CMS 3D CMS Logo

hgcalHtml.py
Go to the documentation of this file.
1 import os
2 import collections
3 
4 _sampleName = {
5  "RelValCloseByParticleGun_CE_H_Fine_300um" : "CloseByParticleGun in CE-H Fine section with 300 um",
6  "RelValCloseByParticleGun_CE_H_Fine_200um" : "CloseByParticleGun in CE-H Fine section with 200 um",
7  "RelValCloseByParticleGun_CE_H_Fine_120um" : "CloseByParticleGun in CE-H Fine section with 120 um",
8  "RelValCloseByParticleGun_CE_H_Coarse_Scint" : "CloseByParticleGun in CE-H Coarse section with scintillator",
9  "RelValCloseByParticleGun_CE_H_Coarse_300um" : "CloseByParticleGun in CE-H Coarse section with 300 um",
10  "RelValCloseByParticleGun_CE_E_Front_300um" : "CloseByParticleGun in CE-E Front section with 300 um",
11  "RelValCloseByParticleGun_CE_E_Front_200um" : "CloseByParticleGun in CE-E Front section with 200 um",
12  "RelValCloseByPGun_CE_E_Front_120um" : "CloseByParticleGun in CE-E Front section with 120 um",
13  "RelValCloseByPGun_CE_H_Fine_300um" : "CloseByParticleGun in CE-H Fine section with 300 um",
14  "RelValCloseByPGun_CE_H_Fine_200um" : "CloseByParticleGun in CE-H Fine section with 200 um",
15  "RelValCloseByPGun_CE_H_Fine_120um" : "CloseByParticleGun in CE-H Fine section with 120 um",
16  "RelValCloseByPGun_CE_H_Coarse_Scint" : "CloseByParticleGun in CE-H Coarse section with scintillator",
17  "RelValCloseByPGun_CE_H_Coarse_300um" : "CloseByParticleGun in CE-H Coarse section with 300 um",
18  "RelValCloseByPGun_CE_E_Front_300um" : "CloseByParticleGun in CE-E Front section with 300 um",
19  "RelValCloseByPGun_CE_E_Front_200um" : "CloseByParticleGun in CE-E Front section with 200 um",
20  "RelValCloseByPGun_CE_E_Front_120um" : "CloseByParticleGun in CE-E Front section with 120 um",
21  "RelValTTbar" : "TTbar",
22  "RelValSingleGammaFlatPt8To150" : "Single Gamma Pt 8 GeV to 150 GeV ",
23  "RelValSingleMuPt10" : "Single Muon Pt 10 GeV",
24  "RelValSingleMuPt100" : "Single Muon Pt 100 GeV",
25  "RelValSingleMuPt1000" : "Single Muon Pt 1000 GeV",
26  "RelValSingleMuFlatPt2To100" : "Single Muon Pt 2 GeV to 100 GeV",
27  "RelValSingleMuFlatPt0p7To10" : "Single Muon Pt 0.7 GeV to 10 GeV",
28  "RelValSingleEFlatPt2To100" : "Single Electron Pt 2 GeV to 100 GeV",
29  "RelValSingleTauFlatPt2To150" : "Single Tau Pt 2 GeV to 150 GeV",
30  "RelValSinglePiFlatPt0p7To10" : "Single Pion Pt 0.7 GeV to 10 GeV",
31  "RelValQCD_Pt20toInfMuEnrichPt15" : "QCD Pt 20 GeV to Inf with Muon Pt 15 GeV",
32  "RelValQCD_Pt15To7000_Flat" : "QCD Pt 15 GeV to 7 TeV",
33  "RelValZTT" : "ZTauTau",
34  "RelValZMM" : "ZMuMu",
35  "RelValZEE" : "ZEleEle",
36  "RelValB0ToKstarMuMu" : "B0 To Kstar Muon Muon",
37  "RelValBsToEleEle" : "Bs To Electron Electron",
38  "RelValBsToMuMu" : "Bs To Muon Muon",
39  "RelValBsToJpsiGamma" : "Bs To Jpsi Gamma",
40  "RelValBsToJpsiPhi_mumuKK" : "Bs To JpsiPhi_mumuKK",
41  "RelValBsToPhiPhi_KKKK" : "Bs To PhiPhi_KKKK",
42  "RelValDisplacedMuPt30To100" : "Displaced Muon Pt 30 GeV to 100 GeV",
43  "RelValDisplacedMuPt2To10" : "Displaced Muon Pt 2 GeV to 10 GeV",
44  "RelValDisplacedMuPt10To30" : "Displaced Muon Pt 10 GeV to 30 GeV",
45  "RelValTauToMuMuMu" : "Tau To Muon Muon Muon",
46  "RelValMinBias" : "Min Bias",
47  "RelValH125GGgluonfusion" : "Higgs to gamma gamma",
48  "RelValNuGun" : "Neutrino gun",
49  "RelValZpTT_1500" : "Z prime with 1500 GeV nominal mass",
