CMS 3D CMS Logo

Public Member Functions | Public Attributes | Private Attributes

PulseFitWithShape Class Reference

#include <PulseFitWithShape.h>

List of all members.

Public Member Functions

virtual double doFit (double *, double *cova=0)
double getAmpl ()
double getTime ()
virtual void init (int, int, int, int, int, std::vector< double >, double)
 PulseFitWithShape ()
virtual ~PulseFitWithShape ()

Public Attributes

double fAmp_fitted_max
double fTim_fitted_max

Private Attributes

std::vector< double > dshape
int fNb_iter
double fNoise
int fNsamples
int fNsamplesShape
int fNum_samp_after_max
int fNum_samp_bef_max
std::vector< double > pshape

Detailed Description

Definition at line 10 of file PulseFitWithShape.h.


Constructor & Destructor Documentation

PulseFitWithShape::PulseFitWithShape ( )
PulseFitWithShape::~PulseFitWithShape ( ) [virtual]

Definition at line 32 of file PulseFitWithShape.cc.

{ 
}

Member Function Documentation

double PulseFitWithShape::doFit ( double *  adc,
double *  cova = 0 
) [virtual]

Definition at line 63 of file PulseFitWithShape.cc.

References trackerHits::c, ExpressReco_HICollisions_FallBack::chi2, dshape, fAmp_fitted_max, fNb_iter, fNoise, fNsamples, fNsamplesShape, fNum_samp_after_max, fNum_samp_bef_max, fTim_fitted_max, i, j, pshape, q1, q2, and indexGen::s2.

{

  // xpar = fit paramaters
  //     [0] = signal amplitude
  //     [1] = residual pedestal
  //     [2] = clock phase

  bool useCova=true;
  if(cova==0) useCova=false;

  double xpar[3]; 
  double chi2;

  fAmp_fitted_max = 0. ;
  fTim_fitted_max = 0. ;
  
  // for now don't fit pedestal

  xpar[1]=0.0;
  
  // Sample noise. If the cova matrix is defined, use it :

  double noise=fNoise;
  //if(cova[0] > 0.) noise=1./sqrt(cova[0]);
  
  xpar[0]=0.;
  xpar[2]=0.;


  // first locate max:

  int imax=0;
  double amax=0.0;
  for(int i=0; i<fNsamples; i++){
    if (adc[i]>amax){
      amax=adc[i];
      imax=i;
    }
  }
  
  // Shift pulse shape and calculate its derivative:
  
  double qms=0.;
  int ims=0;
  
  // 1) search for maximum
  
  for(int is=0; is<fNsamplesShape; is++){
    if(pshape[is] > qms){
      qms=pshape[is];
      ims=is;
    }

  // 2) compute shape derivative :
    
    if(is < fNsamplesShape-2)
      dshape[is]= (pshape[is+2]-pshape[is])*12.5;
    else
      dshape[is]=dshape[is-1]; 
  }

  // 3) compute pol2 max

  double sq1=pshape[ims-1];
  double sq2=pshape[ims];
  double sq3=pshape[ims+1];
  
  double a2=(sq3+sq1)/2.0-sq2;
  double a1=sq2-sq1+a2*(1-2*ims);
 
  
  double t_ims=0;
  if(a2!=0) t_ims=-a1/(2.0*a2);


  // Starting point of the fit : qmax and tmax given by a
  // P2 fit on 3 max samples.
  
  double qm=0.;
  int im=0;
 
  int nsamplef=fNum_samp_bef_max + fNum_samp_after_max +1 ; // number of samples used in the fit
  int nsampleo=imax-fNum_samp_bef_max;  // first sample number = sample max-fNum_samp_bef_max 
  
  for(int is=0; is<nsamplef; is++){

    if(adc[is+nsampleo] > qm){
      qm=adc[is+nsampleo];
      im=nsampleo+is;
    }
  }

