CMS 3D CMS Logo

Public Member Functions | Private Attributes

JacobianCurvilinearToCartesian Class Reference

#include <JacobianCurvilinearToCartesian.h>

List of all members.

Public Member Functions

const AlgebraicMatrix65jacobian () const
const AlgebraicMatrix jacobian_old () const
 JacobianCurvilinearToCartesian (const GlobalTrajectoryParameters &globalParameters)

Private Attributes

AlgebraicMatrix65 theJacobian

Detailed Description

Class which calculates the Jacobian matrix of the transformation from the curvilinear to the Cartesian frame. The Jacobian is calculated during construction and thereafter cached, enabling reuse of the same Jacobian without calculating it again.

Definition at line 14 of file JacobianCurvilinearToCartesian.h.


Constructor & Destructor Documentation

JacobianCurvilinearToCartesian::JacobianCurvilinearToCartesian ( const GlobalTrajectoryParameters globalParameters)

Constructor from global trajectory parameters. NB!! No default constructor exists!

Definition at line 5 of file JacobianCurvilinearToCartesian.cc.

References GlobalTrajectoryParameters::charge(), funct::cos(), Vector3DBase< T, FrameTag >::cross(), M_PI, PV3DBase< T, PVType, FrameType >::mag(), GlobalTrajectoryParameters::momentum(), L1TEmulatorMonitor_cff::p, p2, PV3DBase< T, PVType, FrameType >::perp(), PV3DBase< T, PVType, FrameType >::phi(), phi, ExpressReco_HICollisions_FallBack::pt, lumiQueryAPI::q, dttmaxenums::R, funct::sin(), theJacobian, PV3DBase< T, PVType, FrameType >::theta(), Vector3DBase< T, FrameTag >::unit(), PV3DBase< T, PVType, FrameType >::x(), PV3DBase< T, PVType, FrameType >::y(), and PV3DBase< T, PVType, FrameType >::z().

                                                                                   : theJacobian() {
  GlobalVector xt = globalParameters.momentum();
  //GlobalVector yt(xt.y(), -xt.x(), 0.); \\wrong direction of the axis
  //GlobalVector zt(xt.x()*xt.z(), xt.y()*xt.z(), -xt.perp2()); \\and then also on this one
  GlobalVector yt(-xt.y(), xt.x(), 0.); 
  GlobalVector zt = xt.cross(yt);

  GlobalVector pvec = globalParameters.momentum();
  double pt = pvec.perp();
  TrackCharge q = globalParameters.charge();
  // for neutrals: qbp is 1/p instead of q/p - 
  //   equivalent to charge 1
  if ( q==0 )  q = 1;

  xt = xt.unit(); 
  if(fabs(pt) > 0){
    yt = yt.unit(); 
    zt = zt.unit();
  }
  
  AlgebraicMatrix66 R;
  R(0,0) = xt.x(); R(0,1) = yt.x(); R(0,2) = zt.x();
  R(1,0) = xt.y(); R(1,1) = yt.y(); R(1,2) = zt.y();
  R(2,0) = xt.z(); R(2,1) = yt.z(); R(2,2) = zt.z();
  R(3,3) = 1.;
  R(4,4) = 1.;
  R(5,5) = 1.;

  double p = pvec.mag(), p2 = p*p;
  double lambda = 0.5 * M_PI - pvec.theta();
  double phi = pvec.phi();
  double sinlambda = sin(lambda), coslambda = cos(lambda);
  double sinphi = sin(phi), cosphi = cos(phi);

  theJacobian(1,3) = 1.;
  theJacobian(2,4) = 1.;
  theJacobian(3,0) = -q * p2 * coslambda * cosphi;
  theJacobian(3,1) = -p * sinlambda * cosphi;
  theJacobian(3,2) = -p * coslambda * sinphi;
  theJacobian(4,0) = -q * p2 * coslambda * sinphi;
  theJacobian(4,1) = -p * sinlambda * sinphi;
  theJacobian(4,2) = p * coslambda * cosphi;
  theJacobian(5,0) = -q * p2 * sinlambda;
  theJacobian(5,1) = p * coslambda;
  theJacobian(5,2) = 0.;

  //ErrorPropagation: 
  //    C(Cart) = R(6*6) * J(6*5) * C(Curvi) * J(5*6)_T * R(6*6)_T
  theJacobian = R*theJacobian;
  //dbg::dbg_trace(1,"Cu2Ca", globalParameters.vector(),theJacobian);
}

Member Function Documentation

const AlgebraicMatrix65 & JacobianCurvilinearToCartesian::jacobian ( ) const
const AlgebraicMatrix JacobianCurvilinearToCartesian::jacobian_old ( ) const

Definition at line 56 of file JacobianCurvilinearToCartesian.cc.

References asHepMatrix(), and theJacobian.

                                                                         {
  return asHepMatrix(theJacobian);
}

Member Data Documentation