50  "RelValTenTau_15_500_Eta3p1" : "Ten Taus with energy from 15 GeV to 500 GeV"
51 }
52 
53 _sampleFileName = {
54  "RelValCloseByParticleGun_CE_H_Fine_300um" : "closebycehf300",
55  "RelValCloseByParticleGun_CE_H_Fine_200um" : "closebycehf200",
56  "RelValCloseByParticleGun_CE_H_Fine_120um" : "closebycehf120",
57  "RelValCloseByParticleGun_CE_H_Coarse_Scint" : "closebycehcscint",
58  "RelValCloseByParticleGun_CE_H_Coarse_300um" : "closebycehc300",
59  "RelValCloseByParticleGun_CE_E_Front_300um" : "closebyceef300",
60  "RelValCloseByParticleGun_CE_E_Front_200um" : "closebyceef200",
61  "RelValCloseByParticleGun_CE_E_Front_120um" : "closebyceef120",
62  "RelValTTbar" : "ttbar",
63  "RelValSingleGammaFlatPt8To150" : "gam8",
64  "RelValSingleMuPt10" : "m10",
65  "RelValSingleMuPt100" : "m100",
66  "RelValSingleMuPt1000" : "m1000",
67  "RelValSingleMuFlatPt2To100" : "mflat2t100",
68  "RelValSingleMuFlatPt0p7To10" : "mflat0p7t10",
69  "RelValSingleEFlatPt2To100" : "eflat2t100",
70  "RelValSingleTauFlatPt2To150" : "tauflat2t150",
71  "RelValSinglePiFlatPt0p7To10" : "piflat0p7t10",
72  "RelValQCD_Pt20toInfMuEnrichPt15" : "qcd20enmu15",
73  "RelValQCD_Pt15To7000_Flat" : "qcdflat15",
74  "RelValZTT" : "ztautau",
75  "RelValZMM" : "zmm",
76  "RelValZEE" : "zee",
77  "RelValB0ToKstarMuMu" : "b0kstmm",
78  "RelValBsToEleEle" : "bsee",
79  "RelValBsToMuMu" : "bsmm",
80  "RelValBsToJpsiGamma" : "bsjpsg",
81  "RelValBsToJpsiPhi_mumuKK" : "bsjpspmmkk",
82  "RelValBsToPhiPhi_KKKK" : "bsjpsppkkkk",
83  "RelValDisplacedMuPt30To100" : "dm30",
84  "RelValDisplacedMuPt2To10" : "dm2",
85  "RelValDisplacedMuPt10To30" : "dm10",
86  "RelValTauToMuMuMu" : "taummm",
87  "RelValMinBias" : "minbias",
88  "RelValH125GGgluonfusion" : "hgg",
89  "RelValNuGun" : "nug",
90  "RelValZpTT_1500" : "zp1500tautau",
91  "RelValTenTau_15_500" : "tentaus15to1500"
92 
93 }
94 
95 
96 _pageNameMap = {
97  "summary": "Summary",
98  "hitCalibration": "Reconstructed hits calibration",
99  "hitValidation" : "Simulated hits, digis, reconstructed hits validation" ,
100  "layerClusters": "Layer clusters",
101  "tracksters":"Tracksters",
102  "Tracksters":"Tracksters",
103  "Test-TICL":"Tracksters Linking",
104  "TICL-patternRecognition":"Tracksters Pattern Recognition",
105  "ticlMultiClustersFromTrackstersEM": "Electromagnetic multiclusters",
106  "ticlMultiClustersFromTrackstersHAD": "Hadronic multiclusters",
107  "hgcalMultiClusters" : "Old multiclusters",
108  "standalone" : "Standalone study on simulated hits, digis, reconstructed hits"
109 }
110 
111 _sectionNameMapOrder = collections.OrderedDict([
112  # These are for the summary page
113  # Will add later
114  # layerClusters
115  ("layerClusters", "Layer clusters"),
116  # ticlMultiClustersFromTrackstersEM
117  ("ticlMultiClustersFromTrackstersEM","Electromagnetic multiclusters"),
118  # ticlMultiClustersFromTrackstersHAD
119  ("ticlMultiClustersFromTrackstersHAD","Hadronic multiclusters"),
120  ("tracksters","Tracksters"),
121  ("Tracksters","Tracksters"),
122  ("Test-TICL","Tracksters Linking"),
123  ("TICL-patternRecognition","Tracksters Pattern Recognition"),
124  # hgcalMultiClusters
125  ("hgcalMultiClusters","Old multiclusters"),
126 ])
127 
128 #This is the summary section, where we define which plots will be shown in the summary page.
129 _summary = {}
130 
131 #Objects to keep in summary
