CMS 3D CMS Logo

hgcalHtml.py
Go to the documentation of this file.
1 import os
2 import collections
3 
4 _sampleName = {
5  "RelValCloseByParticleGun_CE_H_Fine_300um" : "CloseByParticleGun in CE-H Fine section with 300 um",
6  "RelValCloseByParticleGun_CE_H_Fine_200um" : "CloseByParticleGun in CE-H Fine section with 200 um",
7  "RelValCloseByParticleGun_CE_H_Fine_120um" : "CloseByParticleGun in CE-H Fine section with 120 um",
8  "RelValCloseByParticleGun_CE_H_Coarse_Scint" : "CloseByParticleGun in CE-H Coarse section with scintillator",
9  "RelValCloseByParticleGun_CE_H_Coarse_300um" : "CloseByParticleGun in CE-H Coarse section with 300 um",
10  "RelValCloseByParticleGun_CE_E_Front_300um" : "CloseByParticleGun in CE-E Front section with 300 um",
11  "RelValCloseByParticleGun_CE_E_Front_200um" : "CloseByParticleGun in CE-E Front section with 200 um",
12  "RelValCloseByPGun_CE_E_Front_120um" : "CloseByParticleGun in CE-E Front section with 120 um",
13  "RelValCloseByPGun_CE_H_Fine_300um" : "CloseByParticleGun in CE-H Fine section with 300 um",
14  "RelValCloseByPGun_CE_H_Fine_200um" : "CloseByParticleGun in CE-H Fine section with 200 um",
15  "RelValCloseByPGun_CE_H_Fine_120um" : "CloseByParticleGun in CE-H Fine section with 120 um",
16  "RelValCloseByPGun_CE_H_Coarse_Scint" : "CloseByParticleGun in CE-H Coarse section with scintillator",
17  "RelValCloseByPGun_CE_H_Coarse_300um" : "CloseByParticleGun in CE-H Coarse section with 300 um",
18  "RelValCloseByPGun_CE_E_Front_300um" : "CloseByParticleGun in CE-E Front section with 300 um",
19  "RelValCloseByPGun_CE_E_Front_200um" : "CloseByParticleGun in CE-E Front section with 200 um",
20  "RelValCloseByPGun_CE_E_Front_120um" : "CloseByParticleGun in CE-E Front section with 120 um",
21  "RelValTTbar" : "TTbar",
22  "RelValSingleGammaFlatPt8To150" : "Single Gamma Pt 8 GeV to 150 GeV ",
23  "RelValSingleMuPt10" : "Single Muon Pt 10 GeV",
24  "RelValSingleMuPt100" : "Single Muon Pt 100 GeV",
25  "RelValSingleMuPt1000" : "Single Muon Pt 1000 GeV",
26  "RelValSingleMuFlatPt2To100" : "Single Muon Pt 2 GeV to 100 GeV",
27  "RelValSingleMuFlatPt0p7To10" : "Single Muon Pt 0.7 GeV to 10 GeV",
28  "RelValSingleEFlatPt2To100" : "Single Electron Pt 2 GeV to 100 GeV",
29  "RelValSingleTauFlatPt2To150" : "Single Tau Pt 2 GeV to 150 GeV",
30  "RelValSinglePiFlatPt0p7To10" : "Single Pion Pt 0.7 GeV to 10 GeV",
31  "RelValQCD_Pt20toInfMuEnrichPt15" : "QCD Pt 20 GeV to Inf with Muon Pt 15 GeV",
32  "RelValQCD_Pt15To7000_Flat" : "QCD Pt 15 GeV to 7 TeV",
33  "RelValZTT" : "ZTauTau",
34  "RelValZMM" : "ZMuMu",
35  "RelValZEE" : "ZEleEle",
36  "RelValB0ToKstarMuMu" : "B0 To Kstar Muon Muon",
37  "RelValBsToEleEle" : "Bs To Electron Electron",
38  "RelValBsToMuMu" : "Bs To Muon Muon",
39  "RelValBsToJpsiGamma" : "Bs To Jpsi Gamma",
40  "RelValBsToJpsiPhi_mumuKK" : "Bs To JpsiPhi_mumuKK",
41  "RelValBsToPhiPhi_KKKK" : "Bs To PhiPhi_KKKK",
42  "RelValDisplacedMuPt30To100" : "Displaced Muon Pt 30 GeV to 100 GeV",
43  "RelValDisplacedMuPt2To10" : "Displaced Muon Pt 2 GeV to 10 GeV",
44  "RelValDisplacedMuPt10To30" : "Displaced Muon Pt 10 GeV to 30 GeV",
45  "RelValTauToMuMuMu" : "Tau To Muon Muon Muon",
46  "RelValMinBias" : "Min Bias",
47  "RelValH125GGgluonfusion" : "Higgs to gamma gamma",
48  "RelValNuGun" : "Neutrino gun",
49  "RelValZpTT_1500" : "Z prime with 1500 GeV nominal mass",
