPt->Fill(pt_denom, resNeutralEnergy);
00550 if(plot6) {
00551 hBRHCALvsP->Fill(true_E, resHCALEnergy);
00552 hBRNEUTvsP->Fill(true_E, resNEUTEnergy);
00553 }
00554 if(plot7) {
00555 hBRHONLvsP->Fill(true_E, resHCALEnergy);
00556 hBRNONLvsP->Fill(true_E, resNEUTEnergy);
00557 }
00558
00559 }
00560
00561 if (Endcap){
00562 if(plot1) {
00563 hERPt->Fill (resPt);
00564 if ( pt_denom > 20. && pt_denom < 40. ) hERPt20_40->Fill (resPt);
00565 if ( pt_denom > 40. && pt_denom < 60. ) hERPt40_60->Fill (resPt);
00566 if ( pt_denom > 60. && pt_denom < 80. ) hERPt60_80->Fill (resPt);
00567 if ( pt_denom > 80. && pt_denom < 100. ) hERPt80_100->Fill (resPt);
00568 if ( pt_denom > 100. && pt_denom < 150. ) hERPt100_150->Fill (resPt);
00569 if ( pt_denom > 150. && pt_denom < 200. ) hERPt150_200->Fill (resPt);
00570 if ( pt_denom > 200. && pt_denom < 250. ) hERPt200_250->Fill (resPt);
00571 if ( pt_denom > 250. && pt_denom < 300. ) hERPt250_300->Fill (resPt);
00572 if ( pt_denom > 300. && pt_denom < 400. ) hERPt300_400->Fill (resPt);
00573 if ( pt_denom > 400. && pt_denom < 500. ) hERPt400_500->Fill (resPt);
00574 if ( pt_denom > 500. && pt_denom < 750. ) hERPt500_750->Fill (resPt);
00575 if ( pt_denom > 750. && pt_denom < 1250. ) hERPt750_1250->Fill (resPt);
00576 if ( pt_denom > 1250. && pt_denom < 2000. ) hERPt1250_2000->Fill (resPt);
00577 if ( pt_denom > 2000. && pt_denom < 5000. ) hERPt2000_5000->Fill (resPt);
00578 hENCH->Fill(rec_ChargedMultiplicity);
00579 hENCHvsPt->Fill(pt_denom,rec_ChargedMultiplicity);
00580 hENCH0vsPt->Fill(pt_denom,chMult[0]);
00581 hENCH1vsPt->Fill(pt_denom,chMult[1]);
00582 hENCH2vsPt->Fill(pt_denom,chMult[2]);
00583 hENCH3vsPt->Fill(pt_denom,chMult[3]);
00584 hENCH4vsPt->Fill(pt_denom,chMult[4]);
00585 hENCH5vsPt->Fill(pt_denom,chMult[5]);
00586 hENCH6vsPt->Fill(pt_denom,chMult[6]);
00587 if ( rec_eta > 0. )
00588 hEDEtavsPt->Fill(pt_denom,rec_eta-true_eta);
00589 else
00590 hEDEtavsPt->Fill(pt_denom,-rec_eta+true_eta);
00591 hEDPhivsPt->Fill(pt_denom,rec_phi-true_phi);
00592 }
00593 if(plot2)hERCHE->Fill(resChargedHadEnergy);
00594 if(plot3)hERNHE->Fill(resNeutralHadEnergy);
00595 if(plot4)hERNEE->Fill(resNeutralEmEnergy);
00596 if(plot5)hERneut->Fill(resNeutralEnergy);
00597 if(plot1)hERPtvsPt->Fill(pt_denom, resPt);
00598 if(plot2)hERCHEvsPt->Fill(pt_denom, resChargedHadEnergy);
00599 if(plot3)hERNHEvsPt->Fill(pt_denom, resNeutralHadEnergy);
00600 if(plot4)hERNEEvsPt->Fill(pt_denom, resNeutralEmEnergy);
00601 if(plot5)hERneutvsPt->Fill(pt_denom, resNeutralEnergy);
00602 if(plot6) {
00603 hERHCALvsP->Fill(true_E, resHCALEnergy);
00604 hERNEUTvsP->Fill(true_E, resNEUTEnergy);
00605 }
00606 if(plot7) {
00607 hERHONLvsP->Fill(true_E, resHCALEnergy);
00608 hERNONLvsP->Fill(true_E, resNEUTEnergy);
00609 }
00610 }
00611
00612 if (Forward){
00613 if(plot1) {
00614 hFRPt->Fill (resPt);
00615 if ( pt_denom > 20. && pt_denom < 40. ) hFRPt20_40->Fill (resPt);
00616 if ( pt_denom > 40. && pt_denom < 60. ) hFRPt40_60->Fill (resPt);
00617 if ( pt_denom > 60. && pt_denom < 80. ) hFRPt60_80->Fill (resPt);
00618 if ( pt_denom > 80. && pt_denom < 100. ) hFRPt80_100->Fill (resPt);
00619 if ( pt_denom > 100. && pt_denom < 150. ) hFRPt100_150->Fill (resPt);
00620 if ( pt_denom > 150. && pt_denom < 200. ) hFRPt150_200->Fill (resPt);
00621 if ( pt_denom > 200. && pt_denom < 250. ) hFRPt200_250->Fill (resPt);
00622 if ( pt_denom > 250. && pt_denom < 300. ) hFRPt250_300->Fill (resPt);
00623 if ( pt_denom > 300. && pt_denom < 400. ) hFRPt300_400->Fill (resPt);
00624 if ( pt_denom > 400. && pt_denom < 500. ) hFRPt400_500->Fill (resPt);
00625 if ( pt_denom > 500. && pt_denom < 750. ) hFRPt500_750->Fill (resPt);
00626 if ( pt_denom > 750. && pt_denom < 1250. ) hFRPt750_1250->Fill (resPt);