132 #_summobj = ['hitCalibration','hitValidation', 'hgcalLayerClusters','ticlMultiClustersFromTrackstersEM','ticlMultiClustersFromTrackstersHAD']
133 _summobj = ['hitCalibration','hitValidation', 'layerClusters','Tracksters','Test-TICL','TICL-patternRecognition']
134 #_summobj = ['hitCalibration','hitValidation', 'layerClusters']
135 
136 #Plots to keep in summary from hitCalibration
137 summhitcalib=[
138  'Layer_Occupancy/LayerOccupancy/LayerOccupancy.png',
139  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_300_calib_fraction.png',
140  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_200_calib_fraction.png',
141  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_100_calib_fraction.png',
142  'ReconstructableEnergyOverCPenergy/ReconstructableEnergyOverCPenergy/h_EoP_CPene_scint_calib_fraction.png'
143  ]
144 
145 #Plots to keep in summary from hitValidation
146 summhitvalid = [
147  'SimHits_Validation/HitValidation/heeEnSim.png',
148  'SimHits_Validation/HitValidation/hebEnSim.png',
149  'SimHits_Validation/HitValidation/hefEnSim.png']
150 
151 #Plots to keep in summary from layer clusters
152 summlc = [
153  'hgcalLayerClusters_Z-minus: LC_CP association/Efficiencies_vs_layer/globalEfficiencies.png' ,
154  'hgcalLayerClusters_Z-plus: LC_CP association/Efficiencies_vs_layer/globalEfficiencies.png' ,
155  'hgcalLayerClusters_Z-minus: LC_CP association/Duplicates_vs_layer/globalEfficiencies.png' ,
156  'hgcalLayerClusters_Z-plus: LC_CP association/Duplicates_vs_layer/globalEfficiencies.png' ,
157  'hgcalLayerClusters_Z-minus: LC_CP association/FakeRate_vs_layer/globalEfficiencies.png' ,
158  'hgcalLayerClusters_Z-plus: LC_CP association/FakeRate_vs_layer/globalEfficiencies.png' ,
159  'hgcalLayerClusters_Z-minus: LC_CP association/MergeRate_vs_layer/globalEfficiencies.png' ,
160  'hgcalLayerClusters_Z-plus: LC_CP association/MergeRate_vs_layer/globalEfficiencies.png'
161  #'SelectedCaloParticles_Photons/SelectedCaloParticles_num_caloparticle_eta.png',
162  #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_pt.png',
163  #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_phi.png',
164  #'SelectedCaloParticles_Photons/SelectedCaloParticles_caloparticle_energy.png',
165  #'SelectedCaloParticles_Photons/SelectedCaloParticles_Eta vs Zorigin.png'
166  ]
167 
168 #Plots to keep in summary from Tracksters
169 summmcEM = [
170  'ticlTrackstersEM/EtaPhiPtEnergy/trackster_eta.png' ,
171  'ticlTrackstersEM/EtaPhiPtEnergy/trackster_pt.png' ,
172  'ticlTrackstersEM/TotalNumberofTracksters/tottracksternum.png',
173  'ticlTrackstersEM/NumberofLayerClustersinTrackster/clusternum_in_trackster.png'
174 ]
175 
176 #Plots to keep in summary from ticlMultiClustersFromTrackstersEM
177 summmcEM_Link = [
178  'ticlTrackstersEM/Purities_Link/globalEfficiencies.png' ,
179  'ticlTrackstersEM/Duplicates_Link/globalEfficiencies.png' ,
180  'ticlTrackstersEM/FakeRate_Link/globalEfficiencies.png' ,
181  'ticlTrackstersEM/MergeRate_Link/globalEfficiencies.png'
182 ]
183 
184 summmcEM_PR = [
185  'ticlTrackstersEM/Purities_PR/globalEfficiencies.png' ,
186  'ticlTrackstersEM/Duplicates_PR/globalEfficiencies.png' ,
187  'ticlTrackstersEM/FakeRate_PR/globalEfficiencies.png' ,
188  'ticlTrackstersEM/MergeRate_PR/globalEfficiencies.png'
189 ]
190 
191 #Plots to keep in summary from ticlMultiClustersFromTrackstersHAD
192 summmcHAD = [