50  "RelValTenTau_15_500_Eta3p1" : "Ten Taus with energy from 15 GeV to 500 GeV"
51 }
52 
53 _sampleFileName = {
54  "RelValCloseByParticleGun_CE_H_Fine_300um" : "closebycehf300",
55  "RelValCloseByParticleGun_CE_H_Fine_200um" : "closebycehf200",
56  "RelValCloseByParticleGun_CE_H_Fine_120um" : "closebycehf120",
57  "RelValCloseByParticleGun_CE_H_Coarse_Scint" : "closebycehcscint",
58  "RelValCloseByParticleGun_CE_H_Coarse_300um" : "closebycehc300",
59  "RelValCloseByParticleGun_CE_E_Front_300um" : "closebyceef300",
60  "RelValCloseByParticleGun_CE_E_Front_200um" : "closebyceef200",
61  "RelValCloseByParticleGun_CE_E_Front_120um" : "closebyceef120",
62  "RelValTTbar" : "ttbar",
63  "RelValSingleGammaFlatPt8To150" : "gam8",
64  "RelValSingleMuPt10" : "m10",
65  "RelValSingleMuPt100" : "m100",
66  "RelValSingleMuPt1000" : "m1000",
67  "RelValSingleMuFlatPt2To100" : "mflat2t100",
68  "RelValSingleMuFlatPt0p7To10" : "mflat0p7t10",
69  "RelValSingleEFlatPt2To100" : "eflat2t100",
70  "RelValSingleTauFlatPt2To150" : "tauflat2t150",
71  "RelValSinglePiFlatPt0p7To10" : "piflat0p7t10",
72  "RelValQCD_Pt20toInfMuEnrichPt15" : "qcd20enmu15",
73  "RelValQCD_Pt15To7000_Flat" : "qcdflat15",
74  "RelValZTT" : "ztautau",
75  "RelValZMM" : "zmm",
76  "RelValZEE" : "zee",
77  "RelValB0ToKstarMuMu" : "b0kstmm",
78  "RelValBsToEleEle" : "bsee",
79  "RelValBsToMuMu" : "bsmm",
80  "RelValBsToJpsiGamma" : "bsjpsg",
81  "RelValBsToJpsiPhi_mumuKK" : "bsjpspmmkk",
82  "RelValBsToPhiPhi_KKKK" : "bsjpsppkkkk",
83  "RelValDisplacedMuPt30To100" : "dm30",
84  "RelValDisplacedMuPt2To10" : "dm2",
85  "RelValDisplacedMuPt10To30" : "dm10",
86  "RelValTauToMuMuMu" : "taummm",
87  "RelValMinBias" : "minbias",
88  "RelValH125GGgluonfusion" : "hgg",
89  "RelValNuGun" : "nug",
90  "RelValZpTT_1500" : "zp1500tautau",
91  "RelValTenTau_15_500" : "tentaus15to1500"
92 
93 }
94 
95 
96 _pageNameMap = {
97  "summary": "Summary",
98  "hitCalibration": "Reconstructed hits calibration",
99  "hitValidation" : "Simulated hits, digis, reconstructed hits validation" ,
100  "layerClusters": "Layer clusters",
101  "tracksters":"Tracksters",
102  "Tracksters":"Tracksters",
103  "TICL-Trackster_vs_SimTracksterFromCP_byHits":"Tracksters vs SimTracksters from CPs Associatedby Hits",
104  "TICL-Trackster_vs_SimTracksterFromCP_byLCs":"Tracksters vs SimTracksters from CPs Associatedby LayerClusters",
105  "TICL-Trackster_vs_SimTrackster_byHits":"Tracksters vs SimTracksters Associated by Hits",
106  "TICL-Trackster_vs_SimTrackster_byLCs":"Tracksters vs SimTracksters Associated by LayerClusters",
107  "standalone" : "Standalone study on simulated hits, digis, reconstructed hits"
108 }
109 
110 _sectionNameMapOrder = collections.OrderedDict([
111  ("layerClusters", "Layer clusters"),
112  ("tracksters","Tracksters"),
113  ("Tracksters","Tracksters"),
114  ("TICL-Trackster_vs_SimTracksterFromCP_byHits","Tracksters vs SimTracksters from CPs Associated by Hits"),
115  ("TICL-Trackster_vs_SimTracksterFromCP_byLCs","Tracksters vs SimTracksters from CPs Associated by LayerClusters"),
116  ("TICL-Trackster_vs_SimTrackster_byHits","Tracksters vs SimTracksters Associated by Hits"),
117  ("TICL-Trackster_vs_SimTrackster_byLCs","Tracksters vs SimTracksters Associated by LayerClusters"),
118 ])
119 
120 #This is the summary section, where we define which plots will be shown in the summary page.
121 _summary = {}
122 
123 #Objects to keep in summary
