CMS 3D CMS Logo

hltTiclTrackstersCLUE3DHighL1Seeded_cfi.py
Go to the documentation of this file.
1 import FWCore.ParameterSet.Config as cms
2 
3 hltTiclTrackstersCLUE3DHighL1Seeded = cms.EDProducer("TrackstersProducer",
4  detector = cms.string('HGCAL'),
5  filtered_mask = cms.InputTag("hltFilteredLayerClustersCLUE3DHighL1Seeded","CLUE3DHigh"),
6  itername = cms.string('CLUE3DHigh'),
7  layer_clusters = cms.InputTag("hltHgcalMergeLayerClustersL1Seeded"),
8  layer_clusters_hfnose_tiles = cms.InputTag("ticlLayerTileHFNose"),
9  layer_clusters_tiles = cms.InputTag("hltTiclLayerTileProducerL1Seeded"),
10  mightGet = cms.optional.untracked.vstring,
11  original_mask = cms.InputTag("hltHgcalMergeLayerClustersL1Seeded","InitialLayerClustersMask"),
12  patternRecognitionBy = cms.string('CLUE3D'),
13  inferenceAlgo = cms.string('TracksterInferenceByCNNv4'),
14  pluginPatternRecognitionByCA = cms.PSet(
15  algo_verbosity = cms.int32(0),
16  energy_em_over_total_threshold = cms.double(-1),
17  etaLimitIncreaseWindow = cms.double(2.1),
18  filter_on_categories = cms.vint32(0),
19  max_delta_time = cms.double(3),
20  max_longitudinal_sigmaPCA = cms.double(9999),
21  max_missing_layers_in_trackster = cms.int32(9999),
22  max_out_in_hops = cms.int32(10),
23  min_cos_pointing = cms.double(-1),
24  min_cos_theta = cms.double(0.915),
25  min_layers_per_trackster = cms.int32(10),
26  oneTracksterPerTrackSeed = cms.bool(False),
27  out_in_dfs = cms.bool(True),
28  pid_threshold = cms.double(0),
29  promoteEmptyRegionToTrackster = cms.bool(False),
30  root_doublet_max_distance_from_seed_squared = cms.double(9999),
31  shower_start_max_layer = cms.int32(9999),
32  siblings_maxRSquared = cms.vdouble(0.0006, 0.0006, 0.0006),
33  skip_layers = cms.int32(0),
34  type = cms.string('CA')
35  ),
36  pluginPatternRecognitionByCLUE3D = cms.PSet(
37  algo_verbosity = cms.int32(0),
38  criticalDensity = cms.vdouble(
39  0.6,
40  0.6,
41  0.6
42  ),
43  criticalSelfDensity = cms.vdouble(
44  0.15,
45  0.15,
46  0.15
47  ),
48  densitySiblingLayers = cms.vint32(
49  3,
50  3,
51  3
52  ),
53  densityEtaPhiDistanceSqr = cms.vdouble(
54  0.0008,
55  0.0008,
56  0.0008
57  ),
58  densityXYDistanceSqr = cms.vdouble(
59  3.24,
60  3.24,
61  3.24
62  ),
63  kernelDensityFactor = cms.vdouble(
64  0.2,
65  0.2,
66  0.2
67  ),
68  densityOnSameLayer = cms.bool(False),
69  nearestHigherOnSameLayer = cms.bool(False),
70  useAbsoluteProjectiveScale = cms.bool(True),
71  useClusterDimensionXY = cms.bool(False),
72  rescaleDensityByZ = cms.bool(False),
73  criticalEtaPhiDistance = cms.vdouble(
74  0.025,
75  0.025,
76  0.025
77  ),
78  criticalXYDistance = cms.vdouble(
79  1.8,
80  1.8,
81  1.8
82  ),
83  criticalZDistanceLyr = cms.vint32(
84  5,
85  5,
86  5
87  ),
88  outlierMultiplier = cms.vdouble(
89  2,
90  2,
91  2
92  ),
93  minNumLayerCluster = cms.vint32(
94  2,
95  2,
96  2
97  ),
98  computeLocalTime = cms.bool(False),
99  doPidCut = cms.bool(True),
100  cutHadProb = cms.double(999.),
101  type = cms.string('CLUE3D')
102  ),
103  pluginPatternRecognitionByFastJet = cms.PSet(
104  algo_verbosity = cms.int32(0),
105  antikt_radius = cms.double(0.09),
106  minNumLayerCluster = cms.int32(5),
107  type = cms.string('FastJet')
108  ),
109  pluginInferenceAlgoTracksterInferenceByCNNv4 = cms.PSet(
110  algo_verbosity = cms.int32(0),
111  onnxModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv4/onnx_models/energy_id_v0.onnx'),
112  inputNames = cms.vstring('input:0'),
113  outputNames = cms.vstring("output/regressed_energy:0", "output/id_probabilities:0"),
114  eid_min_cluster_energy = cms.double(1),
115  eid_n_layers = cms.int32(50),
116  eid_n_clusters = cms.int32(10),
117  doPID = cms.int32(1),
118  doRegression = cms.int32(0),
119  type = cms.string('TracksterInferenceByCNNv4')
120  ),
121  pluginInferenceAlgoTracksterInferenceByDNN = cms.PSet(
122  algo_verbosity = cms.int32(0),
123  onnxPIDModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/patternrecognition/id_v0.onnx'),
124  onnxEnergyModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/patternrecognition/energy_v0.onnx'),
125  inputNames = cms.vstring('input'),
126  output_en = cms.vstring('enreg_output'),
127  output_id = cms.vstring('pid_output'),
128  eid_n_layers = cms.int32(50),
129  eid_n_clusters = cms.int32(10),
130  doPID = cms.int32(1),
131  doRegression = cms.int32(0),
132  type = cms.string('TracksterInferenceByDNN')
133  ),
134  pluginInferenceAlgoTracksterInferenceByANN = cms.PSet(
135  algo_verbosity = cms.int32(0),
136  type = cms.string('TracksterInferenceByANN')
137 
138  ),
139  seeding_regions = cms.InputTag("hltTiclSeedingL1"),
140  time_layerclusters = cms.InputTag("hltHgcalMergeLayerClustersL1Seeded","timeLayerCluster"),
141 )
142 
143 from Configuration.ProcessModifiers.ticl_v5_cff import ticl_v5
144 ticl_v5.toModify(hltTiclTrackstersCLUE3DHighL1Seeded.pluginPatternRecognitionByCLUE3D, computeLocalTime = cms.bool(True))
145 ticl_v5.toModify(hltTiclTrackstersCLUE3DHighL1Seeded.inferenceAlgo, type = cms.string('TracksterInferenceByDNN'))
146