193  'ticlTrackstersHAD/EtaPhiPtEnergy/trackster_eta.png' ,
194  'ticlTrackstersHAD/EtaPhiPtEnergy/trackster_pt.png' ,
195  'ticlTrackstersHAD/TotalNumberofTracksters/tottracksternum.png',
196  'ticlTrackstersHAD/NumberofLayerClustersinTrackster/clusternum_in_trackster.png'
197 ]
198 
199 summmcHAD_Link = [
200  'ticlTrackstersHAD/Purities_Link/globalEfficiencies.png' ,
201  'ticlTrackstersHAD/Duplicates_Link/globalEfficiencies.png' ,
202  'ticlTrackstersHAD/FakeRate_Link/globalEfficiencies.png' ,
203  'ticlTrackstersHAD/MergeRate_Link/globalEfficiencies.png'
204 ]
205 
206 summmcHAD_PR = [
207  'ticlTrackstersHAD/Purities_PR/globalEfficiencies.png' ,
208  'ticlTrackstersHAD/Duplicates_PR/globalEfficiencies.png' ,
209  'ticlTrackstersHAD/FakeRate_PR/globalEfficiencies.png' ,
210  'ticlTrackstersHAD/MergeRate_PR/globalEfficiencies.png'
211 ]
212 
213 summmcTICL = summmcEM + summmcHAD
214 summmcTICL_Link = summmcEM_Link + summmcHAD_Link
215 summmcTICL_PR = summmcEM_PR + summmcHAD_PR
216 
217 #Plots to keep in summary from standalone analysis
218 summstandalone = [
219  'hgcalSimHitStudy/RZ_AllDetectors.png'
220 ]
221 
222 #Let's save the above for later
223 for obj in _summobj:
224  _summary[obj] = {}
225 _summary['hitCalibration'] = summhitcalib
226 _summary['hitValidation'] = summhitvalid
227 _summary['layerClusters'] = summlc
228 _summary['Tracksters'] = summmcTICL
229 _summary['Test-TICL'] = summmcTICL_Link
230 _summary['TICL-patternRecognition'] = summmcTICL_PR
231 
232 #_summary['allTiclMultiClusters'] = summmcTICL
233 #_summary['ticlMultiClustersFromTrackstersEM'] = summmcEM
234 #_summary['ticlMultiClustersFromTrackstersHAD'] = summmcHAD
235 
236 #Entering the geometry section
237 #_MatBudSections = ["allhgcal","zminus","zplus","indimat","fromvertex"]
238 _MatBudSections = ["allhgcal","indimat","fromvertex"]
239 
240 _geoPageNameMap = {
241  "allhgcal": "All materials",
242 # "zminus" : "Zminus",
243 # "zplus" : "Zplus",
244  "indimat" : "Individual materials",
245  "fromvertex": "From vertex up to in front of muon stations"
246 }
247 
248 _individualmaterials =['Air','Aluminium','Cables','Copper','Epoxy','HGC_G10-FR4','Kapton','Lead','Other','Scintillator','Silicon','Stainless_Steel','WCu','Polystyrene','HGC_EEConnector','HGC_HEConnector']
249 
250 _matPageNameMap = {
251  'Air': 'Air',
252  'Aluminium': 'Aluminium',
253  'Cables': 'Cables',
254  'Copper': 'Copper',
255  'Epoxy': 'Epoxy',
256  'HGC_G10-FR4': 'HGC_G10-FR4',
257  'Kapton': 'Kapton',
258  'Lead': 'Lead',
259  'Other': 'Other',
260  'Scintillator': 'Scintillator',
261  'Silicon': 'Silicon',
262  'Stainless_Steel': 'Stainless Steel',
263  'WCu': 'WCu',
264  'Polystyrene' : 'Polystyrene',
265  'HGC_EEConnector': 'CE-E Connector',
266  'HGC_HEConnector': 'CE-H Connector'
267 }
268 
269 _individualmatplots = {"HGCal_x_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum","HGCal_x_vs_z_vs_Rsumcos","HGCal_l_vs_z_vs_Rsumcos","HGCal_x_vs_z_vs_Rloc","HGCal_l_vs_z_vs_Rloc"}
270 
271 _allmaterialsplots = {"HGCal_x_vs_eta","HGCal_l_vs_eta","HGCal_x_vs_phi","HGCal_l_vs_phi","HGCal_x_vs_R","HGCal_l_vs_R","HGCal_x_vs_eta_vs_phi","HGCal_l_vs_eta_vs_phi","HGCal_x_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum","HGCal_x_vs_z_vs_Rsumcos","HGCal_l_vs_z_vs_Rsumcos","HGCal_x_vs_z_vs_Rloc","HGCal_l_vs_z_vs_Rloc"}
272 