124 _summobj = ['hitCalibration','hitValidation', 'layerClusters','Tracksters','TICL-Trackster_vs_SimTracksterFromCP_byHits','TICL-Trackster_vs_SimTracksterFromCP_byLCs', 'TICL-Trackster_vs_SimTrackster_byHits', 'TICL-Trackster_vs_SimTrackster_byLCs' ]
125 
126 #Plots to keep in summary from hitCalibration
127 summhitcalib=[
128  'Layer_Occupancy/LayerOccupancy/LayerOccupancy.png',
129  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_300_calib_fraction.png',
130  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_200_calib_fraction.png',
131  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_100_calib_fraction.png',
132  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_scint_calib_fraction.png'
133  ]
134 
135 #Plots to keep in summary from hitValidation
136 summhitvalid = [
137  'SimHits_Validation/HitValidation/heeEnSim.png',
138  'SimHits_Validation/HitValidation/hebEnSim.png',
139  'SimHits_Validation/HitValidation/hefEnSim.png']
140 
141 #Plots to keep in summary from layer clusters
142 summlc = [
143  'hgcalLayerClusters_Z-minus: LC_CP association/Efficiencies_vs_layer/globalEfficiencies.png' ,
144  'hgcalLayerClusters_Z-plus: LC_CP association/Efficiencies_vs_layer/globalEfficiencies.png' ,
145  'hgcalLayerClusters_Z-minus: LC_CP association/Duplicates_vs_layer/globalEfficiencies.png' ,
146  'hgcalLayerClusters_Z-plus: LC_CP association/Duplicates_vs_layer/globalEfficiencies.png' ,
147  'hgcalLayerClusters_Z-minus: LC_CP association/FakeRate_vs_layer/globalEfficiencies.png' ,
148  'hgcalLayerClusters_Z-plus: LC_CP association/FakeRate_vs_layer/globalEfficiencies.png' ,
149  'hgcalLayerClusters_Z-minus: LC_CP association/MergeRate_vs_layer/globalEfficiencies.png' ,
150  'hgcalLayerClusters_Z-plus: LC_CP association/MergeRate_vs_layer/globalEfficiencies.png'
151  #'SelectedCaloParticles_Photons/SelectedCaloParticles_num_caloparticle_eta.png',
152  #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_pt.png',
153  #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_phi.png',
154  #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_energy.png',
155  #'SelectedCaloParticles_Photons/SelectedCaloParticles_Eta vs Zorigin.png'
156  ]
157 
158 #Plots to keep in summary from standalone analysis
159 summstandalone = [
160  'hgcalSimHitStudy/RZ_AllDetectors.png'
161 ]
162 
163 #Let's save the above for later
164 for obj in _summobj:
165  _summary[obj] = {}
166 _summary['hitCalibration'] = summhitcalib
167 _summary['hitValidation'] = summhitvalid
168 _summary['layerClusters'] = summlc
169 
170 #Entering the geometry section
171 #_MatBudSections = ["allhgcal","zminus","zplus","indimat","fromvertex"]
172 _MatBudSections = ["allhgcal","indimat","fromvertex"]
173 
174 _geoPageNameMap = {
175  "allhgcal": "All materials",
176 # "zminus" : "Zminus",
177 # "zplus" : "Zplus",
178  "indimat" : "Individual materials",
179  "fromvertex": "From vertex up to in front of muon stations"
180 }
181 
182 _individualmaterials =['Air','Aluminium','Cables','Copper','Epoxy','HGC_G10-FR4','Kapton','Lead','Other','Scintillator','Silicon','Stainless_Steel','WCu','Polystyrene','HGC_EEConnector','HGC_HEConnector']
183 
184 _matPageNameMap = {
185  'Air': 'Air',
186  'Aluminium': 'Aluminium',
187  'Cables': 'Cables',
188  'Copper': 'Copper',
189  'Epoxy': 'Epoxy',
190  'HGC_G10-FR4': 'HGC_G10-FR4',
191  'Kapton': 'Kapton',
192  'Lead': 'Lead',
193  'Other': 'Other',