  double tm;
  if(qm > 5.*noise){
    if(im >= nsamplef+nsampleo) im=nsampleo+nsamplef-1;
    double q1=adc[im-1];
    double q2=adc[im];
    double q3=adc[im+1];
    double y2=(q1+q3)/2.-q2;
    double y1=q2-q1+y2*(1-2*im);
    double y0=q2-y1*(double)im-y2*(double)(im*im);
    tm=-y1/2./y2;
    xpar[0]=y0+y1*tm+y2*tm*tm;
    xpar[2]=(double)ims/25.-tm;
  }

  double chi2old=999999.;
  chi2=99999.;
  int nsfit=nsamplef;
  int iloop=0;
  int nloop=fNb_iter;
  if(qm <= 5*noise)nloop=1; // Just one iteration for very low signal

  double *resi;
  resi= new double[fNsamples];  
  for (int j=0;j<fNsamples;j++) resi[j]=0;

  while(std::fabs(chi2old-chi2) > 0.1 && iloop < nloop)
    {
      iloop++;
      chi2old=chi2;
      
      double c=0.;
      double y1=0.;
      double s1=0.;
      double s2=0.;
      double ys1=0.;
      double sp1=0.;
      double sp2=0.;
      double ssp=0.;
      double ysp=0.;
      
      for(int is=0; is<nsfit; is++)
        {
          int iis=is;
          iis=is+nsampleo;
          
          double t1=(double)iis+xpar[2];
          double xbin=t1*25.;
          int ibin1=(int)xbin;
          
          if(ibin1 < 0) ibin1=0;

          double amp1,amp11,amp12,der1,der11,der12;

          if(ibin1 <= fNsamplesShape-2){     // Interpolate shape values to get the right number :
            
            int ibin2=ibin1+1;
            double xfrac=xbin-ibin1;
            amp11=pshape[ibin1];
            amp12=pshape[ibin2];
            amp1=(1.-xfrac)*amp11+xfrac*amp12;
            der11=dshape[ibin1];
            der12=dshape[ibin2];
            der1=(1.-xfrac)*der11+xfrac*der12;
            
          }else{                            // Or extraoplate if we are outside the array :
            
            amp1=pshape[fNsamplesShape-1]+dshape[fNsamplesShape-1]*
              (xbin-double(fNsamplesShape-1))/25.;
            der1=dshape[fNsamplesShape-1];
          }
          
          if( useCova ){     // Use covariance matrix: 
            for(int js=0; js<nsfit; js++)
              {
                int jjs=js;
                jjs+=nsampleo;
                
                t1=(double)jjs+xpar[2];
                xbin=t1*25.;
                ibin1=(int)xbin;
                if(ibin1 < 0) ibin1=0;
                if(ibin1 > fNsamplesShape-2)ibin1=fNsamplesShape-2;
                int ibin2=ibin1+1;
                double xfrac=xbin-ibin1;
                amp11=pshape[ibin1];
                amp12=pshape[ibin2];
                double amp2=(1.-xfrac)*amp11+xfrac*amp12;
                der11=dshape[ibin1];
                der12=dshape[ibin2];
                double der2=(1.-xfrac)*der11+xfrac*der12;
                c=c+cova[js*fNsamples+is];
                y1=y1+adc[iis]*cova[js*fNsamples+is];
                s1=s1+amp1*cova[js*fNsamples+is];
                s2=s2+amp1*amp2*cova[js*fNsamples+is];
                ys1=ys1+adc[iis]*amp2*cova[js*fNsamples+is];
                sp1=sp1+der1*cova[is*fNsamples+js];
                sp2=sp2+der1*der2*cova[js*fNsamples+is];
                ssp=ssp+amp1*der2*cova[js*fNsamples+is];
                ysp=ysp+adc[iis]*der2*cova[js*fNsamples+is];
              }
          }else { // Don't use covariance matrix: 
            c++;
            y1=y1+adc[iis];
            s1=s1+amp1;
            s2=s2+amp1*amp1;
            ys1=ys1+amp1*adc[iis];
            sp1=sp1+der1;
            sp2=sp2+der1*der1;
            ssp=ssp+der1*amp1;
            ysp=ysp+der1*adc[iis];
          }
        }
      xpar[0]=(ysp*ssp-ys1*sp2)/(ssp*ssp-s2*sp2);
      xpar[2]+=(ysp/xpar[0]/sp2-ssp/sp2);
   