273 _fromvertexplots = {"HGCal_l_vs_eta","HGCal_l_vs_z_vs_Rsum","HGCal_l_vs_z_vs_Rsum_Zpluszoom"}
274 
275 _individualMatPlotsDesc = {
276 "HGCal_x_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
277 "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
278 "HGCal_x_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
279 "HGCal_l_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
280 "HGCal_x_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the local mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. ",
281 "HGCal_l_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram for THEMAT in all HGCAL that displays the local mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. "
282 }
283 
284 _allmaterialsPlotsDesc= {
285  "HGCal_x_vs_eta" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
286 
287  "HGCal_l_vs_eta" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
288 
289  "HGCal_x_vs_phi" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each phi bin. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. ",
290 
291  "HGCal_l_vs_phi" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each phi bin. 180 bins in phi -3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. ",
292 
293  "HGCal_x_vs_R" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of radiation length in each radius bin. 300 bins in radius (0,3000 mm), so radius is defined in 1 cm width bins. Both endcaps are in this histogram. Entries are huge since the radius is filled for each step of the track. Statistics in the HEB part above 1565 mm is smaller (although non visible, error is small), since in most part nothing is infront to keep account of the step. ",
294 
295  "HGCal_l_vs_R" : "The plot on the left shows the stacked profile histograms of all materials in HGCal geometry. These profile histograms display the mean value of the material budget in units of interaction length in each radius bin. 300 bins in radius (0,3000 mm), so radius is defined in 1 cm width bins. Both endcaps are in this histogram. Entries are huge since the radius is filled for each step of the track. Statistics in the HEB part above 1565 mm is smaller (although non visible, error is small), since in most part nothing is in front to keep account of the step. ",
296 
297  "HGCal_x_vs_eta_vs_phi" : "The plot on the left shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each eta-phi cell. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. 250 bins in eta -5., 5., so eta is divided in 0.04 width bins. Therefore, eta-phi cell is 2.038 degrees x 0.04 . ",
298 
299  "HGCal_l_vs_eta_vs_phi" : "The plot on the left shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each eta-phi cell. 180 bins in phi (-3.2,3.2), so phi is divided in 0.036 rad width bins or 2.038 degrees width bins. 250 bins in eta -5., 5., so eta is divided in 0.04 width bins. Therefore, eta-phi cell is 2.038 degrees x 0.04 . ",
300 
301  "HGCal_x_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
302 
303  "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the accumulated material budget as seen by the track, as the track travels throughout the detector.",
304 
305  "HGCal_x_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. ",
306 
307  "HGCal_l_vs_z_vs_Rsumcos" : "The plots below shows the 2D profile histogram that displays the mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the orthogonal accumulated material budget, that is cos(theta) what the track sees. " ,