194  'Scintillator': 'Scintillator',
195  'Silicon': 'Silicon',
196  'Stainless_Steel': 'Stainless Steel',
197  'WCu': 'WCu',
198  'Polystyrene' : 'Polystyrene',
199  'HGC_EEConnector': 'CE-E Connector',
200  'HGC_HEConnector': 'CE-H Connector'
201 }
202 
203 _individualmatplots = {"HGCal_x_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum","HGCal_x_vs_z_vs_Rsumcos","HGCal_l_vs_z_vs_Rsumcos","HGCal_x_vs_z_vs_Rloc","HGCal_l_vs_z_vs_Rloc"}
204 
205 _allmaterialsplots = {"HGCal_x_vs_eta","HGCal_l_vs_eta","HGCal_x_vs_phi","HGCal_l_vs_phi","HGCal_x_vs_R","HGCal_l_vs_R","HGCal_x_vs_eta_vs_phi","HGCal_l_vs_eta_vs_phi","HGCal_x_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum","HGCal_x_vs_z_vs_Rsumcos","HGCal_l_vs_z_vs_Rsumcos","HGCal_x_vs_z_vs_Rloc","HGCal_l_vs_z_vs_Rloc"}
206 
207 _fromvertexplots = {"HGCal_l_vs_eta","HGCal_l_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum_Zpluszoom"}
208 
209 _individualMatPlotsDesc = {
210 "HGCal_x_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
211 "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
212 "HGCal_x_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
213 "HGCal_l_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
214 "HGCal_x_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the local mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. ",
215 "HGCal_l_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the local mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. "
216 }
217 
218 _allmaterialsPlotsDesc= {
219  "HGCal_x_vs_eta" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
220 
221  "HGCal_l_vs_eta" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
222 
223  "HGCal_x_vs_phi" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each phi bin. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. ",
224 
225  "HGCal_l_vs_phi" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each phi bin. 180 bins in phi -3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. ",
226 
227  "HGCal_x_vs_R" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each radius bin. 300 bins in radius (0,3000 mm), so radius is defined in 1 cm width bins. Both endcaps are in this histogram. Entries are huge since the radius is filled for each step of the track. Statistics in the HEB part above 1565 mm is smaller (although non visible, error is small), since in most part nothing is infront to keep account of the step. ",
228 
229  "HGCal_l_vs_R" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each radius bin. 300 bins in radius (0,3000 mm), so radius is defined in 1 cm width bins. Both endcaps are in this histogram. Entries are huge since the radius is filled for each step of the track. Statistics in the HEB part above 1565 mm is smaller (although non visible, error is small), since in most part nothing is in front to keep account of the step. ",
230 
231  "HGCal_x_vs_eta_vs_phi" : "The plot on the left shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each eta-phi cell. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. 250 bins in eta -5., 5., so eta is divided in 0.04 width bins. Therefore, eta-phi cell is 2.038 degrees x 0.04 . ",
232 
233  "HGCal_l_vs_eta_vs_phi" : "The plot on the left shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each eta-phi cell. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. 250 bins in eta -5., 5., so eta is divided in 0.04 width bins. Therefore, eta-phi cell is 2.038 degrees x 0.04 . ",
