CMS 3D CMS Logo

TkClusParameters_cff.py
Go to the documentation of this file.
1 import FWCore.ParameterSet.Config as cms
2 
3 DA_vectParameters = cms.PSet(
4  algorithm = cms.string("DA_vect"),
5  TkDAClusParameters = cms.PSet(
6  coolingFactor = cms.double(0.6), # moderate annealing speed
7  zrange = cms.double(4.), # consider only clusters within 4 sigma*sqrt(T) of a track
8  delta_highT = cms.double(1.e-2), # convergence requirement at high T
9  delta_lowT = cms.double(1.e-3), # convergence requirement at low T
10  convergence_mode = cms.int32(0), # 0 = two steps, 1 = dynamic with sqrt(T)
11  Tmin = cms.double(2.0), # end of vertex splitting
12  Tpurge = cms.double(2.0), # cleaning
13  Tstop = cms.double(0.5), # end of annealing
14  vertexSize = cms.double(0.006), # added in quadrature to track-z resolutions
15  d0CutOff = cms.double(3.), # downweight high IP tracks
16  dzCutOff = cms.double(3.), # outlier rejection after freeze-out (T<Tmin)
17  zmerge = cms.double(1e-2), # merge intermediat clusters separated by less than zmerge
18  uniquetrkweight = cms.double(0.8),# require at least two tracks with this weight at T=Tpurge
19  uniquetrkminp = cms.double(0.0), # minimal a priori track weight for counting unique tracks
20  runInBlocks = cms.bool(False), # activate the DA running in blocks of z sorted tracks
21  block_size = cms.uint32(10000), # block size in tracks
22  overlap_frac = cms.double(0.0) # overlap between consecutive blocks (blocks_size*overlap_frac)
23  )
24 )
25 
26 from Configuration.ProcessModifiers.vertexInBlocks_cff import vertexInBlocks
27 vertexInBlocks.toModify(DA_vectParameters,
28  TkDAClusParameters = dict(
29  runInBlocks = True,
30  block_size = 128,
31  overlap_frac = 0.5
32  )
33 )
34 
35 from Configuration.Eras.Modifier_phase2_tracker_cff import phase2_tracker
36 (phase2_tracker & vertexInBlocks).toModify(DA_vectParameters,
37  TkDAClusParameters = dict(
38  block_size = 512,
39  overlap_frac = 0.5))
40 
41 from Configuration.Eras.Modifier_highBetaStar_2018_cff import highBetaStar_2018
42 highBetaStar_2018.toModify(DA_vectParameters,
43  TkDAClusParameters = dict(
44  Tmin = 4.0,
45  Tpurge = 1.0,
46  Tstop = 1.0,
47  vertexSize = 0.01,
48  d0CutOff = 4.,
49  dzCutOff = 5.,
50  zmerge = 2.e-2,
51  uniquetrkweight = 0.9
52  )
53 )
54 
55 DA2D_vectParameters = cms.PSet(
56  algorithm = cms.string("DA2D_vect"),
57  TkDAClusParameters = cms.PSet(
58  coolingFactor = cms.double(0.6), # moderate annealing speed
59  zrange = cms.double(4.), # consider only clusters within 4 sigma*sqrt(T) of a track
60  delta_highT = cms.double(1.e-2), # convergence requirement at high T
61  delta_lowT = cms.double(1.e-3), # convergence requirement at low T
62  convergence_mode = cms.int32(0), # 0 = two steps, 1 = dynamic with sqrt(T)
63  Tmin = cms.double(4.0), # end of vertex splitting
64  Tpurge = cms.double(4.0), # cleaning
65  Tstop = cms.double(2.0), # end of annealing
66  vertexSize = cms.double(0.006), # added in quadrature to track-z resolutions
67  vertexSizeTime = cms.double(0.008),
68  d0CutOff = cms.double(3.), # downweight high IP tracks
69  dzCutOff = cms.double(3.), # outlier rejection after freeze-out (T<Tmin)
70  dtCutOff = cms.double(4.), # outlier rejection after freeze-out (T<Tmin)
71  t0Max = cms.double(1.0), # outlier rejection for use of timing information
72  zmerge = cms.double(1e-2), # merge intermediat clusters separated by less than zmerge and tmerge
73  tmerge = cms.double(1e-1), # merge intermediat clusters separated by less than zmerge and tmerge
74  uniquetrkweight = cms.double(0.8),# require at least two tracks with this weight at T=Tpurge
75  uniquetrkminp = cms.double(0.0) # minimal a priori track weight for counting unique tracks
76  )
77 )