308 
309  "HGCal_x_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram that displays the local mean value of the material budget in units of radiation length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. ",
310 
311  "HGCal_l_vs_z_vs_Rloc" : "The plots below shows the 2D profile histogram that displays the local mean value of the material budget in units of interaction length in each R-z cell. R-z cell is 1 cm x 1 mm. The plots depict the local material budget as seen by the track, as the track travels throughout the detector. "
312 
313 
314 }
315 
316 _fromVertexPlotsDesc = {
317  "HGCal_x_vs_eta" : "The plot below shows the stacked profile histogram of all sub detectors in front of muon stations. This profile histogram displays the mean value of the material budget in units of radiation length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
318 
319  "HGCal_l_vs_eta" : "The plots below shows the stacked profile histogram of all sub detectors in front of muon stations. This profile histogram displays the mean value of the material budget in units of interaction length in each eta bin. 250 bins in eta (-5,5), so eta is divided in 0.04 width bins. ",
320 
321  "HGCal_l_vs_z_vs_Rsum" : "The plots below shows the detectors that are taken into account in the calculation of the material budget. Keep in mind that coloured regions that depicts each sub-detector area may contain Air as material.",
322 
323  "HGCal_l_vs_z_vs_Rsum_Zpluszoom" : "The zoomed plots below shows the detectors that are taken into account in the calculation of the material budget. Keep in mind that coloured regions that depicts each sub-detector area may contain Air as material."
324 
325 
326 
327 }
328 
329 _hideShowFun = {
330  "thestyle" : "<meta name=\"viewport\" content=\"width=device-width, initial-scale=1\"> \n <style> \n body {font-family: Arial;} \n.tab { \n overflow: hidden; \n border: 1px solid #ccc; \n background-color: #f1f1f1;} \n .tab button { background-color: inherit; \n float: left; \n border: none; \n outline: none; \n cursor: pointer; \n padding: 14px 16px; \n transition: 0.3s; \n font-size: 17px; } \n .tab button:hover { background-color: #ddd; } \n .tab button.active { background-color: #ccc; } \n .tabcontent { display: none; \n padding: 6px 12px; \n border: 1px solid #ccc; \n border-top: none; \n} \n </style>",
331  "buttonandFunction" : "<script> \n function openRegion(evt, regionName) { \n var i, tabcontent, tablinks;\n tabcontent = document.getElementsByClassName(\"tabcontent\"); \n for (i = 0; i < tabcontent.length; i++) {\n tabcontent[i].style.display = \"none\";\n }\n tablinks = document.getElementsByClassName(\"tablinks\"); \n for (i = 0; i < tablinks.length; i++) {\n tablinks[i].className = tablinks[i].className.replace(\" active\", \"\"); \n }\n document.getElementById(regionName).style.display = \"block\";\n evt.currentTarget.className += \" active\"; \n}\n</script>\n",
332  "divTabs" : "<div class=\"tab\">\n <button class=\"tablinks\" onclick=\"openRegion(event, \'_AllHGCAL\')\">All HGCAL</button>\n <button class=\"tablinks\" onclick=\"openRegion(event, \'_ZminusZoom\')\">Zminus</button>\n <button class=\"tablinks\" onclick=\"openRegion(event, \'_ZplusZoom\')\">Zplus</button>\n </div>\n "
333 }
334 
335 
336 
337 
338 
339 
340