234 
235  "HGCal_x_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
236 
237  "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
238 
239  "HGCal_x_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
240 
241  "HGCal_l_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. " ,
242 
243  "HGCal_x_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram that displays the local mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. ",
244 
245  "HGCal_l_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram that displays the local mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. "
246 
247 
248 }
249 
250 _fromVertexPlotsDesc = {
251  "HGCal_x_vs_eta" : "The plot below shows the stacked profile histogram of all sub detectors in front of muon stations. This profile histogram displays the mean value of the material budget in units of radiation length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
252 
253  "HGCal_l_vs_eta" : "The plots below shows the stacked profile histogram of all sub detectors in front of muon stations. This profile histogram displays the mean value of the material budget in units of interaction length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
254 
255  "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the detectors that are taken into account in the calculation of the material budget. Keep in mind that coloured regions that depicts each sub-detector area may contain Air as material.",
256 
257  "HGCal_l_vs_z_vs_Rsum_Zpluszoom" : "The zoomed plots below shows the detectors that are taken into account in the calculation of the material budget. Keep in mind that coloured regions that depicts each sub-detector area may contain Air as material."
258 
259 
260 
261 }
262 
263 _hideShowFun = {
264  "thestyle" : "<meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"> \n <style> \n body {font-family: Arial;} \n.tab { \n overflow: hidden; \n border: 1px solid #ccc; \n background-color: #f1f1f1;} \n .tab button { background-color: inherit; \n float: left; \n border: none; \n outline: none; \n cursor: pointer; \n padding: 14px 16px; \n transition: 0.3s; \n font-size: 17px; } \n .tab button:hover { background-color: #ddd; } \n .tab button.active { background-color: #ccc; } \n .tabcontent { display: none; \n padding: 6px 12px; \n border: 1px solid #ccc; \n border-top: none; \n} \n </style>",
265  "buttonandFunction" : "<script> \n function openRegion(evt, regionName) { \n var i, tabcontent, tablinks;\n tabcontent = document.getElementsByClassName(\"tabcontent\"); \n for (i = 0; i < tabcontent.length; i++) {\n tabcontent[i].style.display = \"none\";\n }\n tablinks = document.getElementsByClassName(\"tablinks\"); \n for (i = 0; i < tablinks.length; i++) {\n tablinks[i].className = tablinks[i].className.replace(\" active\", \"\"); \n }\n document.getElementById(regionName).style.display = \"block\";\n evt.currentTarget.className += \" active\"; \n}\n</script>\n",
266  "divTabs" : "<div class=\"tab\">\n <button class=\"tablinks\" onclick=\"openRegion(event, \'_AllHGCAL\')\">All HGCAL</button>\n <button class=\"tablinks\" onclick=\"openRegion(event, \'_ZminusZoom\')\">Zminus</button>\n <button class=\"tablinks\" onclick=\"openRegion(event, \'_ZplusZoom\')\">Zplus</button>\n </div>\n "
267 }
268 
269 
270 
271 
272 
273 
274