      for(int is=0; is<nsfit; is++){
        int iis=is;
        iis=is+nsampleo;
        
        double t1=(double)iis+xpar[2];
        double xbin=t1*25.;
        int ibin1=(int)xbin;
        if(ibin1 < 0) ibin1=0;
        
        if(ibin1 < 0) ibin1=0;
        if(ibin1 > fNsamplesShape-2)ibin1=fNsamplesShape-2;
        int ibin2=ibin1+1;
        double xfrac=xbin-ibin1;
        double amp11=xpar[0]*pshape[ibin1];
        double amp12=xpar[0]*pshape[ibin2];
        double amp1=xpar[1]+(1.-xfrac)*amp11+xfrac*amp12;
        resi[iis]=adc[iis]-amp1;
      }

      chi2=0.;
      for(int is=0; is<nsfit; is++){
        int iis=is;
        iis+=nsampleo;
        
        if( useCova ){
          for(int js=0; js<nsfit; js++){
            int jjs=js;
            jjs+=nsampleo;
            chi2+=resi[iis]*resi[jjs]*cova[js*fNsamples+is];
          }

        }else chi2+=resi[iis]*resi[iis];
      }
    }
  
  fAmp_fitted_max = xpar[0];
  fTim_fitted_max = (double)t_ims/25.-xpar[2];
  
  return chi2 ;

}
double PulseFitWithShape::getAmpl ( ) [inline]

Definition at line 29 of file PulseFitWithShape.h.

References fAmp_fitted_max.

{ return fAmp_fitted_max; }
double PulseFitWithShape::getTime ( ) [inline]

Definition at line 30 of file PulseFitWithShape.h.

References fTim_fitted_max.

{ return fTim_fitted_max; }
void PulseFitWithShape::init ( int  n_samples,
int  samplb,
int  sampla,
int  niter,
int  n_samplesShape,
std::vector< double >  shape,
double  nois 
) [virtual]

Definition at line 38 of file PulseFitWithShape.cc.

References gather_cfg::cout, dshape, fNb_iter, fNoise, fNsamples, fNsamplesShape, fNum_samp_after_max, fNum_samp_bef_max, i, and pshape.

{
 
  fNsamples   = n_samples ;
  fNsamplesShape   = n_samplesShape ;
  fNb_iter = niter ;
  fNum_samp_bef_max = samplb ;
  fNum_samp_after_max = sampla  ;


  if( fNsamplesShape < fNum_samp_bef_max+fNum_samp_after_max+1){
    std::cout<<"PulseFitWithShape::init: Error! Configuration samples in fit greater than total number of samples!" << std::endl;
  }

  for(int i=0;i<fNsamplesShape;i++){
    pshape.push_back(shape[i]);
    dshape.push_back(0.0);
  }

  fNoise=nois;
  return ;
 }

Member Data Documentation

std::vector< double > PulseFitWithShape::dshape [private]

Definition at line 40 of file PulseFitWithShape.h.

Referenced by doFit(), and init().

Definition at line 26 of file PulseFitWithShape.h.

Referenced by doFit(), and getAmpl().

Definition at line 42 of file PulseFitWithShape.h.

Referenced by doFit(), and init().

double PulseFitWithShape::fNoise [private]

Definition at line 37 of file PulseFitWithShape.h.

Referenced by doFit(), init(), and PulseFitWithShape().

Definition at line 35 of file PulseFitWithShape.h.

Referenced by doFit(), init(), and PulseFitWithShape().

Definition at line 36 of file PulseFitWithShape.h.

Referenced by doFit(), init(), and PulseFitWithShape().

Definition at line 44 of file PulseFitWithShape.h.

Referenced by doFit(), init(), and PulseFitWithShape().

Definition at line 43 of file PulseFitWithShape.h.

Referenced by doFit(), init(), and PulseFitWithShape().

Definition at line 27 of file PulseFitWithShape.h.

Referenced by doFit(), and getTime().

std::vector< double > PulseFitWithShape::pshape [private]

Definition at line 39 of file PulseFitWithShape.h.

Referenced by doFit(), and init().