CMS 3D CMS Logo

/data/refman/pasoursint/CMSSW_4_1_8_patch13/src/MagneticField/Interpolation/src/TrapezoidalCylindricalMFGrid.cc

Go to the documentation of this file.
00001 #include "MagneticField/Interpolation/src/TrapezoidalCylindricalMFGrid.h"
00002 #include "MagneticField/Interpolation/src/binary_ifstream.h"
00003 #include "MagneticField/Interpolation/src/LinearGridInterpolator3D.h"
00004 #include "MagneticField/VolumeGeometry/interface/MagExceptions.h"
00005 
00006 #include <iostream>
00007 
00008 using namespace std;
00009 
00010 TrapezoidalCylindricalMFGrid::TrapezoidalCylindricalMFGrid( binary_ifstream& inFile,
00011                                                         const GloballyPositioned<float>& vol)
00012   : MFGrid3D(vol)
00013 {
00014   // The parameters read from the data files are given in global coordinates.
00015   // In version 85l, local frame has the same orientation of global frame for the reference
00016   // volume, i.e. the r.f. transformation is only a translation.
00017   // There is therefore no need to convert the field values to local coordinates.
00018   // Check this assumption: 
00019   GlobalVector localXDir(frame().toGlobal(LocalVector(1,0,0)));
00020   GlobalVector localYDir(frame().toGlobal(LocalVector(0,1,0)));
00021 
00022   if (localXDir.dot(GlobalVector(1,0,0)) > 0.999999 &&
00023       localYDir.dot(GlobalVector(0,1,0)) > 0.999999) {
00024     // "null" rotation - requires no conversion...
00025   } else {
00026     cout << "ERROR: TrapezoidalCylindricalMFGrid: unexpected orientation: x: " 
00027          << localXDir << " y: " << localYDir << endl;
00028   }
00029 
00030   int n1, n2, n3;
00031   inFile >> n1 >> n2 >> n3;
00032   double xref, yref, zref;
00033   inFile >> xref >> yref >> zref;
00034   double stepx, stepy, stepz;
00035   inFile >> stepx    >> stepy    >> stepz;
00036 
00037   double BasicDistance1[3][3];  // linear step
00038   double BasicDistance2[3][3];  // linear offset
00039   bool   easya, easyb, easyc;
00040 
00041   inFile >> BasicDistance1[0][0] >> BasicDistance1[1][0] >> BasicDistance1[2][0];
00042   inFile >> BasicDistance1[0][1] >> BasicDistance1[1][1] >> BasicDistance1[2][1];
00043   inFile >> BasicDistance1[0][2] >> BasicDistance1[1][2] >> BasicDistance1[2][2];
00044   inFile >> BasicDistance2[0][0] >> BasicDistance2[1][0] >> BasicDistance2[2][0];
00045   inFile >> BasicDistance2[0][1] >> BasicDistance2[1][1] >> BasicDistance2[2][1];
00046   inFile >> BasicDistance2[0][2] >> BasicDistance2[1][2] >> BasicDistance2[2][2];
00047   inFile >> easya >> easyb >> easyc;
00048 
00049   vector<BVector> fieldValues;
00050   float Bx, By, Bz;
00051   int nLines = n1*n2*n3;
00052   fieldValues.reserve(nLines);
00053   for (int iLine=0; iLine<nLines; ++iLine){
00054     inFile >> Bx >> By >> Bz;
00055     fieldValues.push_back(BVector(Bx,By,Bz));
00056   }
00057   // check completeness
00058   string lastEntry;
00059   inFile >> lastEntry;
00060   if (lastEntry != "complete") {
00061     cout << "ERROR during file reading: file is not complete" << endl;
00062   }
00063 
00064 #ifdef DEBUG_GRID
00065   cout << "easya " << easya << " easyb " << easyb << " easyc " << easyc << endl;
00066 #endif
00067 
00068   if (!easyb || !easyc) {
00069     throw MagGeometryError("TrapezoidalCartesianMFGrid only implemented for first coordinate");
00070   }
00071 
00072 #ifdef DEBUG_GRID
00073   cout << "Grid reference point in grid system: " << xref << "," << yref << "," << zref << endl;
00074   cout << "steps " << stepx << "," <<  stepy << "," << stepz << endl;
00075   cout << "ns " << n1 << "," <<  n2 << "," << n3 << endl;
00076 
