CMS 3D CMS Logo

CLUE3DHighStep_cff.py
Go to the documentation of this file.
1 import FWCore.ParameterSet.Config as cms
2 
3 from RecoHGCal.TICL.TICLSeedingRegions_cff import ticlSeedingGlobal, ticlSeedingGlobalHFNose
4 from RecoHGCal.TICL.trackstersProducer_cfi import trackstersProducer as _trackstersProducer
5 from RecoHGCal.TICL.filteredLayerClustersProducer_cfi import filteredLayerClustersProducer as _filteredLayerClustersProducer
6 
7 # CLUSTER FILTERING/MASKING
8 
9 filteredLayerClustersCLUE3DHigh = _filteredLayerClustersProducer.clone(
10  clusterFilter = "ClusterFilterByAlgoAndSize",
11  min_cluster_size = 2, # inclusive
12  iteration_label = "CLUE3DHigh"
13 )
14 
15 # PATTERN RECOGNITION
16 
17 ticlTrackstersCLUE3DHigh = _trackstersProducer.clone(
18  filtered_mask = "filteredLayerClustersCLUE3DHigh:CLUE3DHigh",
19  seeding_regions = "ticlSeedingGlobal",
20  itername = "CLUE3DHigh",
21  patternRecognitionBy = "CLUE3D",
22  pluginPatternRecognitionByCLUE3D = dict (
23  criticalDensity = [0.6, 0.6, 0.6],
24  criticalEtaPhiDistance = [0.025, 0.025, 0.025],
25  kernelDensityFactor = [0.2, 0.2, 0.2],
26  algo_verbosity = 0,
27  doPidCut = True,
28  cutHadProb = 999
29  ),
30  inferenceAlgo = cms.string('TracksterInferenceByCNNv4'),
31  pluginInferenceAlgoTracksterInferenceByCNNv4 = cms.PSet(
32  algo_verbosity = cms.int32(0),
33  onnxModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv4/onnx_models/energy_id_v0.onnx'),
34  inputNames = cms.vstring('input:0'),
35  outputNames = cms.vstring("output/regressed_energy:0", "output/id_probabilities:0"),
36  eid_min_cluster_energy = cms.double(1),
37  eid_n_layers = cms.int32(50),
38  eid_n_clusters = cms.int32(10),
39  doPID = cms.int32(1),
40  doRegression = cms.int32(0),
41  type = cms.string('TracksterInferenceByCNNv4')
42  ),
43  pluginInferenceAlgoTracksterInferenceByDNN = cms.PSet(
44  algo_verbosity = cms.int32(0),
45  onnxPIDModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/patternrecognition/id_v0.onnx'),
46  onnxEnergyModelPath = cms.FileInPath('RecoHGCal/TICL/data/ticlv5/onnx_models/patternrecognition/energy_v0.onnx'),
47  inputNames = cms.vstring('input'),
48  output_en = cms.vstring('enreg_output'),
49  output_id = cms.vstring('pid_output'),
50  eid_min_cluster_energy = cms.double(1),
51  eid_n_layers = cms.int32(50),
52  eid_n_clusters = cms.int32(10),
53  doPID = cms.int32(1),
54  doRegression = cms.int32(0),
55  type = cms.string('TracksterInferenceByDNN')
56  ),
57  pluginInferenceAlgoTracksterInferenceByANN = cms.PSet(
58  algo_verbosity = cms.int32(0),
59  type = cms.string('TracksterInferenceByANN')
60 
61  ),
62 
63 
64 )
65 
66 from Configuration.ProcessModifiers.ticl_v5_cff import ticl_v5
67 ticl_v5.toModify(ticlTrackstersCLUE3DHigh.pluginPatternRecognitionByCLUE3D, computeLocalTime = cms.bool(True))
68 ticl_v5.toModify(ticlTrackstersCLUE3DHigh.pluginPatternRecognitionByCLUE3D, usePCACleaning = cms.bool(True))
69 ticl_v5.toModify(ticlTrackstersCLUE3DHigh.inferenceAlgo, type = cms.string('TracksterInferenceByDNN'))
70 
71 ticlCLUE3DHighStepTask = cms.Task(ticlSeedingGlobal
72  ,filteredLayerClustersCLUE3DHigh
73  ,ticlTrackstersCLUE3DHigh)
74