00627 if ( pt_denom > 1250. && pt_denom < 2000. ) hFRPt1250_2000->Fill (resPt);
00628 if ( pt_denom > 2000. && pt_denom < 5000. ) hFRPt2000_5000->Fill (resPt);
00629 if ( rec_eta > 0. )
00630 hFDEtavsPt->Fill(pt_denom,rec_eta-true_eta);
00631 else
00632 hFDEtavsPt->Fill(pt_denom,-rec_eta+true_eta);
00633 hFDPhivsPt->Fill(pt_denom,rec_phi-true_phi);
00634 }
00635 if(plot2)hFRCHE->Fill(resChargedHadEnergy);
00636 if(plot3)hFRNHE->Fill(resNeutralHadEnergy);
00637 if(plot4)hFRNEE->Fill(resNeutralEmEnergy);
00638 if(plot5)hFRneut->Fill(resNeutralEnergy);
00639 if(plot1)hFRPtvsPt->Fill(pt_denom, resPt);
00640 if(plot2)hFRCHEvsPt->Fill(pt_denom, resChargedHadEnergy);
00641 if(plot3)hFRNHEvsPt->Fill(pt_denom, resNeutralHadEnergy);
00642 if(plot4)hFRNEEvsPt->Fill(pt_denom, resNeutralEmEnergy);
00643 if(plot5)hFRneutvsPt->Fill(pt_denom, resNeutralEnergy);
00644 if(plot6) {
00645 hFRHCALvsP->Fill(true_E, resHCALEnergy);
00646 hFRNEUTvsP->Fill(true_E, resNEUTEnergy);
00647 }
00648 if(plot7) {
00649 hFRHONLvsP->Fill(true_E, resHCALEnergy);
00650 hFRNONLvsP->Fill(true_E, resNEUTEnergy);
00651 }
00652 }
00653 }
00654
00655 }
00656
00657
00658 entry_++;
00659 }
00660
00661 void PFJetBenchmark::gettrue (const reco::GenJet* truth, double& true_ChargedHadEnergy,
00662 double& true_NeutralHadEnergy, double& true_NeutralEmEnergy){
00663 std::vector <const GenParticle*> mcparts = truth->getGenConstituents ();
00664 true_NeutralEmEnergy = 0.;
00665 true_ChargedHadEnergy = 0.;
00666 true_NeutralHadEnergy = 0.;
00667
00668 for (unsigned i = 0; i < mcparts.size (); i++) {
00669 const GenParticle* mcpart = mcparts[i];
00670 int PDG = std::abs( mcpart->pdgId());
00671 double e = mcpart->energy();
00672 switch(PDG){
00673 case 22:
00674 true_NeutralEmEnergy += e;
00675 break;
00676 case 211:
00677 case 321:
00678 case 2212:
00679 case 11:
00680 true_ChargedHadEnergy += e;
00681 break;
00682 case 310:
00683 case 130:
00684 case 3122:
00685 case 2112:
00686 true_NeutralHadEnergy += e;
00687 default:
00688 break;
00689 }
00690 }
00691 }
00692
00693 void PFJetBenchmark::printPFJet(const reco::PFJet* pfj){
00694 cout<<setiosflags(ios::right);
00695 cout<<setiosflags(ios::fixed);
00696 cout<<setprecision(3);
00697
00698 cout << "PFJet p/px/py/pz/pt: " << pfj->p() << "/" << pfj->px ()
00699 << "/" << pfj->py() << "/" << pfj->pz() << "/" << pfj->pt() << endl
00700 << " eta/phi: " << pfj->eta () << "/" << pfj->phi () << endl
00701 << " PFJet specific:" << std::endl
00702 << " charged/neutral hadrons energy: " << pfj->chargedHadronEnergy () << '/' << pfj->neutralHadronEnergy () << endl
00703 << " charged/neutral em energy: " << pfj->chargedEmEnergy () << '/' << pfj->neutralEmEnergy () << endl
00704 << " charged muon energy: " << pfj->chargedMuEnergy () << '/' << endl
00705 << " charged/neutral multiplicity: " << pfj->chargedMultiplicity () << '/' << pfj->neutralMultiplicity () << endl;
00706
00707
00708 std::cout << pfj->print() << std::endl;
00709
00710 cout<<resetiosflags(ios::right|ios::fixed);
00711 }
00712
00713
00714 void PFJetBenchmark::printGenJet (const reco::GenJet* truth){
00715 std::vector <const GenParticle*> mcparts = truth->getGenConstituents ();
00716 cout << "GenJet p/px/py/pz/pt: " << truth->p() << '/' << truth->px ()
00717 << '/' << truth->py() << '/' << truth->pz() << '/' << truth->pt() << endl
00718 << " eta/phi: " << truth->eta () << '/' << truth->phi () << endl
00719 << " # of constituents: " << mcparts.size() << endl;
00720 cout << " constituents:" << endl;
00721 for (unsigned i = 0; i < mcparts.size (); i++) {
00722 const GenParticle* mcpart = mcparts[i];
00723 cout << " #" << i << " PDG code:" << mcpart->pdgId()
00724 << ", p/pt/eta/phi: " << mcpart->p() << '/' << mcpart->pt()
00725 << '/' << mcpart->eta() << '/' << mcpart->phi() << endl;
00726 }
00727 }
00728