00077   for (int i=0; i<3; ++i) for (int j=0; j<3; ++j) {
00078     cout << "BasicDistance1[" << i << "][" << j << "] = " << BasicDistance1[i][j]
00079          << "BasicDistance2[" << i << "][" << j << "] = " << BasicDistance2[i][j] << endl;
00080   }
00081 #endif
00082 
00083   // the "not easy" coordinate is x
00084   double a = stepx * (n1 -1);
00085   double b = a + BasicDistance1[0][1] * (n2-1)*(n1-1) + BasicDistance1[0][2] * (n3-1)*(n1-1);
00086   //  double h = stepy * (n2-1);
00087   double h = stepz * (n3-1);
00088   double delta = -BasicDistance2[0][1] * (n2-1) -BasicDistance2[0][2] * (n3-1);
00089 
00090 #ifdef DEBUG_GRID
00091   cout << "Trapeze size (a,b,h) = " << a << "," << b << "," << h << endl;
00092 #endif
00093 
00094   GlobalPoint grefp( GlobalPoint::Cylindrical( xref, Geom::pi() - yref, zref));
00095   LocalPoint lrefp = frame().toLocal( grefp);
00096 
00097 #ifdef DEBUG_GRID
00098   cout << "Global origin " << grefp << endl;
00099   cout << "Local origin  " << lrefp << endl;
00100 #endif
00101 
00102   double baMinus1 = BasicDistance1[0][2]*(n3-1) / stepx;
00103   if (std::abs(baMinus1) > 0.000001) {
00104     double b_over_a = 1 + baMinus1;
00105     double a1 = std::abs(baMinus1) > 0.000001 ? delta / baMinus1 : a/2;
00106 #ifdef DEBUG_GRID
00107    cout << "a1 = " << a1 << endl;
00108 #endif
00109 
00110     // transform reference point to grid frame
00111     double x0 = lrefp.perp() + a1;
00112     double y0 = lrefp.z() + h/2.;
00113     mapping_ = Trapezoid2RectangleMappingX( x0, y0, b_over_a, h);
00114   }
00115   else { // parallelogram
00116     mapping_ = Trapezoid2RectangleMappingX( 0, 0, delta/h);
00117   }
00118   double xrec, yrec;
00119   mapping_.rectangle( lrefp.perp(), lrefp.z(), xrec, yrec);
00120 
00121   Grid1D gridX( xrec, xrec + (a+b)/2., n1);
00122   Grid1D gridY( yref, yref + stepy*(n2-1), n2);
00123   Grid1D gridZ( yrec, yrec + h, n3);
00124   grid_ = GridType( gridX, gridY, gridZ, fieldValues);
00125     
00126   // Activate/deactivate timers
00127 //   static SimpleConfigurable<bool> timerOn(false,"MFGrid:timing");
00128 //   (*TimingReport::current()).switchOn("MagneticFieldProvider::valueInTesla(TrapezoidalCylindricalMFGrid)",timerOn);
00129 }
00130 
00131 void TrapezoidalCylindricalMFGrid::dump() const
00132 {}
00133 
00134 MFGrid::LocalVector 
00135 TrapezoidalCylindricalMFGrid::uncheckedValueInTesla( const LocalPoint& p) const
00136 {
00137 //   static TimingReport::Item & timer= (*TimingReport::current())["MagneticFieldProvider::valueInTesla(TrapezoidalCylindricalMFGrid)"];
00138 //   TimeMe t(timer,false);
00139 
00140   LinearGridInterpolator3D interpol( grid_);
00141   double a, b, c;
00142   toGridFrame( p, a, b, c);
00143   GlobalVector gv( interpol.interpolate( a, b, c)); // grid in global frame
00144   return frame().toLocal(gv);           // must return a local vector
00145 }
00146 
00147 void TrapezoidalCylindricalMFGrid::toGridFrame( const LocalPoint& p, 
00148                                               double& a, double& b, double& c) const
00149 {
00150   mapping_.rectangle( p.perp(), p.z(), a, c);
00151   // FIXME: "OLD" convention of phi.
00152   //  b = Geom::pi() - p.phi();
00153   b = p.phi();
00154 }
00155 
00156 MFGrid::LocalPoint 
00157 TrapezoidalCylindricalMFGrid::fromGridFrame( double a, double b, double c) const
00158 {
00159   double rtrap, ztrap;
00160   mapping_.trapezoid( a, c, rtrap, ztrap);
00161   // FIXME: "OLD" convention of phi.
00162   //  return LocalPoint(LocalPoint::Cylindrical(rtrap, Geom::pi() - b, ztrap));
00163   return LocalPoint(LocalPoint::Cylindrical(rtrap, b, ztrap));
00164 }